J. P. Wiaux, J. J. Dietrich

Size: px
Start display at page:

Download "J. P. Wiaux, J. J. Dietrich"

Transcription

1 EFFECTIVE ELECTROLYTIC RECOVERY OF HEAVY METALS FROM DILUTE EFFLUENTS Authors: J. P. Wiaux, J. J. Dietrich Over the past several years, it has become increasingly difficult and costly to dispose of sludges that contain heavy metals. Therefore, there has been a major effort to either reduce or eliminate the sludge. In contrast to precipitation methods which produce larg6 vol umes of toxic sludge, and ion-exchange systems which produce elutants with concentrated heavy metals electrolysis a1 lows the effluent to be treated at the source to recover the metal ions as metal. Electrochemical metal recovery techniques have been 1 imi ted by low electrochemical efficiencies associated with recovering actual ions in parts per mi 11 ion (ppm) concentrations from solutions treated. Progress in electrolyzer design in conjunction with new cathode materials has dramati cal ly increased the effi ci ency of electrolytic metal recovery (1, 2 ). One of these electrolyzers, utilizing reticulate metal cathodes, was designed to efficiently remove heavy metals to very low ppm levels. The system consi sts of a1 ternating foam metal cathodes and precious metal catalyzed titanium anodes (Figure 1). DSA" ANOOt- 1,.- ROW fllter CATHODE -\ BUS RETICULATE - CATHODE ANODE BUS W/ CONNECTOR CLIPS /" CATHODE CONNECTOR -/ FIG. 1. RETEC-SO CEU

2 .../._.*." ""-.- This titanium anode, which i s stable in acidic and basic media, allows operation without contamination while the reticulate cathode a1 lows efficient metal rec ue to the large surface area that is about 10 times the geometric dow area. The expanded view of the cathode i s shown in Figure 2.

3 To better understand the critical electrolysis parameters, it is necessary to look at some basic mathematics. For the recovery of a metal from an industrial plating effluent, the following relationship appl ies (3): C e o A x V Rf where: V = Vo t Pa t Pc t Ir, and Ce: Energy consumed expressed in KHhIkg; A: Theoretical quantity of current necessary to deposit 1 metal in per kah; V: Cell voltaae: Vo: Minimum voitage required to deposit the metal; Pa: Anode polarization: Pc: Cathode polarization; Ir: Ohmic drop in the electrolyte; Rf: Faraday yield of the process; Figure 3 shows the key parameters. kg of 'h FIG. 3 KEY CELL PARAMETERS

4 As a first approximation, it is estimated that for a given effluent, the terms Vo, Pa and Ir are reasonably constant during the course of the electrolysis and that the energy consumed can be written as: The terms Pc and Rf vary during the course of the electrolysis. At high concentrations, the reaction at the cathode i s governed by the deposition of metal. As the electrolysis proceeds and the metal concentration - decreases, the voltage increases and hydrogen evolution begins as shown in the following two equations. M+* + Ze' M H2 + 20H- 2H20 + 2e- - Because of the competition between metal deposition and hydrogen evolution, it i s certain that the nature of the effluent and the geometry of the electrolyzer play an important role in the Faradic efficiency of the overall electrolysis. Electrolyzers with plate cathodes give inferior yields as the metal concentration goes below 0.5 gm/l. This implies an unfavorable energy consumption and the necessity to have a cathode material with a large surface area to satisfy conditions of low metal concentration. A list of the precious and common metals that can be recovered electrochemically i s shown in Table 1. Conspicuously missing from this list are iron and chromium. These metals cannot be recovered in systems that do not have separators between the anode and the cathode. In addition, the presence of iron and chromium can hinder or preclude the recovery of the c,etals listed in Table 1. TABLE 1: ADDllCatfOnS for the Electrolvtic Recovery of Metals Precious Metals Au, Ag, Rh, Pd, Pt... Plating baths and etch baths Au-Cu, Au-N1 a1 loys Au from Co Separation of: Cu from Pd, Au from Co... Ag photographic fix baths Common Metals cu Cd Ni Sn Sn-Pb Zn Separation Acid and ammoniacal etches of H202 and (NH412S208 Acid and Cyanide Watts, Wood and sulfamate Acid Acid Cyanide Cd from Ni and Co Cu from Cd and Zn

5

6 Because of oxidation at the anode, some of the bath constituents may need replacement to maintain the desired concentrations. The overall result is a longer bath lifetime and efficient recovery of the metal (Table 2). TABLE 2: Recovery of Acidic Coppe r (CuSO4 - H2S04 - ph = 1) Electrolysis pa rs: Voltage: 2.ov Current: 15 A Electrode Surface: 28 dm2 (3.1 ft2) Electrode Type: Ni-(20 pores per inch) Efficiency (3.0 gr to 0.8 ppm) 35% Vol ume 30 1 (7.9 gal) Ti me (Hours) Copper Concen t rat i on (ma/l) Ti me (Hours) Copper Concentration (mq/l) o 0.8

7 Recoverv of Come r and Destruct ion of Cvanide: Although not aggressively marketed for treat1 ng cyanide, a precious metal catalyzed titanium anode in an ETS unit is capable of efficiently destroying cyanide present in plating solutions. Under the conditions listed in Table 3, the efficiency shown in Table 4 has been obtained. The changing concentration with time has been plotted in Figure 6. At low concentrations, cyanide destruction plateaus as the reaction becomes very inefficient. TABLE 3: El ectrol vsi s Paramete rs for a Come r Cyanide Bath. Volume: F1 ow: Mode: Current : Voltage: Electrodes: Anodes : Agi tat i on : (291 gal.) 850 l/h (225 gal/hr) Recyc 1 e 600 A 3.0 V 50 Ni-(20 pores per inch) 51 DSA Ai r TABLE 4: Treatment of a CopDe r Cvanide Bath: Analvtical Results(*> Ti me in Hours Copper (moll) X Efficiency i Cyan i de (mall1 X Efficiency (*) For the two processes, an exchange of one electron has been chosen in making Faraday yield calculations.

8 CYANIDE COPPER FIG. 6, TIME (HOURS) SIS OF A COPPER CYANIDE 7 - *7- remove the last traces

9 PLATING BATH PRIMARY SECONDARY ION RINSE RINSE EXCHANGE. I ELECTROLYTIC 1 I I REGENERANT. _. - I I TREATMENT r I TANK J I 1 DISPOSAL FIG. 7 TREATMENT OF ION LXCHANGE REGENERANT Treatment of Effluent before Ion-Exchanue: For solutions with high concentrations of metal and moderate volumes, it is desirable to utilize ETS to efficiently remove the metal to the low ppm levels and then to polish, if necessary, with ion-exchange (Figure 8). This method is desirable where the discharge regulations are extremely stringent or recovery of a prec;ous metal i s involved. The regenerant from the ion-exchange column can then be recycled through the ETS unit. ELECTROLVIC / REGENERANT ( TREATMENT TANK J DISPOSAL PLATING BATH - PRIMARY SECONDARY ION I RINSE.I * RINSE EXCHANGE - 1 FIG. 8 TREATMENT OF EFFLUENT BEFORE ION EXCHANGE

10 The economics of electrolytic metal recovery wi 11 vary depending on the scrap value of the metal recovered and the various costs associated with sludge treatment, handling and disposal. Table 5 gives the basis for calculations involving nickel and copper for a plating facility in Switzerland. The methodology i s valid for the United States but the numbers would have to be changed. The data are summarized in Table 6. TABLE 5: Economic Studies of Metal Recovery by Electrolysis lnickel and Come r Cases) Items Capital : RETEC-50 Rectifier 10V-750A ' Total Depreciation over 5 years Metal recovery capacity Cathode costs Number to recover 4000 kg/of meta; Total Annual Cost Cathode Capacity Electrolytic Copper Value Electrolytic Nickel Value Total Annual Recycle Annual Recycle Value Operating Expense Electric Power 4,000 kg (8,800 lbs)/year 15.-FrS ($lo)/pi ece kg (8.8 lbs)/cathode 1.O FrS/kg ($0.30/lb) 10.0 FtS/kg ($3.03/1b) 4000 kg (8,800 lbs) Copper: Nickel : Cost in Frs/Year ($111.5 FrS) 34, ($22 670) ( $7.670) 45, ($30,000) ( $6,07O)/year ( $1 0,000) year Copper 750 A x 2.0 V x QQQ 8,333 x 0.15 ($0.10) = 1,250.-($833) kwh x FrS/kWh Nickel 750 A x 6.0 V x QQQ 25,000 x 0.15 ($0.10) = 3,750.- ($2,500) kwh x FrS/kWh Labor; 4 h/week (30 FrS ($20)/h times 50 weeks) S1 udge disposal cost 6, ($4,000) At 10% metal content (8167)m ton For 4000 kg of metal, 40 tons of sludge disposed of annual ly 1Ol0O0.-($6,670)/year Precipitation, storage, s 1 udge hand1 i ng 100.-($67) /m ton 4,000.-($2,670) /year

11 TABLE 6: Economic Summary of the Electrolytic Recovery of Metals (case of Ni and of Cu in FrS Der Year of ODeration). Annual ExDense CoDDer Nickel Depreciation 9,100- -( $6,067) * 9,100 -($6,0671 Cathodes 15,000. -( $1 0,000) 1 5,000. -( $10,000) El ectri ci ty 1,250.-($833) 3,750. -($2,500) Labor 6,000. -( $4,000) ( $4,000) TOTAL 31,350.-( $20,900) 33,850. -($22,567) Operating Expense: FrS/Kg ($/l b) 7.85 ($2.38) 8.50 ($2.58) Annual Savi nas Recovered Metal 4,000. -( $2,667) 40,000. -( $26,667 Sludge Treatment 4,000. -( $2,667) 4,000 -( $2,667) Di sposal ($6,666) ($6,666) TOTAL 18,000. -( $1 2,000) 54,000. -( $36,000) Savings: FrS/kg ($/lb) 4.50 ($1.36) ($4.09) $1 =I 1.5 FrS.

12 It can be clearly seen in this particular case that electrolytic recovery is the economic choice for nickel but sludge disposal is more favorable for copper. As can be seen from the tables, the numbers can be dramatically a1 tered depending on the recovery value of the metal and the disposal cost of the sludge. Utilizing the Swiss data, it is possible to draw the chart shown in Figure 9. The validity of the chart does not change when one converts from Swiss Francs per kilogram into dollars per pound. FIG. 9. ELECTROLYTIC RECOVERY OF METAL: PRICE OF METAL AND ELECTROLYSIS COST

13 Developments in the structure of the electrodes and in the design of electrolyzers have led to the appearance in the marketplace of a number of grow'lng applications in the area of dilute effluent treatments. As sludge disposal becomes more difficult and more costly, there i s increasing incentive to employ electrolytic recove y systems. In addition to the reduction or elimination of sludge, the electrolytic systems allow the user to recover the waste as metal and, thus eliminate the ongoing liability associated with sludge. It is interest ng to note that there i s no one simplistic solution to waste treatment. The waste treatment problem can best be solved by a judicious choice of treatment systems which meet the environmental restraints and give the user the best economic return. The ultimate goal i s to obtain technical, political, economic and environmental harmony, 4091 P

14 Bi bl iocrraphy (1) Sioda. et al. Flowthrough Porous Electrodes. Chemical Engineering. Feb 21 pp (1983) (2) Konicek M.G., Platek G. Reti cul ated Electrodes Cell Removes Heavy Metal s from Ri nse Waters. New Mater1 a1 s and Processes. Vol. 2. pp (1983) (3) a) Doniat D. Procede Electrochimique de Recuperation. No Fev. (1979). b> Coeuret F.et Storck A. Elements de Genie Electrochimique. Ed. Lavoisler Tech. & Doc. Paris ISBN Trai tements de Surface.

-- Recovery of metals in their noble form;

-- Recovery of metals in their noble form; \ INDUSTRIAL ELECTROLYSIS APPLICATIONS IN THF RECOVERY AND RECYCLING OF MET ALS* Author: J. P. Wlaux 2f3 7-r P3 IC Abstract The electrolytic recovery of metals is finding more and more justification in

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

ADVANCED DESIGN ELECTROLYTIC RECOVERY SYSTEMS

ADVANCED DESIGN ELECTROLYTIC RECOVERY SYSTEMS ADVANCED DESIGN ELECTROLYTIC RECOVERY SYSTEMS Pollution Prevention Technology Development Branch Presented By Dr. Katherine Ford 1KF5/94lhl Agenda Process Description Cadmium Recovery System ERU Applications

More information

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Corrosion Definition Electrochemical attack of metals

More information

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Determine the half reactions for each cell and the cell voltage or minimum theoretical voltage. 1. Zn / Mg electrochemical

More information

ELECTROLYTIC RECOVERY FROM RINSE WATERS. C.A.Swank. ERC/LANCY Division of Dart & Kraft, Inc. 525 West New Castle Street Zelienople, PA 16063

ELECTROLYTIC RECOVERY FROM RINSE WATERS. C.A.Swank. ERC/LANCY Division of Dart & Kraft, Inc. 525 West New Castle Street Zelienople, PA 16063 ELECTROLYTIC RECOVERY FROM RINSE WATERS By: C.A.Swank ERC/LANCY Division of Dart & Kraft, Inc. 525 West New Castle Street Zelienople, PA 16063 I, Introduction The recovery and reuse of various industrial

More information

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s), 1. Which change in oxidation number represents oxidation? A) Sn 2+ (aq) Sn 4+ (aq) B) Sn 2+ (aq) Sn(s) C) Sn 4+ (aq) Sn 2+ (aq) D) Sn 4+ (aq) Sn(s) E) Sn(s) Sn 2 (aq) 2. In the reaction Sn 2+ (aq) + 2

More information

be recycled. This method is one which can be employed, now, in an effort toward waste minimization.

be recycled. This method is one which can be employed, now, in an effort toward waste minimization. The Use of Electrolytic Recovery in Conjunction with Chemical Precipitation: A Case Study of Total Metal Recovery at a Jewelry Production Company Dr. George Hradil, Covocfinish Co., Inc. and Edward Hradil,

More information

UNIT-I ELECTROCHEMISTRY PART-A

UNIT-I ELECTROCHEMISTRY PART-A UNIT-I ELECTROCHEMISTRY PART-A 1. What is electrochemistry? 2. What do you understand by electrode potential? 3. Define E.M.F of an electrochemical cell? 4. Define (a) Single electrode potential (b) Standard

More information

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable)

Batteries. Dry Cell (Flashlight Battery) Self contained electrochemical cell. ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell Dry Cell (Flashlight Battery)! Primary batteries (not rechargeable)! Secondary batteries (rechargeable) Anode: Zn(s)! Research Needed to Improve Batteries:

More information

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

Set 3 Marking Scheme : Electrochemistry Na +, H + -, NO 3, OH -, OH - Na +, H + OH - Its lower than in electrochemical series

Set 3 Marking Scheme : Electrochemistry Na +, H + -, NO 3, OH -, OH - Na +, H + OH - Its lower than in electrochemical series 8. Write the formula of all ions present in the electrolyte. Write the formula of ion/ions which is/are attracted to anode and cathode. Which is selectively discharged? Give a reason. Write the half equation

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem Thermodynamics and Electrode Potential ME 472-062 Copyright Dr. Zuhair M. Gasem Corrosion Science and Engineering 2 Corrosion Science Engineering: corrosion forms, and controlling methods Chpater2 Thermodynamics

More information

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable)

Batteries. Self contained electrochemical cell. Dry Cell (Flashlight Battery) ! Primary batteries (not rechargeable) Batteries Self contained electrochemical cell! Primary batteries (not rechargeable)! Secondary batteries (rechargeable)! Research Needed to Improve Batteries: CHEM112 LRSVDS Batteries and Corrosion 1 Dry

More information

Methods of Corrosion Control. Corrosion Control or Corrosion Management?

Methods of Corrosion Control. Corrosion Control or Corrosion Management? Corrosion Control or Corrosion Management? Corrosion control is a process aimed at reducing the corrosion rate to a tolerable level (or predictable limits) Corrosion control focuses mainly on (i) materials

More information

HAVACHROME CR3 TRIVALENT BRIGHT CHROMIUM PROCESS

HAVACHROME CR3 TRIVALENT BRIGHT CHROMIUM PROCESS HAVACHROME CR3 TRIVALENT BRIGHT CHROMIUM PROCESS HAVACHROME CR3 Process is a unique trivalent chromium plating process, that is used to deposit a bright chromium deposit over bright nickel deposits. IMPORTANT:

More information

Electro-Pure Technology. Advanced Water Treatment Technology. Ability to treat a wide range of contaminants simultaneously

Electro-Pure Technology. Advanced Water Treatment Technology. Ability to treat a wide range of contaminants simultaneously Electro-Pure Technology Advanced Water Treatment Technology EPT uses no added chemicals Patent-pending technology Ability to treat a wide range of contaminants simultaneously On site treatment Cost effective

More information

OPERATING INSTRUCTIONS FOR TCCG & TCACG 267 & 1000 ML HEATED HULL CELLS (110 VOLT)

OPERATING INSTRUCTIONS FOR TCCG & TCACG 267 & 1000 ML HEATED HULL CELLS (110 VOLT) WARNING!!! PLEASE BE ADVISED THAT KOCOUR 110 VOLT HULL CELLS ARE ONLY RATED FOR USE WITH 110 VOLT AC POWER SUPPLY. DAMAGE TO THE HULL CELL AND/OR FIRE CAN OCCUR! 220 VOLT HULL CELLS ARE AVAILABLE! OPERATING

More information

Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium.

Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium. Int. J. Electrochem. Sci., 6 (2011) 3254-3263 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Performance Evaluation of Zinc Deposited Mild Steel in Chloride Medium. Popoola A.P.I

More information

Technology update plating on plastic for sustainability TOP ZECROM PROCESS

Technology update plating on plastic for sustainability TOP ZECROM PROCESS 23 June 2017 Surface and Coatings Forum 2017 1 Technology update plating on plastic for sustainability TOP ZECROM PROCESS Toshimitsu NAGAO OKUNO CHEMICAL INDUSTRIES CO., LTD. OSAKA JAPAN Outline: Plating

More information

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK Metals and Minerals Division 2 Perry Road Witham Essex CM8 3TU Contact: Mrs C Hargreaves Tel: +44 (0)1376 536800 Fax: +44 (0)1376 520819 E-Mail:

More information

APPLICATIONS OF ELECTROCHEMISTRY

APPLICATIONS OF ELECTROCHEMISTRY APPLICATIONS OF ELECTROCHEMISTRY SPONTANEOUS REDOX REACTIONS APPLICATIONS OF ELECTROCHEMICAL CELLS BATTERIES A galvanic cell, or series of combined galvanic cells, that can be used as a source of direct

More information

XXXX ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON- METALS; APPARATUS THEREFOR [2]

XXXX ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON- METALS; APPARATUS THEREFOR [2] XXXX C25 ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR (electrodialysis, electro-osmosis, separation of liquids by electricity B01D; working of metal by the action of a high concentration

More information

PRECIOUS METAL RECLAIMER

PRECIOUS METAL RECLAIMER ELECTRUM ELECTROLYTIC METAL Gold Silver Palladium ELECTRUM * Deposits remain inside the cartridges, avoiding any losses * Large capacity of recovery, even in diluted solutions (down to 2 ppm) * High efficiency

More information

Welcome to the presentation

Welcome to the presentation Workshop on Resource Reduction & Recovery in Electroplating Industry Welcome to the presentation B. Datta ENC Consulting Engineers www.encconsulting.co.in 1 Environment Protection Rules under E P Act Background

More information

PRECIOUS METAL R E C L A I M E R

PRECIOUS METAL R E C L A I M E R ELECTRUM ELECTROLYTIC METAL RECLAIMER Gold Silver Palladium ELECTRUM * Deposits remain inside the cartridges, avoiding any losses * Large capacity of recovery, even in diluted solutions (down to 2 ppm)

More information

Electrolytic Cell Field Experience The Role of Field Operations and Feedback in the Commercialization of the RenoCell

Electrolytic Cell Field Experience The Role of Field Operations and Feedback in the Commercialization of the RenoCell Title: Authors: Electrolytic Cell Field Experience The Role of Field Operations and Feedback in the Commercialization of the RenoCell B. George Kniazewycz and Charles E. Lemon, Renovare International,

More information

Experimental technique. Revision 1. Electroplating an iron key with copper metal

Experimental technique. Revision 1. Electroplating an iron key with copper metal Experimental technique. Revision 1 Electroplating an iron key with copper metal Aim To investigate whether Faraday s laws apply to the electroplating of a brass key with nickel Procedure The apparatus

More information

I. CUSTOMER INFORMATION: REPORT NO

I. CUSTOMER INFORMATION: REPORT NO I. CUSTOMER INFORMATION: REPORT NO. 104837 Company: Optical Disc Company Contact: Someone Address: 4444 Somewhere City: Someplace State / Code: CA 90000 Country: USA II. SOLUTION INFORMATION Electroforming

More information

New Approaches on Non Ferrous Metals Electrolysis

New Approaches on Non Ferrous Metals Electrolysis A publication of 61 CHEMICAL ENGINEERING TRANSACTIONS VOL. 41, 2014 Guest Editors: Simonetta Palmas, Michele Mascia, Annalisa Vacca Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-32-7; ISSN 2283-9216

More information

Electrolytic Wastewater Treatment. Dr. Clarence H. Roy, CEF Aqualogic, Inc. Bethany, CT

Electrolytic Wastewater Treatment. Dr. Clarence H. Roy, CEF Aqualogic, Inc. Bethany, CT Electrolytic Wastewater Treatment Dr. Clarence H. Roy, CEF Aqualogic, Inc. Bethany, CT ELECTROLYTIC WASTEWATER TREATMENT ABSTRACT The electrolytic methods for wastewater treatment are described herein.

More information

C.-D. Zhou, E. C. Stortz, E.J. Taylor, and R.P. Rem Faraday Technology, Inc Research Blvd. Dayton, OH 45420

C.-D. Zhou, E. C. Stortz, E.J. Taylor, and R.P. Rem Faraday Technology, Inc Research Blvd. Dayton, OH 45420 METAL RECOVERY WITH A NOVEL ELECTRODE C.-D. Zhou, E. C. Stortz, E.J. Taylor, and R.P. Rem Faraday Technology, Inc. - 3155 Research Blvd. Dayton, OH 45420 P ABSTRACT Metals are used in a broad range of

More information

Electrometals Technologies Limited

Electrometals Technologies Limited Electrometals Technologies Limited A C N 000 751 093 28 Commercial Drive Ashmore Queensland Australia 4214 Telephone: 61 7 5526 4663 Facsimile: 61 7 5527 0299 Email Address: EMEW@electrometals.com.au EMEW

More information

POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation

POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation POREX Tubular Membrane Filter Modules For Metal Contaminated Wastewater Treatment & Reclamation Background Industrial processes can often result in waste water contaminated with heavy metals (Hg, Pb, Zn,

More information

REDUCTION OF DISCHARGES AND EMISSIONS FROM THE METAL SURFACE TREATMENT 1)

REDUCTION OF DISCHARGES AND EMISSIONS FROM THE METAL SURFACE TREATMENT 1) CONVENTION ON THE PROTECTION OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA HELSINKI COMMISSION - Baltic Marine HELCOM 23/2002 Environment Protection Commission Minutes of the Meeting 23rd Meeting Annex

More information

Toward Cleaner Production technologies in surface treatment of metals

Toward Cleaner Production technologies in surface treatment of metals Waste Management and the Environment III 57 Toward Cleaner Production technologies in surface treatment of metals A. Nakonieczny & M. Kieszkowski Institute of Precision Mechanics, Warsaw, Poland Abstract

More information

Chem 1120 Pretest 3 Fall 2015

Chem 1120 Pretest 3 Fall 2015 Chem 1120 Pretest 3 Fall 2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following solubility product expressions is incorrect? a. Cu

More information

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element 1 Name: Period: Date: KIPP NYC College Prep General Chemistry UNIT 2: Atomic Concepts Lesson 1: Give me an element, any element Do Now: By the end of today, you will have an answer to: How do you know

More information

The contemporary Nickel Cycle

The contemporary Nickel Cycle Center for Industrial Ecology Yale School of Forestry & Environmental Studies The contemporary Nickel Cycle (selection only) Barbara Reck April 24, 2006 Note The slides shown hereafter only include a selection

More information

Electrocoagulation. Achieving clean, clear, treated and reusable water: The process, technology and benefits. CALL US (631)

Electrocoagulation. Achieving clean, clear, treated and reusable water: The process, technology and benefits.   CALL US (631) Electrocoagulation Achieving clean, clear, treated and reusable water: The process, technology and benefits. WWW.AWWTCORP.COM CALL US (631) 213-1324 SEWAGE WASTE Clean water is vital to virtually all living

More information

ELECTRONIC GRADE SULFAMATE NICKEL Document ID: EFM1409

ELECTRONIC GRADE SULFAMATE NICKEL Document ID: EFM1409 ELECTRONIC GRADE SULFAMATE NICKEL Document ID: EFM1409 E-Form is an electronic grade nickel sulfamate electroforming concentrate designed and manufactured specifically for use with microlithography. DisChem

More information

ZERO Pollution Discharge

ZERO Pollution Discharge Company Approaches ZERO Pollution Discharge BY Bruce Mottweiler Peter 1. Veit Project Engineer & Manager, Midwest Region Elkhart Products Division, Gould, Inc. Lancy laboratories REPRINTED FROM PLATING

More information

United States Environmental Protection Agency Research and Development. Project Summary. Jacqueline M. Peden

United States Environmental Protection Agency Research and Development. Project Summary. Jacqueline M. Peden EPA United States Environmental Protection Agency Research and Development Project Summary Risk Reduction Engineering Laboratory Cincinnati, OH 45268 EPA/600/SR-94/148 September 1994 Alkaline Noncyanide

More information

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment D. Kuchar, T. Fukuta, M. Kubota, and H. Matsuda Abstract The selective recovery of heavy metals of Cu,

More information

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment

Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment D. Kuchar, T. Fukuta, M. Kubota, and H. Matsuda Abstract The selective recovery of heavy metals of Cu,

More information

Electro-refining: How it Works

Electro-refining: How it Works Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

The Economic Revolution in Industrial Wastewater Treatment. World-Class Lineage. RenoCell 1997 License to Renovare. Porocell

The Economic Revolution in Industrial Wastewater Treatment. World-Class Lineage. RenoCell 1997 License to Renovare. Porocell This is it. World-Class Lineage RenoCell was developed over the past two years by Renovare International, Inc. and is now available through value-added resellers in North America, Europe, and Asia. RenoCell

More information

SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC AND NICKEL RESOURCE

SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC AND NICKEL RESOURCE Global NEST Journal, Vol 8, No 2, pp 131-136, 20 Copyright 20 Global NEST Printed in Greece. All rights reserved SULFURATION TREATMENT OF ELECTROPLATING WASTEWATER FOR SELECTIVE RECOVERY OF COPPER, ZINC

More information

PO4 Sponge. Phosphorus Removal - Low & High Level Sources

PO4 Sponge. Phosphorus Removal - Low & High Level Sources PO4 Sponge Phosphorus Removal - Low & High Level Sources Phosphorus (P) is a contaminant in streams and lakes that can degrade water bodies, especially when excessive. It contributes to growth of cyanobacteria

More information

Exploration, mining and metals production & Boliden Kokkola Justin Salminen

Exploration, mining and metals production & Boliden Kokkola Justin Salminen Exploration, mining and metals production & Boliden Kokkola Justin Salminen Kokkola Material Week 30.10.2018 Boliden Kokkola 1 04.11.2018 Boliden in a nutshell A world-class mining and smelting company

More information

Ultrex CAA Product Code: Revised Date: 10/09/2006. Ultrex CAA Heavy Duty Alkaline Product Derusting - Descaling - Activation

Ultrex CAA Product Code: Revised Date: 10/09/2006. Ultrex CAA Heavy Duty Alkaline Product Derusting - Descaling - Activation Ultrex CAA Heavy Duty Alkaline Product Derusting - Descaling - Activation Ultrex CAA is a powdered, highly alkaline product, blended with selected sequestrants and alkaline agents. It's unique formulation

More information

Advanced Energy Storage and the Importance of Graphite Anode Materials

Advanced Energy Storage and the Importance of Graphite Anode Materials Advanced Energy Storage and the Importance of Graphite Anode Materials Dr. John C. Burns CEO Novonix, Canada Dr. Edward R. Buiel CEO PUREgraphite, USA July 19, 2017 1 Overview LIB Raw Materials + How much

More information

Silver Recove with!on Exchan e and Electrowinning yohn Lindstedt - Ffesident Artistic Platin Company, Inc.

Silver Recove with!on Exchan e and Electrowinning yohn Lindstedt - Ffesident Artistic Platin Company, Inc. Silver Recove with!on Exchan e and Electrowinning yohn Lindstedt - Ffesident Artistic Platin Company, Inc. 45 West therry Street Milwaukee, Wisconsin 5321 2 Michael Do le, P.E. - Senior Project Manager

More information

Direct Copper Metalization of Aluminum: Elimination of Zincate

Direct Copper Metalization of Aluminum: Elimination of Zincate June 2018 Direct Copper Metalization of uminum: Elimination of Zincate Richard DePoto, Business Development Doug Duda, Laboratory Manager Uyemura International Corporation Southington CT rdepoto@uyemura.com

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery

Li Mass = 7 amu Melting point C Density 0.53 g/cm 3 Color: silvery Blackline Master B02: Mendeleev s Element Cards H Mass = 1 amu Melting point -259 0 C Density 0.0909 g/cm 3 Color: colorless Li Mass = 7 amu Melting point 180.5 0 C Density 0.53 g/cm 3 Be Mass = 9 amu

More information

Pollution Prevention and Control Technology for Plating Operations

Pollution Prevention and Control Technology for Plating Operations Electrowinning in Pollution Prevention and Control Technology for Plating Operations George C. Cushnie Jr. CAI Engineering A Project Sponsored by the National Center for Manufacturing Sciences and Conducted

More information

HBLED packaging is becoming one of the new, high

HBLED packaging is becoming one of the new, high Ag plating in HBLED packaging improves reflectivity and lowers costs JONATHAN HARRIS, President, CMC Laboratories, Inc., Tempe, AZ Various types of Ag plating technology along with the advantages and limitations

More information

METALS AND THEIR COMPOUNDS

METALS AND THEIR COMPOUNDS METALS AND THEIR COMPOUNDS Metals are elements whose atoms ionize by electron loss, while non-metals are elements whose atoms ionize by electron gain. Metals are in groups 1, 2 and 3 of the periodic table.

More information

Aurubis AG. Long-term trends in copper recycling. Christian Coesfeld. Metal Bulletin Copper Scrap Conference Munich, June,

Aurubis AG. Long-term trends in copper recycling. Christian Coesfeld. Metal Bulletin Copper Scrap Conference Munich, June, Aurubis AG Christian Coesfeld Long-term trends in copper recycling Metal Bulletin Copper Scrap Conference Munich, June, 15.-17. 2016 1 Agenda 1. History and status quo 2. Global mega trends 3. Outlook

More information

EPA/STA Pollution Prevention Technical Assistance Project. Training -- Workshop Series

EPA/STA Pollution Prevention Technical Assistance Project. Training -- Workshop Series EPA/STA Pollution Prevention Technical Assistance Project Training - Workshop Series (series of 6) - Operator Training Series (given multiple times) Mini-Assessments - Working with 6 facilities currently

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) What do you understand by the term standard electrode potential? (b) The following cell was set up between a copper electrode and an unknown metal electrode M2+(aq) /M(s). The standard cell potential

More information

Recovery/Recycling Methods for Platers

Recovery/Recycling Methods for Platers Recovery/Recycling Methods for Platers By Stephen R. Schulte, P.E. Hixson, Inc. Architects\Engineers Cincinnati, Ohio Over the past ten to twenty years, almost every electroplating and metal finishing

More information

DESIGN OF COPPER ELECTROWINNING CIRCUIT USING CONVENTIONAL CELLS

DESIGN OF COPPER ELECTROWINNING CIRCUIT USING CONVENTIONAL CELLS DESIGN OF COPPER ELECTROWINNING CIRCUIT USING CONVENTIONAL CELLS JOSEPH KAFUMBILA 2017 Design of copper electrowinning circuit using conventional cells Joseph Kafumbila 2017 jokafumbila@hotmail.com Joseph

More information

Unit I PART I. MATH TOOLS FOR CHEMISTRY I. The Metric System The metric system is the scientific system of units of measurement

Unit I PART I. MATH TOOLS FOR CHEMISTRY I. The Metric System The metric system is the scientific system of units of measurement CHEMISTRY 100 LECTURE Unit I PART I. MATH TOOLS FOR CHEMISTRY I. The Metric System The metric system is the scientific system of units of measurement Length Volume Mass METRIC BASIC UNITS LENGTH MASS VOLUME

More information

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate

2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate 2. Wet Corrosion: Characteristics, Prevention and Corrosion Rate Mighty ships upon the ocean suffer from severe corrosion. Even those that stay at dockside are rapidly becoming oxide Alas, that piling

More information

R. Suzuki, W. Li, M Schwartz and K. Nobe Department of Chemical Engineering University of California Los Angeles, CA

R. Suzuki, W. Li, M Schwartz and K. Nobe Department of Chemical Engineering University of California Los Angeles, CA Electrochemical Treatment of Metal Plating Wastes Using Flow-through Porous Carbon Electrodes R. Suzuki, W. Li, M Schwartz and K. Nobe Department of Chemical Engineering University of California Los Angeles,

More information

Industrial Solutions

Industrial Solutions Industrial Solutions The Value of Water Water is becoming an increasingly valuable commodity worldwide. While drinking water has the highest value, industry, agriculture, food processing and residential

More information

Electrochemical removal of dissolved oxygen from water

Electrochemical removal of dissolved oxygen from water JOURNAL OF APPLIED ELECTROCHEMISTRY 25 (1995) 973-977 Electrochemical removal of dissolved oxygen from water K. VUORILEHTO, A. TAMMINEN, S. YLASAARI Laboratory of Corrosion and Material Chemistry, Helsinki

More information

Recovery of Cu and EDTA from EDTA-Cu Solution by use of Electrodialysis Accompanied by Electrochemical Reaction

Recovery of Cu and EDTA from EDTA-Cu Solution by use of Electrodialysis Accompanied by Electrochemical Reaction Vol., No. () Article Recovery of Cu and from Solution by use of Electrodialysis Accompanied by Electrochemical Reaction Hiroshi TAKAHASHI *, Etsuko KASHIUCHI and Kenzo MUNAKATA Department of Engineering

More information

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*!

Chemistry*120* * Name:! Rio*Hondo*College* * * EXAMPLE*EXAM*1*! Chemistry*120* * Name: EXAMPLE*EXAM*1* Exam)#1 100)points) Directions:)Answereachquestionbelowtothebestofyourability.Showallworkwherecalculations arerequired.aninformationsheetwithaperiodictableisattachedtothebackoftheexam;youmay

More information

A.M. MONDAY, 18 January minutes

A.M. MONDAY, 18 January minutes Candidate Name Centre Number Candidate Number 0 GCSE 240/01 ADDITIONAL SCIENCE FOUNDATION TIER CHEMISTRY 2 A.M. MONDAY, 18 January 2010 45 minutes ADDITIONAL MATERIALS In addition to this paper you may

More information

Perspectives on European Copper Smelting and Refining. Lisbon, 26th April

Perspectives on European Copper Smelting and Refining. Lisbon, 26th April Perspectives on European Copper Smelting and Refining International Copper Study Group Lisbon, 26th April Agenda 1. Introduction Aurubis 2. Aurubis Multi-Metal Recycling 3. Challenges 4. Strategy and outlook

More information

06. Electroplating Industry

06. Electroplating Industry PRTR Estimation Manual 06. Electroplating Industry January 2001 Revised: March 2002 Federation of Electro Plating Industry Association, Japan Contents 1. Class I Designated Chemical Substances (Referred

More information

Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum

Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum Materials Transactions, Vol. 47, No. 1 (2006) pp. 156 to 161 #2006 The Japan Institute of Metals Purification of Cobalt, Nickel, and Titanium by Cold-Crucible Induction Melting in Ultrahigh Vacuum Seiichi

More information

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit 6 GENERAL PRINCIPLES AND PROCE PR OCESSE SSES S OF ISOLATION ISOL OF ELEMENTS I. Multiple Choice Questions (Type-I) 1. In the extraction of chlorine by electrolysis of brine. oxidation of Cl ion to

More information

Page 's to remove dissolved salts from water. Its main use was

Page 's to remove dissolved salts from water. Its main use was A CASE STUDY OF AN ELECTRODIALYSIS REVERSAL SYSTEM FOR THE RECOVERY OF NICKEL SALTS Thomas J. Susa and Richard A. Tata Ionics, Inc. Watertown, MA Introduction In recent years, environmental regulations

More information

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water.

Assignments. 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. Assignments 1. Prepare Galvanic series for metals and alloys in flowing sea water. Compare this with the series available for stagnant sea water. 2. Construct the Eh ph diagram for the Zn H 2 O O 2 system

More information

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I)

not to be republished NCERT GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS Unit I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. In the extraction of chlorine by electrolysis of brine. (i) (ii) (iii) (iv) oxidation of Cl ion to chlorine gas occurs. reduction of Cl ion to chlorine gas occurs.

More information

NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE

NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE Wilson, Tabatha From: Sent: To: Cc: Subject: Attachments: Gilliam, Allen Monday, July 29, 2013 2:28 PM Richard Hexamer; sales Fuller, Kim; Wilson, Tabatha; Mena Mike Spencer (menawwtp@gmail.com); Denise.Georgiou@CH2M.com;

More information

Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

Cozo College. BOYS' Secondary victoria Cozo, Malta 'Ninu Cremona' Half Yearly Examination ANSWER ALL QUESTIONS

Cozo College. BOYS' Secondary victoria Cozo, Malta 'Ninu Cremona' Half Yearly Examination ANSWER ALL QUESTIONS Cozo College BOYS' Secondary victoria Cozo, Malta 'Ninu Cremona' ooo Half Yearly Examination 2011-2012 Form 4 J.L. Chemistry Time: 1'/z Hours Name: Class: Useful Data: Q=It Faraday Constant = 96500 C SECTION

More information

REMOVAL OF SELECTED HEAVY METALS FROM POLLUTED WATER WITH SAND FILTRATION TECHNIQUE

REMOVAL OF SELECTED HEAVY METALS FROM POLLUTED WATER WITH SAND FILTRATION TECHNIQUE The 2013 University of Oklahoma International WaTER Conference REMOVAL OF SELECTED HEAVY METALS FROM POLLUTED WATER WITH SAND FILTRATION TECHNIQUE G.K.Khadse, A.Kumar and P.K.Labhasetwar CSIR-National

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 VALE CANADA LTD. COPPER CLIFF ANALYTICAL SERVICES 18 Rink Street Copper Cliff, Ontario P0M 1N0 Canada Mr. Claude Serre Phone: 705 682 7501 CHEMICAL Valid To:

More information

Material Evaporation Application Comment MP P / Optical films, Oxide films, Electrical contacts. Doping, Electrical contacts.

Material Evaporation Application Comment MP P / Optical films, Oxide films, Electrical contacts. Doping, Electrical contacts. for vapour Aluminum (Al) -, Optical, Oxide, Electrical BN liners with lid are recommended due to the reactivity and the fact that Al creeps out. Cooling down of the cell with 1K per minute. 660 972 Antimony

More information

Re-building Daniell Cell with a Li-Ion exchange Film

Re-building Daniell Cell with a Li-Ion exchange Film Supplementary Information Re-building Daniell Cell with a Li-Ion exchange Film Xiaoli Dong, Yonggang Wang*, Yongyao Xia Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative

More information

Cupric Chloride Etch Regeneration: Tri-Star Technologies Company, Inc. 1997

Cupric Chloride Etch Regeneration: Tri-Star Technologies Company, Inc. 1997 Cupric Chloride Etch Regeneration: Tri-Star Technologies Company, Inc. 1997 TABLE OF CONTENTS 1.0 INTRODUCTION -----------------------------------------------------------------1. 2.0 DESCRIPTION OF TECHNOLOGIES

More information

Reduction of Biochemical Oxygen Demand and Chemical Oxygen Demand of Metalworking Fluid Wastewater by Electrochemical Oxidation

Reduction of Biochemical Oxygen Demand and Chemical Oxygen Demand of Metalworking Fluid Wastewater by Electrochemical Oxidation 1 Reduction of Biochemical Oxygen Demand and Chemical Oxygen Demand of Metalworking Fluid Wastewater by Electrochemical Oxidation J. M. Burke STLE Houghton International A. Petlyuk, PhD STLE Houghton International

More information

Closing the Loop. Jan Tytgat Umicore. KIVI-jaarcongres 2017, Wageningen 21 Nov. 2017

Closing the Loop. Jan Tytgat Umicore. KIVI-jaarcongres 2017, Wageningen 21 Nov. 2017 Closing the Loop Jan Tytgat Umicore KIVI-jaarcongres 2017, Wageningen 21 Nov. 2017 Closing the Loop, KIVI-jaarcongres 2017 Agenda 1 2 3 Umicore closed loop approach Creating a circular economy B2B vs B2C

More information

A Case for Product Stewardship

A Case for Product Stewardship A Case for Product Stewardship Assuming Responsibility for E-Waste Through Recycling Tim Warren Regional Account Manager The Call2Recycle program A program of the Founded in 1994 by environmentally-aware

More information

Electroplating. Copyright 2016 Industrial Metallurgists, LLC

Electroplating. Copyright 2016 Industrial Metallurgists, LLC Electroplating Northbrook, IL 847.528.3467 www.imetllc.com Copyright 2016 Industrial Metallurgists, LLC Course content 1. Process Steps (75 minutes) 2. Properties, Defects, and Evaluation (60 minutes)

More information

A study of the influence of copper on the gold electrowinning process

A study of the influence of copper on the gold electrowinning process A study of the influence of copper on the gold electrowinning process by J. Steyn and R.F. Sandenbergh* Paper written on project work carried out in partial fulfilment of B.Eng (Metallurgical Engineering)

More information

PERFORMANCE ANALYSIS OF BENCHMARK PLANT FOR SELECTIVE LITHIUM RECOVERY FROM SEAWATER

PERFORMANCE ANALYSIS OF BENCHMARK PLANT FOR SELECTIVE LITHIUM RECOVERY FROM SEAWATER PERFORMANCE ANALYSIS OF BENCHMARK PLANT FOR SELECTIVE LITHIUM RECOVERY FROM SEAWATER Kazuharu YOSHIZUKA Faculty of Environmental Engineering, The University of Kitakyushu Marek HOLBA, Takeshi YASUNAGA,

More information

ElvaX ProSpector in Exploration & Mining

ElvaX ProSpector in Exploration & Mining ElvaX ProSpector in Exploration & Mining Introduction ElvaX ProSpector is a fast, accurate and easy tool for different mining applications. It provides onsite analysis of ore samples with minimal sample

More information

MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS

MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS MILAF: INTEGRAL MANAGEMENT OF ARSENICAL SLUDGE, TREATMENT AND RECOVERY OF BY-PRODUCTS OF ACID WATERS FROM SMELTER PLANTS ABSTRACT ULRIKE BROSCHEK, CECILIA VIDAL, LUIS BRAVO and GILDA ZUÑIGA Environmental

More information

Characterization of Surface Metals on Silicon Wafers by SME-ICP-MS. Featuring the Agilent Technologies 7500s ICP-MS

Characterization of Surface Metals on Silicon Wafers by SME-ICP-MS. Featuring the Agilent Technologies 7500s ICP-MS Characterization of Surface Metals on Silicon Wafers by SME-ICP-MS Featuring the Agilent Technologies 7500s ICP-MS 1 Presentation Outline Why is Surface Metal Extraction ICP-MS important? Technique Wafer

More information

High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA)

High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA) High Purity Chromium Metal Oxygen Distribution (Determined by XPS and EPMA) K. Suzuki, H. Tomioka To cite this version: K. Suzuki, H. Tomioka. High Purity Chromium Metal Oxygen Distribution (Determined

More information

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper,

More information