Residual stresses distribution in TIG weldments of AA 6061 T6 Aluminium alloy

Size: px
Start display at page:

Download "Residual stresses distribution in TIG weldments of AA 6061 T6 Aluminium alloy"

Transcription

1 Residual stresses distribution in TIG weldments of AA 6061 T6 Aluminium alloy 1 Hemadri Naidu.T, 2 Chennakeshavalu K 1 Research Scholar, KSIT, VTU, Bangalore, Karnataka, , India. 2 Principal, EWIT,VTU, Bangalore, Karnataka, , India. ABSTRACT : AA 6061-T6 Aluminum alloy is medium high strength heat treatable wrought structural material used for general purpose to aerospace applications. Its good corrosion resistance coupled with excellent workability made this alloy work horse alloy among Aluminium alloys used for structural applications. AA 6061 possess good weldability with ER 4043 filler wire even though it has post anodisiation color mismatching. AA6061 weldments invariably fail in heat affected zone (HAZ) due to dissolution of metastable Mg 2 Si strengthening phases due to weld thermal energy. The process of dissolution of metastable Mg 2 S phases can be retarded by good thermal management. In practice, welding being a localized thermal process, residual stresses will be induced invariably into the integrated structure and their manifestation/distribution will be altered by the usage of weld process variants. In this research paper residual stresses are evaluated using X-ray diffraction method and sin 2 Ψ method is used in measuring the strains in TIG joints of AA 6061-T6 across and along in weldments both on crown and root sides, HAZ and unaffected base material. This paper delineates the residual stresses generated by juxtaposing the weld bead width and GTAW process variants of AC, un-pulsed DCSP and current pulsed DCSP. The residual stresses generated due to weld preparation like chemical cleaning and mechanical scraping are also addressed. As weld bead width increases it found inbuilt stresses increase. The variation in stress pattern on root side with welding process is highlighted. By adopting low heat input pulsed DCSP GTAW process the thermal stresses in the weldments reduced from +88 MPa to +65 MPa and an improvement of 26.13%. The reduction in heat input minimized the thermal stresses in the fusion zone and influence in Heat affected zone is relatively less. Keywords: Residual stresses, post anodisiation, heat affected zone, TIG welding, heat input, heat treatment, tensile testing, scattering, thermal shrinkage, plastic deformation. I. INTRODUCTION AA 6061-T6 Aluminum alloy is medium high strength heat treatable wrought structural material used for general purpose to aerospace applications. Its good corrosion resistance coupled with excellent workability made this alloy work horse alloy among Aluminium alloys used for structural applications. However, any fusion welding process induces the residual stresses in the structure. Materials or processes which might contribute to deterioration of hardware in service shall receive special consideration. NASA report [1] on general section on special material addressed the residual stresses. It states that deterioration processes which impair the life expectancy of parts include galvanic corrosion, stress corrosion etc. Precautionary measures to prevent deterioration shall include consideration of such controls as limitation of operating stresses, relief of residual stresses, application of protection coatings, and use of special heat treatment. Residual stresses in structures occur for many reasons during various stages of manufacturing and heat treatment stages, including rolling, forging, grinding, machining. Residual stresses play major role in performance of the welded structure. Residual stresses generated due to non-uniform heating during welding are often called thermal stresses [2]. One of the troublesome problems that accompany the construction of welded structures is residual stresses and distortion. A weldment is locally heated, due to non uniform temperature distribution. This non-uniform temperature distribution causes thermal stresses and resulting residual stresses. The subject of weld stresses, cracking, fatigue cracking, stress corrosion cracking and weld defects are so interrelated that it is almost impossible to treat them independently. Residual stresses and related distortions in welded structures have studied since 1930s. However, most of the studies are mainly focused on ferrous materials [3], of course due to their wider and higher tonnage of usage. Studies on aluminum alloys are relative less and more concentrated on the alloys that are prone for stress corrosion cracking. However considering wider usage of AA 6061 Aluminum alloy ranging from water bottles on war field to water tanks of the space vehicles [4], the study on thermal stresses gives better understanding and insight to welding process and for corrosion behavior. In the present investigation the residual stresses generated in AA 6061-T6 Aluminum alloys welded using various processes and parameters are studied. The effect of weld bead width and pre-weld preparations on induced thermal stresses on the structure is elaborated. AA 6061 aluminum has the balanced amount of Mg and Si to form quasi-binary Al-Mg 2 Si with Mg to Si 1

2 ratio of 1.73:1. AA 6061 is strictly binary Al-Mg 2 Si alloy with 1.4% Mg 2 Si. It contains minor addition of 0.3% copper to improve strength. Even though AA 6061 can t be welded autogenously, it possess good weldability with ER 4043 filler wire. Where color matching is important normally AA 5356 are preferred. For some applications 4047 and 4643 are used among 4000 series and ER 5183, 5554, 5556 and 5654 are employed among 5000 series [5]. Section 2 follows basic experimental setup. Section 3 explains post weld inspection. Section 4 explains about measurements of residual stresses and section 5 follows the results and discussions. II. EXPERIMENTAL SETUP In present work, 3.2 mm thick 300*400 mm length coupons of chemical milled quality AA 6061 alloy in T6 temper condition imported from M/S ALCAN is welded using mechanized GTAW process employing ER 4043 filler wire of 1.2 mm diameter in the form of pools of 7.0 kg. The chemical composition of AA 6061 and ER 4043 are given in table 1. Table 1. Chemical composition ( in wt%) of AA T6 and filler wire Materials Si Mg Cu Fe Mn Zn Ti Cr Al AA Balance ER Balance Welding Process: with 60% back ground current. No pulsation is used for filler addition. To obtain various bead widths the AVC is varied for AC welds only. Stainless steel back up is employed with standard weld groove and aluminum support at bottom. The details of the weld parameters employed are shown in table 2. The weld root is not grounded for residual stresses; however for tensile testing both crown and root are milled to parent metal thickness to meet the standards weld parameters for AC and DCSP welds with filler wire 4043 are shown in table Table 2. Weld parameters for AC and DCSP welds with filler wire The gas tungsten arc welding (GTAW) process is selected and used in present study due to its inherent advantages and process flexibility. GTAW process is known for its sound welds in aluminum alloys. M/S Hobart Brothers make 250 A automatic welding machine is used. Welding is performed using both balanced wave AC and DCSP cycles. DCSP welds are carried out using with and without current pulsation. The current pulsation of 10ms on and off period each is used Process Current Voltage AVC Weld speed Pulse cycle Heat input Remarks A V V mm/min (ms) J/mm AC GTAW Filler feed rate is 2200mm/ min DCSP GTAW Filler feed rate is 2200mm/ min PULSED DCSP GTAW On 10-Off 325 Filler feed rate is 2400mm/ min 60% back ground current Closed square groove joint configuration is adopted with intentional chamfering of the sharp edges. The sharping of the edges is done to avoid lack of side wall fusion and pseudo-indications during NDT. The 10 mm on either side of the coupons are mechanically scraped in unidirectional using scraping tool. The scraped region is inspected under UV light to find out any foreign material. The scraped region is covered with aluminum foil till the time of welding. Welding is carried out within four hours of scraping. Post Weld Inspection The weld bead geometry is measured in using vernier and dial gauge and reported in table 3. The weld root is not grounded for residual stresses measurement; however for tensile testing both crown and root are milled to parent metal thickness to meet the standards. After welding the coupons are Die Penetration Tested (DPT) using MANA PLUX and X-ray radiography Kraft Cramer machine. Minor porosities are observed at isolated locations. The porosity locations are identified with permanent marker pen, not by mechanical means to avoid any undue stresses. The spots for residual stresses measurements are marked and ensured that no weld defects or any dents on base material. If any, in the vicinity of the spot, at least 2 times the thickness of the coupon i.e 6.4 mm. Weld bead geometry for AC welds with different AVC s are shown in table 3. III. RESIDUAL STRESSES MEASUREMENT Residual stresses, also referred to as internal stresses, inherent stresses, and locked in stresses, can be measured using many techniques. In the present work X- ray diffraction technique is adopted. The details of the equipment is shown in figure 1. Cr based target is used and sin 2 Ψ method is used in measuring the strains. Being the small depth of X-ray penetration, the sampled region can be assumed to be plane stress. For plane 2

3 strain the slope of the measured lattice spacing with specimen tilt θ can be related to in-plane stress. Table 3. Weld Bead geometry for AC welds with different AVCs. Process Crown (mm) Root (mm) AVC Remarks Width Height Width Height V AC GTAW AVC is direct way of controlling arc length. It is automated voltage not arc voltage Figure 1. Residual Stress Measuring Instrument. Residual stresses measurements are carried out at CPRI (Central Power Research Institute), Bangalore. Residual stresses are measured on three different locations of the weldments-center of the weld, Heat Affected Zone (HAZ) and base metal. For consistence purpose HAZ spot is fixed at 6.0 mm from the fusion line on crown side. The reported values are average of the three values measured in same spot. The residual stresses are measured both in longitudinal and transverse directions. The mechanical grinding/polishing are avoided as this may induce compressive stresses. For this reason the material is well cleaned prior to welding. On the weld due to the ripples present, polishing is inadvertently required to facilitate accurate readings during X-ray diffraction. The weld surface is electro-chemically polished using ice cold methanol such that no additional stresses are induced. In order to avoid scattering of X- rays due to uneven surface the electro chemical polishing is carried out recursively at times more than five times till consistence values are obtained. This is more in AC welds due to ripples compared to DCSP welds. Stresses are measured both on the crown side and root side of the weldments and the location of measurement is near center of the weld. The measured values on welded coupons are reported in table 4. Residual stresses are also measured on parent metal in as received condition, after chemical cleaning and scrapping operations to have base values for analysis. Residual stresses for AC and DCSP welds in different zones are shown in table 5. The measured values on base material prior to welding are reported in table 6. Table 4. Residual stresses for AC and DCSP welds in crown and root. Process Center of the Weld Center of the Weld Remarks on crown (MPa) on root (MPa) AC GTAW Average of 5 readings DCSP GTAW Average of 5 readings PULSED DCSP GTAW Average of 5 readings Table 5. Residual stresses for AC and DCSP welds in different zone. Process Center of the Weld on HAZ ( Base metal ( Remarks crown (MPa) MPa) MPa) AC GTAW Average of 5 readings DCSP GTAW Average of 5 readings PULSED DCSP Average of 5 readings GTAW Table 6. Residual stresses on base material AA 6061-T6. Base material AA On the Remarks 6061-T6 surface (MPa) As received -25 Average of 3 condition readings After chemical cleaning -10 Average of 3 readings After scraping -30 Average of 3 readings 3

4 IV. RESULTS AND DISCUSSIONS All welds are X-ray radiographically inspected and sound weldments only selected for residual stress measurement. Even minor porosity areas are avoided such that the interaction of defects with residual stresses is not well established. Majority of the measurements are done by carrying out the measurement on crown side. For comparison purpose a few measurements are done on root side. The location of the measurement on HAZ is taken 6.0 mm away from fusion line for all welds to maintain uniformity. Residual stresses are stresses that remain in a body after all external stresses are removed. Residual stresses in a component are those which need not maintain equilibrium between the component and surrounding environment. They prevail in the absence of the external loads. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After the solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. The development of residual stresses can be explained by considering heating and cooling under constraint [3], wherein the expansion and contraction of the weld metal and near base metal are restrained by the far way rigid base material. Hence, residual stresses can be minimized by minimizing the expansion and contraction. This can be achieved by adopting high heat density processes like electron beam welding (EBW), DCSP, GTAW or pulsed GTAW process. Residual stresses are always global in nature and within the elastic limit of the material. Once locked in stress crosses the yield point the material yields. This concept is exploited in relieving the residual stresses by mechanical or thermal means [9]. Generation of residual stresses in weldments can be reduced by imposing opposite sign stresses just prior to welding near weld interface. The normally adopted practices are flaring up the joint or shrink fit the joint. Residual stresses in weldments after welding can be reduced by production of plastic deformation in proper amounts and distribution [5] after welding. The shot peening or malleting immediately after welding is invariably done in production practice for ferrous material. However it is not very effective for ductile materials like aluminum as imparting controlled deformation difficult. Any improper peening of weldments results in, in contrary, additional localized stresses. The method followed for Aluminium alloy welding in reducing the residual stresses is predominantly pre-weld flaring up or shrinks fit, rather following post weld operations. The post weld thermal treatment can t be adopted for Aluminium alloys as the temperature required for effective nullification of stresses is above the ageing temperature. Hence this results in over ageing of the base material, thereby reduces the resultant properties. In supper saturated alloys like AA 2219, this may result in selective precipitation and over ageing at fusion line and may result in drop in toughness [6]. Hence no post weld stress relieving followed in present investigation. The distribution of longitudinal residual stresses,σ x, can be approximated by the equation σ x (y) = σ m {1- y 2 /b 2 } Exp {-1/2 y 2 /b 2 } Equation. (1) Where σ m is the maximum residual stress and b is the width of the tension zone, normally equal to weld bead width. Normally transverse residual stresses σ y, are of relatively low intensity is produced in the middle part of the weld, where thermal contraction in the transverse direction is restrained by the cooler base material at the ends of the weld. If the lateral contraction of the weld is restrained by clamping and fixtures, further tensile stresses are complemented to the transverse stresses as the reaction stress. However, this external constraint has insignificant effect on longitudinal residual stresses σ x. from the Eq. 1, by reducing the weld width the residual stresses can be minimized. The weld bead width is depending upon the weld process and parameters. By adopting the high heat density electron beam welding (EBW), the weld bead width can reduced. However AA 6061 is prone for solidification cracking when welded autogenously, without filler addition. To alleviate hot cracking in weldments of AA 6061, Si rich ER 4043 is widely used. The variant of GTAW DCSP welding process results in narrower welds compared to AC process due to high heat density and narrower arc cone radius. The heat input can be further reduced by adopting pulsed DCSP welding [10]. As evident from table 2, the heat input is reduced from 585 J/ mm to 388 J/mm by adopting AC welding to DCSP welding process. It is further reduced to 325 J/mm by employing current pulsation with 10ms on and off periods each and 60% back ground current. The peak weld center tensile residual stresses are reduced from +80 MPa to +65MPa. This demonstrates the influence of the weld heat in put on the generation of residual stresses. The bead crown width is reduced from 8.0mm for AC welds to 6.8 mm for non-pulsed DCSP welds. By adopting pulsation the width is reduced marginally, however the reduction in heat input is considerable. For given process there will be limitation in reducing the bead width. The bead width is equally dictated by the surface tension and other buoyancy forces operated during welding. Surface tension is altered by the shielding gas used. In AC GTAW process Argon gas is used whereas Helium gas is used for DCSP GTAW process. Helium gas has influence in surface tension of the molten metal [2]. Helium gas can t be used for AC welding due to high ionization potential and hence arc instability during reverse cycle. The reduction in heat input reduces the temperature gradient and this aids in reducing the residual stresses. The reduced weld heat input resulted in lower Heat Affected Zone (HAZ). The reduction in the residual stresses in HAZ is very marginal as evident from table 5. 4

5 The effect of bead width on residual stresses is studied on AC GTAW process only. It is easier to vary the arc length in AC welding compared to DCSP GTAW process. By increasing the arc length while keeping other parameters constant, there by heat input, the weld bead varied. Using the servomotor controlled Automated Voltage Control (AVC) the arc length is varied. Even though the heat input assumed to be constant by keeping the variable parameters constant, the radiation losses will be more. The various bead widths obtained are 8.0, 8.8, 9.3, 10.6 and 11.2 mm as depicted in table 7. Beyond 11.2 mm bead width lack of penetration is observed by increasing AVC. Even for 11.2mm bead width very narrow under bead observed, however X-ray radiography not revealed any lack of penetration. The variation of residual stresses with bead width is given table 3. The low average tensile residual stress of +80 MPa observed for 8.0 mm bead width against +98 MPa observed for 11.2 mm bead width. More scattering of values seen for 11.2 mm bead compared to lower bead widths. Table 7. Residual stresses on different weld bead widths of AC weld. Crown width (mm) Residual stresses (MPa) Remarks Average of 3 readings Average of 3 readings Average of 3 readings Average of 3 readings Average of 3 reading In all weldments higher stresses are observed on the crown side compared to root side, (table 4). In AC welds the difference is substantial. The variation is found to be 10MPa. However in DCSP welds in some locations even compressive nature stresses are observed on root side. This indicates that as the crown width to root width ratio increased the stress intensity and nature changes. Residual stresses are measured on the as received base material prior to welding and found to be compressive in nature in the order of -25 MPa. However prior to welding the coupons are treated as explained in section 3.0 to remove the surface contaminants and oxide layer. After surface treatment the stresses are reduced to -10 MPa. Prior to welding the areas adjust to weld line is scraped unidirectional to remove the tenacious oxide layer. Surface stresses are measured in the scraped area and found be compressive and is in the order of -30 MPa. These values are to be taken for comparative consideration only not as absolute values since accuracy in X-ray diffraction is ± 20 MPa [7]. It is to be noted that diffraction is inherently selective and limited by nonlinearity in sin 2 Ψor surface condition [8]. For some samples the peening/malleting operation is carried out immediately after welding. The peening operation induced compressive residual stresses in the weldments and as high as 110 MPa. It is interesting to note that there is no noticeable change in the HAZ region. Hence peening might alter only sub surface levels and plastic deformation not taken place across the thickness as AA 6061 being ductile material. As explained earlier, residual stresses bring elastic in nature, by imparting plastic deformation residual stresses can be relieved. Total sum of the stresses being zero the presence of compressive stresses indicates equal amount of total tensile component over an area. So more than the nature of stresses the distribution of residual stresses over the area is important. The reduction in heat input during welding reduced the residual stresses as evident in table 5. In all the cases the nature of distribution is same with tensile stresses in weld metal and compressive stresses in HAZ region. Reduced heat input reduced the stresses in general and has more effect on the root side. V. CONCLUSIONS The following observations were made during this research work as follows: 1. Tensile residual stresses are observed in the weldments with high peak stress in AC weldments compared to DCSP GTAW weldments. 2. Surface stresses are considerably changed while preparing surfaces for welding. 3. Crown side of weld show higher stresses compared to root side (Pulsed DCSP +65 MPa to +15 MPa). As the bead width to root width is reduced the stresses on root side are reduced. 4. Bead width has significant effect on residual stresses. Bead width can be lowered to reduce the residual stresses by adopting high heat density process. 5. Reduced weld heat input lowers the peak residual stresses and the nature and distribution are same. 6. DCSP current pulsed welding gives lower residual stresses compared to other processes by 15%. REFERENCES [1] NASA report no SE-R-0006 rev C General specification requirements for materials and process. [2] Welding fundamentals and processes, Volume 6A ASM International hand book, ISBN: , Oct 31, [3] Sindo Kou, Welding Metallurgy, Second Edition, Wiley- Inter-Science, A John Wiley & sons Inc Publication, ISBN , Oct [4] Svetsaren, the esab welding and cutting journal, vol. 59, no.1, 2004, [5] No Properties and Selection Non ferrous alloys and special purpose materials, Hand book Volume 2 ASM Hand book Volume 2, ISBN: ,Pub: Oct-1,

6 [6] S R Koteswararao, et.al, Gas Tungsten Arc Welded AA 2219 alloy using Scandium containing fillers- mechanical and corrosion behavior, Tran. Indian inst. Met, Vol. 57, no. 5 Oct 2004, pp hand book, NASA publication. [7] PJ PJ Withers and HKDH Bhadeshia, residual stress part1- measurement technique material science An and technology, April 2001, vol 17 pp [8] PJ P J Withers and HKDH Bhadeshia, mate. Sci.technol., 2001, 17, residual stress part1- M measurement technique material science and technology, April 2001, vol 17 pp [9] He Hemadri Naidu.T, Dr. K. Chennakeshavalu, P. Srinivasa Rao Investigation on the mechanical Pro properties of TIG welded AA 6061-T6 alloy weldments before and after heat treatment. [10] Pu IJAETMAS-Journal, vol-3, special-01, April-2016 Pg.No [11] Hemadri Nadiu.T, et.al, A comparative study of mechanical properties in joining of Aluminium alloy AA 6061-T6 material using TIG welding process with and without pulsation. 5th [12] NC on Emerging Trends in Engineering Technologies 11th &12th Mar 2016, JIT, Bangalore. 6

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine Research Reviews: Journal of Material Science DOI: 10.4172/2321-6212.1000201 e-issn: 2321-6212 www.rroij.com Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using

More information

Optimising Process Conditions in MIG Welding of Aluminum Alloys Through Factorial Design Experiments

Optimising Process Conditions in MIG Welding of Aluminum Alloys Through Factorial Design Experiments Optimising Process Conditions in MIG Welding of Aluminum Alloys Through Factorial Design Experiments OMAR BATAINEH (first and corresponding author); ANAS AL-SHOUBAKI; OMAR BARQAWI Department of Industrial

More information

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2465 2469 2012 International Workshop on Information and Electronics Engineering (IWIEE) Influence of Shielding Gas on Aluminum

More information

UIT AN ALTERNATIVE TO THERMAL STRESS RELIEF

UIT AN ALTERNATIVE TO THERMAL STRESS RELIEF UIT AN ALTERNATIVE TO THERMAL STRESS RELIEF Speaker s name: Sam Abston, Director of Engineering and R&D Paper Details: Sam Abston II Director of Engineering and R&D Applied Ultrasonics ABSTRACT: This paper

More information

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA Microstructure and Mechanical Property Changes during TIG elding of 31-2 (IS-737) Aluminium Alloy Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology.

More information

MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS

MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS MECHANICAL PROPERTIES OF ALUMINUM WELDS FOR AUTOMOTIVE STRUCTURAL APPLICATIONS Jennifer Hyde Supervisor: Dr. McDermid MATLS 701 Seminar Feb 17, 2012 Outline 2 Motivation Background/Literature Review Project

More information

Click to edit Master title style

Click to edit Master title style Click to edit Master title style Zhili Feng, Xinghua Yu, Jeff Bunn, Andrew Payzant- ORNL Demetrios Tzelepis, TARDEC Click to edit Outline Master title style Background Hydrogen Inducted Cracking (HIC)

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at 41 CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES 3.0. INTRODUCTION Welding is the process of coalescing more than one material part at their surface of contact by the suitable

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Design for welding: Design recommendations

Design for welding: Design recommendations Design for welding: Design recommendations Arc welding can be used to weld almost any kind of assembly, including even complex structures. Arc weldments use a wide variety of ferrous and non ferrous metals.

More information

9. Welding Defects 109

9. Welding Defects 109 9. Welding Defects 9. Welding Defects 109 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää*

Available online at  ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää* Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 630 636 8 th International Conference on Photonic Technologies LANE 2014 Thick-section laser and hybrid welding of austenitic

More information

Residual Stress Measurement Techniques: A Review

Residual Stress Measurement Techniques: A Review Residual Stress Measurement Techniques: A Review Nasir Khan 1, Research Scholar Amity University, Gwalior Dr. Anshul Gangele 2 Professor, Amity University Gwalior Abstract Compressive residual stresses

More information

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras Introduction Online course on Analysis and Modelling of Welding G. Phanikumar Dept. of MME, IIT Madras Classification of Manufacturing Processes Manufacturing Processes Ingot Casting Shape Casting Power

More information

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111

Local buckling of slender aluminium sections exposed to fire. Residual stresses in welded square hollow sections of alloy 5083-H111 Netherlands Institute for Metals Research Eindhoven University of Technology TNO Built Environment and Geosciences Report no. 8 Local buckling of slender aluminium sections exposed to fire Residual stresses

More information

Power density and welding process Keywords: 4.1 Introduction

Power density and welding process Keywords: 4.1 Introduction Power density and welding process In this chapter, energy density and temperature associated with different welding processes have been presented. Further, the influence of energy density on the performance

More information

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY * Venkata Ramana M 1, Sriram P S N 2 and Jayanthi A 3 Department of Automobile Engineering, VNR Vignana Jyothi Institute of Engineering

More information

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique Lingam Satyavinod 1, R Harikishore 2 1 Student, Department of Mechanical Engineering, DNREng College, Bhimavaram,

More information

71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding. Weld Metal - Chemistry

71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding. Weld Metal - Chemistry Flux Cored Wire 71T1 - Gas Shielded Flux Cored Welding Wire Provides excellent performance in all position welding Description: Provides a stable arc, low spatter, easy to remove slag, and neat weld metal.

More information

4 th Pipeline Technology Conference 2009

4 th Pipeline Technology Conference 2009 In 2006, CRC-Evans was first introduced to the Cold Metal Transfer (CMT) process. At the time, CMT was a technology intended for use as a joining method for thin gauged materials in the automotive industry.

More information

3. Residual Stresses

3. Residual Stresses 3. Residual Stresses 3. Residual Stresses 22 Figure 3.1 br-ei-3-1e.cdr weld Various Reasons of Residual Stress Development grinding disk less residual stresses, and it will never be stress-free! The emergence

More information

Available online at Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010

Available online at  Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010 Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 2 (2010) 00 (2009) 697 705 000 000 Procedia Engineering www.elsevier.com/locate/procedia Fatigue 2010 Fatigue behaviour

More information

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004)

Cast Steel Propellers W27. (May 2000) (Rev.1 May 2004) (May 2000) (Rev.1 May 2004) Cast Steel Propellers 1. Scope 1.1 These unified requirements are applicable to the manufacture of cast steel propellers, blades and bosses. 1.2 Where the use of alternative

More information

Failure Analysis and Prevention: Fundamental causes of failure

Failure Analysis and Prevention: Fundamental causes of failure Failure Analysis and Prevention: Fundamental causes of failure This chapter defines the failure and elaborates the conditions for failure of mechanical components. Further, the fundamental causes of failure

More information

12 SR STAINLESS STEEL. More Oxidation Resistant Than Type 409. More Creep Resistant Than Type 409. Applications Potential

12 SR STAINLESS STEEL. More Oxidation Resistant Than Type 409. More Creep Resistant Than Type 409. Applications Potential 12 SR STAINLESS STEEL P R O D U C T D ATA B U L L E T I N More Oxidation Resistant Than Type 409 More Creep Resistant Than Type 409 Applications Potential AK Steel 12 SR Stainless Steel was developed specifically

More information

Welding Inspection Defects/Repairs Course Reference WIS 5

Welding Inspection Defects/Repairs Course Reference WIS 5 Copy from Welding Inspection Defects/Repairs Course Reference WIS 5 Weld Defects Defects which may be detected by visual inspection can be grouped under five headings Cracks Surface irregularities Contour

More information

Dissimilar Metals DISSIMILAR METALS. Weld Tech News VOL 1. NO. 14

Dissimilar Metals DISSIMILAR METALS. Weld Tech News VOL 1. NO. 14 Dissimilar Metals Weld Tech News VOL 1. NO. 14 WELD TECH NEWS is a newsletter for welders working primarily in maintenance and repair. Each issue contains useful information on materials (cast irons, steels,

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

Metallurgical Processes

Metallurgical Processes Metallurgical Processes Chapter Thirty One: Welding Processes Dr. Eng. Yazan Al-Zain Department of Industrial Engineering 1 Introduction Welding processes divide into two major categories: Fusion Welding:

More information

INFLUENCE OF FRICTION STIR WELDING ON CORROSION PROPERTIES OF AW-7020M ALLOY IN SEA WATER

INFLUENCE OF FRICTION STIR WELDING ON CORROSION PROPERTIES OF AW-7020M ALLOY IN SEA WATER DOI: 10.1515/adms-2015-0002 K. Dudzik 1, W. Jurczak 2 1 Gdynia Maritime University, Faculty of Marine Engineering, Marine Maintenance Department, Gdynia, Poland 2 Polish Naval Academy, Mechanical Electrical

More information

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding EML 2322L -- MAE Design and Manufacturing Laboratory Welding Intro to Welding A weld is made when separate pieces of material to be joined combine and form one piece when heated to a temperature high enough

More information

SANICRO 30 TUBE AND PIPE, SEAMLESS

SANICRO 30 TUBE AND PIPE, SEAMLESS SANICRO 30 TUBE AND PIPE, SEAMLESS DATASHEET Sanicro 30 is a low-carbon version of Alloy 800 austenitic nickel-iron-chromium alloy. The grade is used for steam generator tubing in nuclear stations (PWR)

More information

Hot-crack test for aluminium alloys welds using TIG process

Hot-crack test for aluminium alloys welds using TIG process EPJ Web of Conferences 6, 07001 (2010) DOI:10.1051/epjconf/20100607001 Owned by the authors, published by EDP Sciences, 2010 Hot-crack test for aluminium alloys welds using TIG process A. Niel,a, F. Deschaux-beaume,

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

MATERIAL. III-1 Mechanical Finite Element Analysis and Engineering Critical Assessment Study

MATERIAL. III-1 Mechanical Finite Element Analysis and Engineering Critical Assessment Study BRINGING THE STRUCTURAL INTEGRITY OF ALLOY 36 (36% NICKEL) PIPES A STEP AHEAD FOR LNG TRANSPORTATION WITH CRYOGENIC PIPE IN PIPE READY FOR EPCI PROJECT PURPOSES Laurent Pomié Jeffrey O Donnell Technip

More information

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications.

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications. ATI 17-4 Precipitation Hardening Stainless Steel (UNS S17400) INTRODUCTION ATI 17-4 precipitation hardening stainless steel (S17400), Type 630, is a chromium-nickel-copper precipitation hardening stainless

More information

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel

XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 213 217. Indian Academy of Sciences. XRD and TEM analysis of microstructure in the welding zone of 9Cr 1Mo V Nb heat-resisting steel LI YAJIANG*, WANG

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

Development of regression models and optimization of FCAW process parameter of 2205 duplex stainless steel

Development of regression models and optimization of FCAW process parameter of 2205 duplex stainless steel Indian Journal of Engineering & Materials Science Vol. 21, April 2014, pp. 149-154 Development of regression models and optimization of FCAW process parameter of 2205 duplex stainless steel G Bansal Rajkumar

More information

API-582. a practical approach for industrial welding practices. All rights reserved to thepetrostreet team

API-582. a practical approach for industrial welding practices. All rights reserved to thepetrostreet team Recommended Welding Guidelines API-582 a practical approach for industrial welding practices By The PetroStreet Team CONTENTS Key Sections: Θ Section 6 WELDING CONSUMABLES Θ Section 7 SHIELDING AND PURGING

More information

The fundamentals of weld joint design

The fundamentals of weld joint design The fundamentals of joint design The performance of joints is determined by not only the load resisting cross sectional area of joint but also properties of region close to the metal i.e. heat affected

More information

Measurement of Residual Stress by X-ray Diffraction

Measurement of Residual Stress by X-ray Diffraction Measurement of Residual Stress by X-ray Diffraction C-563 Overview Definitions Origin Methods of determination of residual stresses Method of X-ray diffraction (details) References End Stress and Strain

More information

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Abhimanyu Chauhan M Tech. Scholar Production Engineering, Marudhar Engineering College, Bikaner, Rajasthan, India,

More information

RULES FOR THE CLASSIFICATION OF SHIPS

RULES FOR THE CLASSIFICATION OF SHIPS RULES FOR THE CLASSIFICATION OF SHIPS 2009 Part 26 - WELDING Amendments No.1 CROATIAN REGISTER OF SHIPPING Hrvatska (Croatia) 21000 Split Marasovićeva 67 P.O.B. 187 Tel.: (...) 385 (0)21 40 81 11 Fax.:

More information

Hull and machinery steel forgings

Hull and machinery steel forgings (1978) (Rev.1 1980) (Rev.2 July 2002) (Rev.3 May 2004) Hull and machinery steel forgings.1 Scope.1.1 These requirements are applicable to steel forgings intended for hull and machinery applications such

More information

Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments

Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments Influence of Post Weld Heat Treatment on the HAZ of Low Alloy Steel Weldments S. Rasool Mohideen* and A.M. Ahmad Zaidi Faculty of Mechanical and Manufacturing Engineering, UTHM *Corresponding email: rasool

More information

Sample Questions for Welding Engineering Examinations

Sample Questions for Welding Engineering Examinations Sample Questions for Welding Engineering Examinations AWS Welding Engineer Revision 2 August 2003 Part 1 Basic Fundamentals of Science Examination Mathematics 1. Determine the acute angle _ when tan 63

More information

Altering Perceptions: TIG welding in the Oil and Gas industry

Altering Perceptions: TIG welding in the Oil and Gas industry Altering Perceptions: TIG welding in the Oil and Gas industry Fig.1: TIG welding From Concept to Reality: Gas tungsten arc welding (GTAW) commonly known as, tungsten inert gas welding (TIG), has always

More information

Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets

Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets Finite Element Simulation of Nd:YAG laser lap welding of AISI 304 Stainless steel sheets N. SIVA SHANMUGAM 1*, G. BUVANASHEKARAN 2 AND K. SANKARANARAYANASAMY 1 1 Department of Mechanical Engineering, National

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University

Mold Design. 12. Mold Materials. Bong-Kee Lee School of Mechanical Engineering Chonnam National University 12. Mold Materials Bong-Kee Lee Chonnam National University Mold Materials easy toolmaking good performance during production good machining properties ease of hear treatment where hardening is required

More information

These elements are in carbon steels in minimal amounts, usually less than 1%.

These elements are in carbon steels in minimal amounts, usually less than 1%. Alloy Steels Weld Tech News VOL 1. NO. 11 WELD TECH NEWS is a newsletter for welders working primarily in maintenance and repair. Each issue contains useful information on materials (cast irons, steels,

More information

Structural Steel Welding

Structural Steel Welding PDH Course S150 Structural Steel Welding Semih Genculu, P.E. 2011 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com An

More information

High Carbon Steel Welding. A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle

High Carbon Steel Welding. A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle High Carbon Steel Welding A Quick Insight Into Problems When Welding High Carbon Steels Mike Doyle CARBON STEELS WHAT IS CARBON STEEL? Carbon Steel is principally a mixture (or Alloy) of Iron and Carbon

More information

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS

RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS RESIDUAL STRESS REDUCTION IN HIGH PRESSURE INTERPASS ROLLED WIRE+ARC ADDITIVE MANUFACTURING TI-6AL-4V COMPONENTS Filomeno Martina a,, Matthew Roy b, Paul Colegrove a, Stewart W. Williams a a Welding Engineering

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

X-Ray Diffraction Technique Applied to Study of Residual Stresses after Welding of Duplex Stainless Steel Plates

X-Ray Diffraction Technique Applied to Study of Residual Stresses after Welding of Duplex Stainless Steel Plates Materials Research. 2014; 17(Suppl. 1): 64-69 2014 DDOI: httpi://dx.doi.org/10.1590/s1516-14392014005000047 X-Ray Diffraction Technique Applied to Study of Residual Stresses after Welding of Duplex Stainless

More information

1. IMPERFECTIONS OF THE WELDED CONNECTION

1. IMPERFECTIONS OF THE WELDED CONNECTION 1. IMPERFECTIONS OF THE WELDED CONNECTION A. Classification of imperfections in the welds acc. to EN 26520 (ISO 6520) Crack (100) - imperfection produced by a local rupture in the solid state which can

More information

RAMAX 2. Prehardened stainless holder steel

RAMAX 2. Prehardened stainless holder steel RAMAX 2 Prehardened stainless holder steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be

More information

Laser Shock Hardening of Weld Zones in Aluminum Alloys

Laser Shock Hardening of Weld Zones in Aluminum Alloys Printed with permission from The Metal Society of AIME Laser Shock Hardening of Weld Zones in Aluminum Alloys ALLAN H. CLAUER, BARRY P. FAIRAND AND BEN A. WILCOX The feasibility of using a high energy,

More information

Steel Making. Modern Long Product Manufacturing. Process Flow Chart

Steel Making. Modern Long Product Manufacturing. Process Flow Chart Rolling Process Metallurgical Aspects Material Specifications and Chemistries Standard Mill Practices Miscellaneous Tables & Data Elastic Section Modulus Plastic Section Modulus Moment of Inertia SI Conversion

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Titanium Welding Technology

Titanium Welding Technology UDC 669. 295 : 621. 791. 754 Titanium Welding Technology Tadayuki OTANI* 1 Abstract In order to establish titanium welding technology TIG arc weldability and MIG arc weldability were surveyed. For TIG

More information

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress Materials Science Forum Vols. 524-525 (26) pp. 35-31 online at http://www.scientific.net (26) Trans Tech Publications, Switzerland The influence of aluminium alloy quench sensitivity on the magnitude of

More information

Finite element analysis of residual stress in the welded zone of a high strength steel

Finite element analysis of residual stress in the welded zone of a high strength steel Bull. Mater. Sci., Vol. 27, No. 2, April 2004, pp. 127 132. Indian Academy of Sciences. Finite element analysis of residual stress in the welded zone of a high strength steel LI YAJIANG*, WANG JUAN, CHEN

More information

1E5 Advanced design of glass structures. Martina Eliášová

1E5 Advanced design of glass structures. Martina Eliášová 1E5 Advanced design of glass structures Martina Eliášová List of lessons 1) History, chemical, production 2) Glass as a material for load bearing structures 3) Design of laminated plates 4) Design of glass

More information

NEW HEAT TREATMENT FOR Al HIGH PRESSURE DIE-CASTINGS

NEW HEAT TREATMENT FOR Al HIGH PRESSURE DIE-CASTINGS NEW HEAT TREATMENT FOR Al HIGH PRESSURE DIE-CASTINGS Conventionally produced H aluminum alloy high pressure die-castings containing normal porosity levels can be successfully heat treated without incurring

More information

A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures

A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures Transactions, SMiRT-23 Division IX, Paper ID 612 (inc. assigned division number from I to X) A Review of Suitability for PWHT Exemption Requirements in the Aspect of Residual Stresses and Microstructures

More information

WE01A GMA (MIG) Plug Weld

WE01A GMA (MIG) Plug Weld Uniform Procedures For Collision Repair WE01A GMA (MIG) Plug Weld 1. Description This procedure describes methods for making and evaluating gas metal arc (GMA) plug welds (MIG plug welds) on all types

More information

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205) ATI 2205 Duplex Stainless Steel (UNS S31803 and S32205) GENERAL PROPERTIES ATI 2205 alloy (UNS S31803 and/or S32205) is a nitrogen-enhanced duplex stainless steel alloy. The nitrogen serves to significantly

More information

9. Welding Defects 108

9. Welding Defects 108 9. Welding Defects 9. Welding Defects 108 Figures 9.1 to 9.4 give a rough survey about the classification of welding defects to DIN 8524. This standard does not classify existing welding defects according

More information

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION T.W. Skszek and M. T. J. Lowney Abstract POM Company, Inc., located in Plymouth, Mich., has successfully commercialized the laser-based,

More information

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy 614 J. Mater. Sci. Technol., Vol.23 No.5, 2007 Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy L.Karthikeyan 1), V.S.Senthilkumar 2), D.Viswanathan

More information

3/26/2015. Processes of Arc Welding. Kate Gilland

3/26/2015. Processes of Arc Welding. Kate Gilland 3/26/2015 Processes of Arc Welding Kate Gilland Processes of Arc Welding Introduction Welding is a powerful technological advance. It allows for things to be conjoined that may have not been thought to

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

Study of the Effectiveness of the TIG Brush Process at Cleaning and Passivating an Autogeneous TIG Weld on 316L TWI Report 23027/1/13-2 Introduction

Study of the Effectiveness of the TIG Brush Process at Cleaning and Passivating an Autogeneous TIG Weld on 316L TWI Report 23027/1/13-2 Introduction Study of the Effectiveness of the TIG Brush Process at Cleaning and Passivating an Autogeneous TIG Weld on 316L TWI Report 23027/1/13-2 1 Introduction Stainless steel products are adversely affected by

More information

WHAT TO THINK ABOUT DURING WELD REPAIR

WHAT TO THINK ABOUT DURING WELD REPAIR WHAT TO THINK ABOUT DURING WELD REPAIR CARBON STEEL, STAINLESS STEEL AND Ni-ALLOY Per-Åke Björnstedt IWE Application Specialist Stockholm, 2017-11-08 TOPICS What to think about during weld repair? Types

More information

The Relationship between Residual Stresses and Transverse Weld Cracks in Thick Steel Plate

The Relationship between Residual Stresses and Transverse Weld Cracks in Thick Steel Plate WELDING RESERCH The Relationship between Residual Stresses and Transverse Weld Cracks in Thick Steel Plate The relationship between longitudinal residual stresses (s x direction) and transverse weld cracks

More information

304/304L STAINLESS STEEL

304/304L STAINLESS STEEL 304/304L STAINLESS STEEL P R O D U C T D ATA B U L L E T I N Architectural Moldings and Trim Textile Kitchen Equipment Paper Pharmaceutical and Chemical Industry Processing Equipment Applications Potential

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

THE MEASUREMENT OF SUBSURFACE RESIDUAL STRESS AND COLD WORK DISTRIBUTIONS IN NICKEL BASE ALLOYS

THE MEASUREMENT OF SUBSURFACE RESIDUAL STRESS AND COLD WORK DISTRIBUTIONS IN NICKEL BASE ALLOYS THE MEASUREMENT OF SUBSURFACE RESIDUAL STRESS AND COLD WORK DISTRIBUTIONS IN NICKEL BASE ALLOYS Paul S. Prevéy Lambda Research, Inc. ABSTRACT A method of determining the diffraction peak width accurately

More information

VDM Alloy 718 CTP Nicrofer 5219 Nb

VDM Alloy 718 CTP Nicrofer 5219 Nb VDM Alloy 718 CTP Nicrofer 5219 Nb Material Data Sheet No. 4127 September 2017 September 2017 VDM Alloy 718 CTP 2 VDM Alloy 718 CTP Nicrofer 5219 Nb VDM Alloy 718 CTP is an age-hardenable nickel-chromium-iron-molybdenum

More information

30ChGSA Included in 13 standards (CIS Countries)

30ChGSA Included in 13 standards (CIS Countries) Standards GOST 10702-78 GOST 11268-76 GOST 12132-66 GOST 21729-76 GOST 23270-89 GOST 4543-71 GOST 8731-74 GOST 8733-87 GOST R 54159-10 TU 14-1-1213-75 TU 14-1-1409-75 TU 14-1-4118-76 TU 14-4-385-73 Steel

More information

1. Project special reports

1. Project special reports 1. Project special reports 1.1 Deformation localisation and EAC in inhomogeneous microstructures of austenitic stainless steels Ulla Ehrnstén 1, Wade Karlsen 1, Janne Pakarinen 1, Tapio Saukkonen 2 Hänninen

More information

MAG wire. Welding Consumables Selection. MAG MIG wire/rod. Welding Consumables Selection. Specifi cation AWS JIS. Product name

MAG wire. Welding Consumables Selection. MAG MIG wire/rod. Welding Consumables Selection. Specifi cation AWS JIS. Product name Welding Consumables Selection Product name S-4 S-6 Shielding gas Property description Better deoxidation effect than ER70S-3, no charpy impact requirement. Available for single and multipasses, good anti-rust

More information

THEORY QUESTIONS [60% of paper for weld fatigue]

THEORY QUESTIONS [60% of paper for weld fatigue] 1. THEORY QUESTIONS [60% of paper for weld fatigue] Note, to obtain maximum points for each problem clearly motivate solutions and equations used. Because the students had digital versions of previous

More information

IMPACT. Chemical composition For the chemical composition of the ladle analysis the following limits are applicable (in %):

IMPACT. Chemical composition For the chemical composition of the ladle analysis the following limits are applicable (in %): IMPACT Wear resistant steel Material data sheet, edition April 2016 1 DILLIDUR IMPACT is a wear resistant steel with a nominal hardness of 340 HBW in delivery condition. DILLIDUR IMPACT is not a constructional

More information

PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGINGS

PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGINGS p 1 of 6 UF-1 UF-12 PART UF REQUIREMENTS FOR PRESSURE VESSELS FABRICATED BY FORGING the test temperature be higher than 20 F ( 29 C). Certification is required. An ultrasonic examination shall be made

More information

Investigating the Mechanical Properties of Post Weld Heat Treated 0.33%C Low Alloy Steel

Investigating the Mechanical Properties of Post Weld Heat Treated 0.33%C Low Alloy Steel International Journal of Science and Technology Volume 2 No. 6, June, 2013 Investigating the Mechanical Properties of Post Weld Heat Treated 0.33%C Low Alloy Steel Momoh I.M., Akinribide O.J., Ayanleke

More information

C27000 CuZn36 Industrial Rolled

C27000 CuZn36 Industrial Rolled C27 Alloy Designation EN DIN CEN/TS 13388 (2.335) CW57L JIS C 27 BS CZ 18 UNS Chemical Composition Weight percentage C27 Cu 63.5.. 65.5 % Zn Rest % Ni.3 % Sn.1 % Fe.5 % This alloy is in accordance with

More information

ULTRASONIC IMPACT TREATMENT FOR SURFACE HARDENING OF THE AERO-ENGINE MATERIAL IN718

ULTRASONIC IMPACT TREATMENT FOR SURFACE HARDENING OF THE AERO-ENGINE MATERIAL IN718 ULTRASONIC IMPACT TREATMENT FOR SURFACE HARDENING OF THE AERO-ENGINE MATERIAL IN718 R. Hessert 1, J. Bamberg 1, W. Satzger 1, T. Taxer 2 1 MTU Aero Engines, Dachauer Straße 665, 8995 Munich, Germany 2

More information

STANDARD FERRITIC STAINLESS STEELS

STANDARD FERRITIC STAINLESS STEELS T e c h n i c a l B r o c h u r e STANDARD FERRITIC STAINLESS STEELS Unity AISI UNS EN U-40910 409 S40910 1.4512 U-430 430 S43000 1.4016 U-430DDQ 430 S43000 1.4016 U-439 439 S43035 1.4510 - S43940 U-1.4509

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: Vol. 2 Issue 4, April

Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: Vol. 2 Issue 4, April Study of Mechanical Properties on Thick Titanium Alloy (Ti - 6Al- 4V) Multi-Passes Weld Yassin Mustafa Ahmed, Department of Mechanical Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000

More information

Material data sheet. EOS NickelAlloy HX. Description, application

Material data sheet. EOS NickelAlloy HX. Description, application Material data sheet is a heat and corrosion resistant metal alloy powder intended for processing on EOS M 290 systems. This document provides information and data for parts built using powder (EOS art.-no.

More information