Formation and Disappearance of Pores in Plasma Arc Weld Bonding Process of Magnesium Alloy

Size: px
Start display at page:

Download "Formation and Disappearance of Pores in Plasma Arc Weld Bonding Process of Magnesium Alloy"

Transcription

1 Materials Transactions, Vol. 50, No. 7 (2009) pp to 1654 Special Issue on New Functions and Properties of Engineering Materials Created by Designing and Processing #2009 The Japan Institute of Metals Formation and Disappearance of Pores in Plasma Arc Weld Bonding Process of Magnesium Alloy Liming Liu* and Jianbo Jiang School of Materials Science and Engineering, Dalian University of Technology, Dalian , P. R. China A new welding technology called plasma arc weld bonding was designed by combining the plasma arc welding and adhesive bonding process in the lap welding of magnesium alloy. During the plasma arc weld bonding process, the major difficulty was the presence of porosity in the welding joint. This paper analyzed the formation mechanism of pores and the effect of welding parameters on pores behaviors during plasma arc weld bonding process of magnesium alloy by optical microscopy and electron probe microanalysis. The results showed that it easily formed a lot of pores in joint because of the existence of adhesive layer. The decomposition of adhesive in both the sides of welding seam was the main cause for the formation of pores. The regular-shape pores were formed by CO and CO 2, and the anomalous-shape pores were formed by the low molecular weight hydrocarbons. The pores behaviors were affected evidently by the heat input, and the favorable joint could be obtained when the heat input was about 396 kj/m. [doi: /matertrans.mf200919] (Received January 19, 2009; Accepted April 1, 2009; Published June 3, 2009) Keywords: plasma arc weld bonding, pores behaviors, magnesium alloy 1. Introduction Table 1 Chemical compositions of AZ31B, mass%. Plasma arc weld bonding (PAWB) process, a new welding technology, was presented recently. It was put forward as a hybrid of plasma arc welding (PAW) and the adhesive bonding process. PAW offered significant advantages over conventional gas tungsten arc welding (GTAW) in terms of penetration depth, joint preparation and thermal distortion. 1,2) Although its energy was less dense than laser beam welding (LBW) and electron beam welding (EBW), PAW was more cost effective and more tolerant of joint preparation. 3,4) In addition, PAW technique was suitable to weld the structural components which were difficult to be welded on the backside. In adhesive bonding process, because of the existence of the adhesive layer, the fatigue resistance and the corrosion resistance of the welding joint could be improved. 5) Moreover, upon loading, there was a more uniform distribution of stress over the bonded area, which would increase the properties of the welding joint. 6,7) To combine the advantages of PAW and the adhesive bonding process, a new welding technology namely PAWB process was designed in which the plasma arc welding was conducted when an adhesive layer existed in the interface of the sheets. In the previous experiments, PAWB have been used to join Mg alloy successfully. 8,9) It was found that the existence of the adhesive layer played an important role in PAWB process. However, the existence of the adhesive layer had not only the advantages but also some disadvantages. During welding process, the adhesive would decompose and produce a mass of decomposition products. It was benefit to form pores in PAWB joint, and then decrease the properties of the welding joint. The aim of this paper was to study the porosity of welding joint in PAWB process. A series of the PAWB experiments was conducted in which the two join methods were coupled in one process. The formation mechanism of pores and the effect of welding parameters on pores behaviors were analyzed. *Corresponding author, liulm@dlut.edu.cn Mg Al Zn Mn Si Fe Cu Others AZ31B Bal >0:2 <0:10 >0:03 <0: Experimental Procedure AZ31B extrusive plates with dimensions of 250 mm 100 mm 2:5 mm were used in this study. Its chemical composition in weight percentages was given in Table 1. The adhesive (Terokal 4555B) used in this experiment was a kind of structural epoxy adhesive, which would decompose above 230 C. The composition of the epoxy adhesive was 10 30% Epoxy Nitrile Rubber Amine Adduct, 10 30% Bisphenol A-Epichlorohydrin polymer, 10 30% Reaction Product of Epichlorohydrin and Bisphenol F, 1 10%Cashew, nutshell liq., glycidyl ethers, 1 10%Calcium carbonate, 1 10%Biphenol Resin, 1 10% Barium metaborate and 1 10% Clay (mass%). And its decomposition products were carbon monoxide, carbon dioxide and/or low molecular weight hydrocarbons. The LHMfE-315 plasma arc welding equipment was used in experiment. Before welding, the surfaces of specimens were prepared by grinding with carborundum paper to remove oxides. Acetone was used to remove grease. The lap joint was chosen in experiments as shown in Fig. 1. The adhesive was coated on the overlap area of Mg alloy sheets with a thickness of 0.1 mm. A plasma arc welding torch with 4 mm, W- 2%ThO 2 electrode was used. Pure argon was used as the shielding gas and plasma gas. The PAWB welding was conducted with keyhole mode and variable polarity mode. The TDS 1002 digital storage oscilloscope was used to record the arc voltage variation during the welding process. After welding, the specimens were cured under fixed stress, the temperature was ramped up from room temperature at a speed of 5 C/min, and the cure cycle was 30 min at 175 C. The pores behaviors in PAWB joint were analyzed by optical microscopy. The elements on the inwall of pores were investigated by electron probe microanalysis (EPMA).

2 1650 L. Liu and J. Jiang Table 2 Welding parameters of PAWB process. Base metal Plasma arc Optimal welding parameters Welding current I/A 180 Welding speed V/mmmin Plasma gas flow rate Q/Lmin Shielding gas flow rate Q/Lmin 1 20 Arc longer L/mm 1 Fig. 1 Adhesive layer Schematic of PAWB process. Pores with anomalous shape Biggish elliptical pores 250µm Micropores 100µm Fig. 2 Biggish elliptical pores in cross section of PAWB joint, the anomalous-shape pores and micropores. 3. Results and Discussions 3.1 Porosity of PAWB joint Figure 2 showed the cross section of PAWB joints. It was found that there were a lot of pores in the PAWB joint and most of pores distributed in the upper part of PAWB joint. Four biggish elliptical pores with major axis of about 3 mm grew from the upper part to the lower part of PAWB joint. Some lesser elliptical pores with 1 mm major axis and circular pores with 0.3 mm diameter distributed around the biggish elliptical pores. It was seen that the inwall of these regular-shape pores was smooth. Figure 2 showed some anomalous-shape pores at the edge of upper molten pool of PAWB joint, such as star-shaped and polygonal pores. It was seen that the inwall of the anomalous-shape pores was rugged. Besides, the micropores with diameters of about 10 mm were also observed at the edge of bottom molten pool of PAWB joint, as shown in Fig. 2. During the welding process, the keyhole mode and the variable polarity mode were adopted, which were helpful to release the gases and clear the inclusions. However, it easily found a lot of pores in PAWB joint yet. During PAWB process, the existence of the adhesive layer was helpful to form pores in welding joint. The adhesive would combust and gasify acutely by the effect of plasma arc. And then a mass of the decomposition products, such as gas and low molecular weight hydrocarbons, were produced which easily formed pores in welding joint. The elements on the inwall of pores were analyzed by EPMA, and the results were shown in Table 2. It was found that the elements on the inwall of all kinds of pores were Mg, C and O elements mainly. On the inwall of biggish elliptical pores (shown as Fig. 2), C and O content was up to 10 and 16.5%, respectively. The C and O content on the inwall of micropore (shown as Fig. 2) was up to 6.5 and 8.9%, respectively. And the C contented on the inwall of anomalous-shape pore (shown as Fig. 2) was up to 96.75%. It was concluded that the formation of the pores had a close relationship with the C and O elements. In addition, it was known that the decomposition of the adhesive were carbon monoxide, carbon dioxide and/or low molecular weight hydrocarbons. Therefore, the C and O elements on the inwall

3 Formation and Disappearance of Pores in Plasma Arc Weld Bonding Process of Magnesium Alloy 1651 (d) (e) (f) Area of pores in cross section of PAWB joint Melting width at the bottom of upper sheets Area, S/mm Melting width, W/mm Plasma gas flow rate, Q/L min -1 Fig. 3 Cross section of PAWB joint with different flow rate of plasma gas: 1.4 L/min; 1.6 L/min; 1.8 L/min; (d) 2.0 L/min; (e) 2.2 L/min, and pores area and L with different flow rate of plasma gas. of pores should be come from the adhesive, and the decomposition of the adhesive was the reason for the porosity of PAWB joint. Based on the mol rate between C and O, the gases in bigger elliptical pores and micropores should be composed of CO and CO 2, and their mol ratio was about 2:3. In the anomalous-shape pore, it was considered to be the low molecular weight hydrocarbons based on the C element content. 3.2 Effect of welding parameters on the pores During PAWB process, the decomposition of the adhesive was inevitable by the effect of the plasma arc. The bigger quantity of adhesive layer decomposed, the more quantity of decomposition products were formatted. It easily known that the quantity of decomposition adhesive layer was proportional to molten width (W) at the bottom of upper sheet. Decreasing quantity of decomposition adhesive was considered as one method to reduce the quantity of pores. With the increasing of the flow rate of plasma gas, the constriction of the plasma arc was increased, and W could be reduced. Furthermore, it was well known that increasing the heat input could increased the cooling time of the melt pool, which was helpful to release gases. Therefore, increasing the welding current and decrease the welding speed were considered as another one method to reduce the quantity of pores in PAWB joint. Analyzing the effect of the parameters on the pores behaviors and making them to be matched was the key to avoid the porosity of PAWB joint Flow rate of plasma gas With different flow rate of plasma gas, the pores behaviors and the change of W were investigated, as shown in Fig. 3. It was found that with the increasing of the flow rate of plasma gas, W decreased. The size of the pores reduced, and the shape of pores was changed to slender. However, the amount of the pores increased, the total area of pores in cross section of PAWB joints was almost not changed. With the increasing of the flow rate of plasma gas, the plasma arc constricted, and the arc force increased. It could reduce W and increase the stir to the molten pool. The biggish pores were break up, and the coalescence of the lesser pores was baffled. Therefore, it was concluded that the flow rate of plasma gas mainly affected the shape and size of the pores, and did not affect total quantity of pores in PAWB joint greatly Welding current Figure 4 showed the pores behaviors and change of W with different welding current. It was seen that with the

4 1652 L. Liu and J. Jiang (d) (e) (f) Area of pores in cross section of PAWB joint Melting width at the bottom of upper sheets Area, S/mm 2 Melting width, W/mm Welding current, I/A Fig. 4 Cross section of PAWB joint with different welding current: 130 A; 140 A; 150 A; (d) 160 A; (e) 170 A, and pores area and L with different welding current (f). increasing of the welding current, W increased. The amount of the pores reduced. The lesser pores coalesced into the biggish pores, then the pores moved to the upper part of PAWB joint, and released from the PAWB joint at last. The total area of the pores in cross section of PAWB joints reduced rapidly. With the increasing of the welding current, the heat input increased. Although W increased, the solidification time of the molten pool increased. It made the releasing of gas more easily. Therefore, it was concluded that the welding current affected the size, amount and distribution of the pores. With the increasing of welding current, the total quantity of the pores decreased Welding speed With different welding speed, pores behaviors and the change of W were observed, as shown in Fig. 5. It was found that with the decrease of the welding speed, W increased. The lesser pores coalesced to the biggish pores, the amount of the pore reduced. The total area of pores in cross section of PAWB joint reduced quickly. The effect of the welding speed on pores behavior was opposite to the welding current. With the decrease of welding speed, the heat input increased. Although W increased, the solidification time of the molten pool increased. It made the releasing of gases more easily. Therefore, it was concluded that the welding speed affected the size, amount and distribution of the pores. With decrease of welding speed, the total quantity of the pores decreased. 3.3 The remedy for eliminating pores In PAWB process, decomposition of adhesive in both the sides of welding seam was considered as the main cause for the porosity of PAWB joint. It easily known that the adhesive in the area of welding seam instant decomposed completely because of the high temperature of plasma arc during PAWB process. And under the action of the arc force, most of decomposition products released from molten pool along the keyhole with the plasma arc, only a few of decomposition products could followed with the melt metal of molten pool. During PAWB process, however, the adhesive in both the sides of welding seam also decomposed and produced a mass of decomposition products, such as CO and CO 2. During the solidification process of molten pool, CO and CO 2 could join the molten pool along the interface between the specimens, as shown in Fig. 4(d) and Fig. 5(e). If there were not enough time for the gases to release from the molten pool, the gases

5 Formation and Disappearance of Pores in Plasma Arc Weld Bonding Process of Magnesium Alloy 1653 (d) (e) (f) Area of pores in cross section of PAWB joint Melting width at the bottom of upper sheets Area, S/mm 2 Melting width, W/mm Welding speed, V/mm min -1 Fig. 5 Cross section of welding joint with different welding speed: 425 mm/min; 400 mm/min; 375 mm/min; (d) 350 mm/min; (e) 325 mm/min, and pores area and L with different welding speed (f). would form the pores at last. Therefore, the decomposition of adhesive in both the sides of welding seam was considered as the main cause for the porosity of PAWB joint. In previous experiments, it was known that the flow rate of plasma gas almost not affected the total quantity of the pores in PAWB joint. However, with the increasing of the welding current or decrease of the welding speed, the total quantity of the pores in PAWB joint decreased quickly. In PAWB process, the heat input J (kj/m) could be expressed as J ¼ P V ¼ UI ð1þ V where P was the power of plasma arc (kw), U was the output voltage (V), I was the output current, V was the welding speed (m/s). In the previous experiments, the output voltage was about 11 V by the observed. Base on the previous experiments, the relation between the total area of the pores in cross section of PAWB joint and the heat input was established, as shown in Fig. 6. It was found that with the increasing of the heat input, the total area of the pores reduced quickly. The total area of the pores in cross section of PAWB joint showed a linear relation to the heat input. The function of the relationship between the total area of the pores and heat input could be expressed as a simple equation Area, S/mm 2 Fig y = x Heat input, J/kJ m -1 Relation between the total area of the pores and the heat input. S ¼ 43:023 0:1151J where S was the total area of the pores (mm 2 ) in the cross section of PAWB joint and J was the heat input (kj/m). Based on the equation, it could be worked out that there would be no pores when J was above kj/m. In the experiment, under the condition of forming a good welding seam, the welding parameters were chosen base on the eq. (1) and eq. (2). It was found that a good welding seam was obtained when the welding parameters were chosen as ð2þ

6 1654 L. Liu and J. Jiang Fig. 7 shown in Table 2, namely the heat input was 396 kj/m. Figure 7 showed the cross section of the welding joint. It could be seen that there was no pores in the welding joint. 4. Conclusions Cross section of welding joint by the optimal welding parameters. During PAWB process, it easily formed a mass of pores because of the decomposition of the adhesive. The major axis of pores was from several microns to several millimeters. The regular-shape pores, such as circular and elliptical pores, were formed by CO and CO 2. The anomalous-shape pores, such as star-shaped and polygonal pores, were formed by low molecular weight hydrocarbons. With the increasing of the follow rate of plasma gas, the size of pores reduced and the amount of pores increased. The shape of pores changed to slender. The total area of pores in cross section of PAWB joint was almost not changed. With the increasing of welding current or decrease of welding speed, the lesser pores coalesced to biggish pores, then released from molten pool. The total area of pores in cross section of PAWB joint reduced quickly. It was a linear relation to the heat input. Based on this, a good welding seam without porosity was obtained when the heat input was 396 KJ/m. Acknowledgements The authors gratefully acknowledge the sponsorship from the high technology support program of China (No. 2006BAE04B05). REFERENCES 1) E. Craig: Weld. J. 67 (1988) ) M. Tomsic and S. Barhorst: Weld. J. 63 (1984) ) Welding Handbook: Vol. 2: Welding Processes. 8th edition, ed. by R. L. O Brien (American Welding Society, Miami, Fla, 1991). 4) Y. F. Hsu and B. Rubinsky: Int. J. Heat Mass Trans. 31 (1988) ) Adhesion and Adhesives Technology: An Introduction ed. by A. V. Pocius (Chapter I), Second Edition, (America, 2002). 6) W. Leahy, V. Baron, M. Buggy, T. Young, A. Mas and F. Schue: J. Adhesion. 77 (2001) ) S. J. Shaw and D. A. Tod: Mater. World 2 (1994) ) J. Jiang and Z. Zhang: J. Alloy. Compd. 466 (2008) ) L. Liu and J. Jiang: J. Mater. Proc. Technol. 209 (2009)

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints

The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints The Research on Welding Sources and Ni Interlayer Synergy Regulation in Laser-Arc Hybrid Welding of Mg and Al Joints Hongyang Wang, Gang Song, Baoqiang Feng, and Liming Liu ( ) Key Laboratory of Liaoning

More information

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform

Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform ICCM2015, 14-17 th July, Auckland, NZ Study of the characteristic of droplet transfer in laser-mig hybrid welding based on the phase matching control of laser pulse and arc waveform *G. Song¹, J.Wang¹,

More information

Plasma Arc Welding (PAW) A Literature Review Dr. M. Chithirai Pon Selvan 1, Nethri Rammohan 2 and Sampath S S 3 1

Plasma Arc Welding (PAW) A Literature Review Dr. M. Chithirai Pon Selvan 1, Nethri Rammohan 2 and Sampath S S 3 1 American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Power density and welding process Keywords: 4.1 Introduction

Power density and welding process Keywords: 4.1 Introduction Power density and welding process In this chapter, energy density and temperature associated with different welding processes have been presented. Further, the influence of energy density on the performance

More information

Investigations on laser-tig hybrid welding of magnesium alloys

Investigations on laser-tig hybrid welding of magnesium alloys Investigations on laser-tig hybrid welding of magnesium alloys Gang Song, Liming Liu, Mingsheng Chi and Jifeng Wang State Key Laboratory of Material Surface Modification by Laser, Ion, and Electronic beams,

More information

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated

Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated Bull. Mater. Sci., Vol. 34, No. 4, July 2011, pp. 805 810. Indian Academy of Sciences. Bonding strength of Al/Mg/Al alloy tri-metallic laminates fabricated by hot rolling X P ZHANG, *, M J TAN, T H YANG,

More information

KEYHOLE DOUBLE-SIDED ARC WELDING PROCESS FOR DEEP NARROW PENETRATION

KEYHOLE DOUBLE-SIDED ARC WELDING PROCESS FOR DEEP NARROW PENETRATION KEYHOLE DOUBLE-SIDED ARC WELDING PROCESS FOR DEEP NARROW PENETRATION Y. M. Zhang and S. B. Zhang Welding Research and Development Laboratory Center for Robotics and Manufacturing Systems and Department

More information

Lecture 29 DESIGN OF WELDED JOINTS VII

Lecture 29 DESIGN OF WELDED JOINTS VII Lecture 29 DESIGN OF WELDED JOINTS VII This chapter presents the influence of various welding related parameters on fatigue behavior of weld joints. Attempts have been made to explain how (residual stress,

More information

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding This chapter presents the influence of process parameters of pulse TIG welding process on the development of sound weld joint. Further, the

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Observation of the Keyhole during Plasma Arc Welding

Observation of the Keyhole during Plasma Arc Welding ASTRACT. Keyhole plasma arc welding is a unique arc welding process for deep penetration. To ensure the quality of the welds, the presence of the keyhole is critical. Understanding of the keyhole will

More information

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira *, KURODA Toshio *, KIMURA Hisamichi ** and INOUE Akihisa ** Abstract Metallic

More information

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2465 2469 2012 International Workshop on Information and Electronics Engineering (IWIEE) Influence of Shielding Gas on Aluminum

More information

Structure of Metals 1

Structure of Metals 1 1 Structure of Metals Metals Basic Structure (Review) Property High stiffness, better toughness, good electrical conductivity, good thermal conductivity Why metals have these nice properties - structures

More information

Impact Toughness of Weldments in Al Mg Si Alloys

Impact Toughness of Weldments in Al Mg Si Alloys Materials Transactions, Vol. 43, No. 6 (2002) pp. 1381 to 1389 c 2002 The Japan Institute of Metals Impact Toughness of Weldments in Al Mg Si Alloys Victor Alexandru Mosneaga, Tohru Mizutani, Toshiro Kobayashi

More information

Novel Technologies for Similar and Dissimilar Titanium Joints

Novel Technologies for Similar and Dissimilar Titanium Joints Novel Technologies for Similar and Dissimilar Titanium Joints October 8, 2012 Michael Eff Project Engineer 614.688.5212 meff@ewi.org EWI. dedicated to Materials Joining and related process development

More information

Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 4 Arc Welding Processes Lecture - 1 SMAW- 1 So, dear students,

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS CHAPTER-4 EXPERIMENTAL DETAILS 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS Hot rolled plates of 90/10 and 70/30 Cu-Ni alloys of 5 mm thickness were selected as test

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

A plasma cloud charge sensor for pulse keyhole process control

A plasma cloud charge sensor for pulse keyhole process control INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 12 (2001) 1365 1370 www.iop.org/journals/mt PII: S0957-0233(01)20787-5 A plasma cloud charge sensor for pulse keyhole

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

Dissimilar Metals Welding of Galvanized Steel and Aluminum

Dissimilar Metals Welding of Galvanized Steel and Aluminum Transactions of JWRI, Vol.43 (04), No. Dissimilar Metals Welding of Galvanized Steel and Aluminum NISHIMOTO Koji*, KAWAHITO Yousuke** and KATAYAMA Seiji*** Abstract Dissimilar metals joints of galvanized

More information

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints Surface Effects and Contact Mechanics IX 183 The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints A. Els-Botes,

More information

3 TIG welding. 3.1 A description of the method. 3.2 Equipment

3 TIG welding. 3.1 A description of the method. 3.2 Equipment 3 TIG welding 3.1 A description of the method TIG welding (also called Gas Tungsten Arc Welding, GTAW) involves striking an arc between a non-consumable tungsten electrode and the workpiece. The weld pool

More information

(Received December 6, 2006)

(Received December 6, 2006) 研究論文 Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and Processes Michinori OKUBO*, Tomokuni KON** and Nobuyuki ABE*** (Received December 6, 6) Dissimilar smart joints

More information

Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding

Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding Transactions of of JWRI, Vol.35 Vol.** (2006), (200*), No.1 No. * Physical Phenomena and Porosity Prevention Mechanism in Laser-Arc Hybrid Welding KATAYAMA Seiji*, NAITO Yasuaki**, UCHIUMI Satoru** and

More information

LASER WELDING OF AUSTENITIC STAINLESS STEEL THIN SHEETS

LASER WELDING OF AUSTENITIC STAINLESS STEEL THIN SHEETS LASER WELDING OF AUSTENITIC STAINLESS STEEL THIN SHEETS Elena Manuela STANCIU, Alexandru PASCU, Ionuţ Claudiu ROATĂ Transilvania University of Brasov, Romania Abstract. This paper presents investigations

More information

Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying

Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira*, YANO Shoji**, KIMURA Hisamichi***, and INOUE Akihisa*** Abstract Metal glass has excellent functions such as

More information

Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum Alloy

Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum Alloy 2010 The Japan Institute of Light Metals Proceedings pp. 928-933 of the 12th International Conference on 928 Effects of TIG Welding Parameters on Dissimilar Metals Welding between Mild Steel and 5052 Aluminum

More information

K-TIG vs EB. Keyhole TIG and Electron Beam Welding Compared

K-TIG vs EB. Keyhole TIG and Electron Beam Welding Compared What is? Keyhole GTAW explained Overview A high energy density variant of GTAW, (Keyhole TIG) is a high speed, single pass, full penetration welding technology that welds up to 100 times faster than TIG

More information

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 11 Tungsten Inert Gas Welding Part 1 Welcome

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 03, March -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Study

More information

Laser Joining of Different Materials between Aluminum and Plastic Using Insert Materials

Laser Joining of Different Materials between Aluminum and Plastic Using Insert Materials Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan Ó2010 2010 The Japan Institute of Light Metals pp. 1740-1745 1740 Laser Joining of Different Materials

More information

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro.

Welding of Thin Foils with Elliptical Beams. Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro. Title Author(s) Citation Welding of Thin Foils with Elliptical Beams Abe, Nobuyuki; Funada, Yoshinori; Tsukamoto, Masahiro Transactions of JWRI. 37(1) P.27-P.31 Issue Date 2008-07 Text Version publisher

More information

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Introduction Lecture - 2 Classification of Welding Processes -

More information

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras Introduction Online course on Analysis and Modelling of Welding G. Phanikumar Dept. of MME, IIT Madras Classification of Manufacturing Processes Manufacturing Processes Ingot Casting Shape Casting Power

More information

Fabrication and thermal properties of Al 2 TiO 5 /Al 2 O 3 composites

Fabrication and thermal properties of Al 2 TiO 5 /Al 2 O 3 composites Materials Science-Poland, Vol. 28, No. 3, 2010 Fabrication and thermal properties of Al 2 TiO 5 /Al 2 O 3 composites M. LI, F. CHEN, Q. SHEN *, L. ZHANG State Key Lab of Advanced Technology for Materials

More information

Colorado School of Mines Department of Metallurgical and Materials Engineering MTGN Metallurgy of Welding Prof. Stephen Liu

Colorado School of Mines Department of Metallurgical and Materials Engineering MTGN Metallurgy of Welding Prof. Stephen Liu Colorado School of Mines Department of Metallurgical and Materials Engineering MTGN475-477 Metallurgy of Welding Prof. Stephen Liu Exam #3 Posted: December 3, 2001 Due: December 10, 2001 (Answer only 8

More information

Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying

Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying Transactions of JWRI, Vol. 35 (2006), No. 2 Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira*, YANO Shoji**, KIMURA Hisamichi *** and INOUE Akihisa***

More information

Keisuke Ueda 1; * 2, Tomo Ogura 1, Shumpei Nishiuchi 1; * 3, Kenji Miyamoto 2, Toshikazu Nanbu 2 and Akio Hirose 1. 1.

Keisuke Ueda 1; * 2, Tomo Ogura 1, Shumpei Nishiuchi 1; * 3, Kenji Miyamoto 2, Toshikazu Nanbu 2 and Akio Hirose 1. 1. Materials Transactions, Vol. 52, No. 5 (2011) pp. 967 to 973 Special Issue on uminium loys 2010 #2011 The Japan Institute of Light Metals Effects of -Based loys Coating on Mechanical Properties and Interfacial

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 April 11(4): pages 551-556 Open Access Journal Study And Analysis

More information

Keyhole Double-Sided Arc Welding Process

Keyhole Double-Sided Arc Welding Process Keyhole Double-Sided Arc Welding Process A process is developed for deep joint penetration welding in a narrow groove on plate up to 1 2-in. thick Y Y. M. ZHANG, S.. ZHANG, AND M. JIANG ASTRACT. Double-sided

More information

Manufacturing Process II. Welding Processes-1

Manufacturing Process II. Welding Processes-1 Manufacturing Process II Welding Processes-1 1. Introduction: The term joining is generally used for welding, brazing, soldering, and adhesive bonding, which form a permanent joint between the parts a

More information

Introduction to Welding Technology

Introduction to Welding Technology Introduction to Welding Technology Welding is a fabrication process used to join materials, usually metals or thermoplastics, together. During welding, the pieces to be joined (the workpieces) are melted

More information

Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing

Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing Lecture: 3 Classification of Welding Processes II Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing a

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL S. Missori*, G.Costanza*, E. Tata*, A. Sili** *University of Roma-Tor Vergata, ** University of Messina ABSTRACT Quenched and tempered

More information

A Study of microstructure and mechanical properties of 5083 Alalloy welded with fiber laser welding

A Study of microstructure and mechanical properties of 5083 Alalloy welded with fiber laser welding International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 3 Issue 6 ǁ June 2015 ǁ PP.58-62 A Study of microstructure and mechanical properties

More information

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel Wen-Quan Wang 1,, Shu-Cheng Dong 1, Fan Jiang 1, and Ming Cao 1 1 School of Material Science and Engineering, Jilin

More information

EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER

EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER Mahdi Karami Pour and *Mohamad Reza Salmani Department of Material Engineering,

More information

Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process

Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process G.S. Cho *, K.R. Lee*, K.H. Choe*, K.W. Lee* and A. Ikenaga** *Advanced Material R/D Center, KITECH, 994-32 Dongchun-dong,

More information

Keywords - Aluminium alloy, hardness, Nugget diameter, RSW, Tensile-shear load.

Keywords - Aluminium alloy, hardness, Nugget diameter, RSW, Tensile-shear load. Effect Of Process Parameters On The Strength Of Aluminium Alloy A5052 Sheets Joint Welded By Resistance Spot Welding With Cover Plates Chetan R. Patel*, Prof. Dhaval A. Patel** *(M.E. MECHANICAL (CAD/CAM)

More information

The Need For Protecting The Weld And Rationale

The Need For Protecting The Weld And Rationale The Need For Protecting The Weld And Rationale This chapter presents the need of protecting the weld and rationale behind variations in cleanliness of the weld developed by different welding processes.

More information

Chapter Outline. Joining Processes. Welding Processes. Oxyacetylene Welding. Fusion Welding Processes. Page 1. Welded Joints

Chapter Outline. Joining Processes. Welding Processes. Oxyacetylene Welding. Fusion Welding Processes. Page 1. Welded Joints Joining Processes Chapter Outline R. Jerz 1 4/16/2006 R. Jerz 2 4/16/2006 Welding Processes Welded Joints Gas, electricity, or other heat source? Is electrode consumed? Is a filler material used? Is flux

More information

Joining Processes R. Jerz

Joining Processes R. Jerz Joining Processes R. Jerz 1 4/16/2006 Chapter Outline R. Jerz 2 4/16/2006 Welding Processes Gas, electricity, or other heat source? Is electrode consumed? Is a filler material used? Is flux used? Anything

More information

Different forces acting in a typical welding arc zone

Different forces acting in a typical welding arc zone Different forces acting in a typical welding arc zone This chapter presents the different forces acting in a typical welding arc zone and their effect on welding. Further, influence of electrode polarity

More information

EFFECTS OF DIFFERENT ELECTROLYTE SYSTEMS ON THE FORMATION OF MICRO-ARC OXIDATION CERAMIC COATINGS OF 6061 ALUMINUM ALLOY

EFFECTS OF DIFFERENT ELECTROLYTE SYSTEMS ON THE FORMATION OF MICRO-ARC OXIDATION CERAMIC COATINGS OF 6061 ALUMINUM ALLOY 16 Rev. Adv. Mater. Sci. (01) 16-10 Y.J. Liu, EFFECTS OF DIFFERENT ELECTROLYTE SYSTEMS ON THE FORMATION OF MICRO-ARC OXIDATION CERAMIC COATINGS OF 6061 ALUMINUM ALLOY Y.J. Liu 1, J.Y. Xu1, W. Lin, C. Gao

More information

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Supriya Shashikant Patil 1 Dr. Sachin K Patil 2 1 PG Student, Production Engineering Department, ajarambapu Institute of

More information

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing

Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Tensilel Properties of AA6061-T6/SiC p Surface Metal Matrix Composite Produced By Friction Stir Processing Devaraju Aruri, Adepu Kumar & B Kotiveerachary Department of Mechanical Engineering, National

More information

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys A R C H I V E S o f F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 14 Issue 1/2014 85 90 20/1 Characterization

More information

Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy

Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy IIW Doc IV 906-06 Laser Roll Welding of Dissimilar Metal Joint of Zinc Coated Steel and Aluminum Alloy Muneharu KUTSUNA Nagoya University Hitoshi OZAKI Nagoya University Shigeyuki NAKAGAWA Nissan Motor

More information

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser

Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser Transactions of JWRI, Vol.36 (2007), No. 2 Adaptive Gap Control in Butt Welding with a Pulsed YAG Laser KAWAHITO Yousuke*, KITO Masayuki** and KATAYAMA Seiji*** Abstract The gap is one of the most important

More information

Hail University College of Engineering Department of Mechanical Engineering. Joining Processes and Equipment. Fusion-Welding.

Hail University College of Engineering Department of Mechanical Engineering. Joining Processes and Equipment. Fusion-Welding. Hail University College of Engineering Department of Mechanical Engineering Joining Processes and Equipment Fusion-Welding Ch 30 Joining is an all-inclusive term covering processes such as welding, brazing,

More information

Improvement of Corrosion Resistance and Adhesion of Coating Layer for Magnesium Alloy Coated with High Purity Magnesium

Improvement of Corrosion Resistance and Adhesion of Coating Layer for Magnesium Alloy Coated with High Purity Magnesium Materials Transactions, Vol. 44, No. 4 (2003) pp. 518 to 523 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, II #2003 The Japan Institute of Metals Improvement of Corrosion

More information

Lecture 20 Heat flow in welding II Keywords: 20.1 Calculations of cooling rate

Lecture 20 Heat flow in welding II Keywords: 20.1 Calculations of cooling rate Lecture 20 Heat flow in welding II This chapter describes method of calculating the cooling rate in HAZ during welding of thick and thin plates besides that of critical cooling rate for steel under welding

More information

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals

Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Transactions of JWRI, Vol.42 (2013), No. 1 Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals Su-Jin LEE Su-Jin*, LEE*,

More information

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA Microstructure and Mechanical Property Changes during TIG elding of 31-2 (IS-737) Aluminium Alloy Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology.

More information

HETEROGENEOUS JOINTS BETWEEN STEEL AND ALUMINIUM MADE BY MODIFIED MIG PROCESS. Aleš FRANC

HETEROGENEOUS JOINTS BETWEEN STEEL AND ALUMINIUM MADE BY MODIFIED MIG PROCESS. Aleš FRANC HETEROGENEOUS JOINTS BETWEEN STEEL AND ALUMINIUM MADE BY MODIFIED MIG PROCESS Aleš FRANC The University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic, afranc@kmm.zcu.cz Abstract Metal inert

More information

Friction Welding of magnesium alloys

Friction Welding of magnesium alloys 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Friction Welding of magnesium alloys Zhongbao Shen 1, Ranfeng. Qiu 2,Qingzhe Li, Longlong Hou, Lihu Cui Materials

More information

PTA WELDING OF DUPLEX STAINLESS STEEL USİNG Cu/Ni INTERLAYER

PTA WELDING OF DUPLEX STAINLESS STEEL USİNG Cu/Ni INTERLAYER PTA WELDING OF DUPLEX STAINLESS STEEL USİNG Cu/Ni INTERLAYER Ihsan Kirik 1, Niyazi Ozdemir 1, Serdar Mercan 2, Zulkuf Balalan 1 1 University of Firat, Faculty of Technology, Department of Metallurgy and

More information

Laser Roll Welding. Chapter 1. By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT

Laser Roll Welding. Chapter 1. By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT Laser Roll Welding By Muneharu KUTSUNA Advanced Laser Technology Research Center Co.,Ltd. CONTENT Chapter 1 1.1 Background and Historical aspect 1.2 Definition of process Chapter 2: Process fundamentals,

More information

COMPARISON OF WELDING/BONDING METHODS

COMPARISON OF WELDING/BONDING METHODS TYPE OF WELDING/BONDING Adhesive Bonding Diffusion Welding Electron Beam Welding Explosive Welding SUMMARY ADVANTAGES DISADVANTAGES Bond is established through use of an intermediate adhesive layer applied

More information

Comparison of CO 2 and Arc Welding using Butt Joint

Comparison of CO 2 and Arc Welding using Butt Joint Comparison of CO 2 and Arc Welding using Butt Joint Suyog Gadewar 1 and Om Dhamnikar 2 1,2 (Department of Mechanical Engineering, Babasaheb Naik College of Engineering, Pusad, Maharashtra, India) Abstract:

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ALUMINIUM ALLOYS Aluminium and its alloys offer an extremely wide range of capability and applicability, with a unique combination of advantages that make the material of choice

More information

CHAPTER 3 SCOPE AND OBJECTIVES

CHAPTER 3 SCOPE AND OBJECTIVES 35 CHAPTER 3 SCOPE AND OBJECTIVES 3.1 MOTIVATION TO THE PRESENT WORK Limiting the emission of green house gases as well as the reduction of fuel consumption is an urgent area of research that needs to

More information

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG)

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) M. Ishak 1,2, A.S.K Razali 1, N.F.M Noordin 1, L.H.A Shah 1,2 and F.R.M Romlay 1,2 1 Manufacturing Focus

More information

Electric Arc Welding

Electric Arc Welding Electric Arc Welding Electricity is passed through an electrode which jumps between the electrode and the work piece. This causes an arc which produces great heat melting the electrode and the work piece

More information

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser.

In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser. Title Author(s) In-Process Monitoring and Adaptive Control in Micro Welding with a Single-Mode Fiber Laser KAWAHITO, Yousuke; KATAYAMA, Seiji Citation Transactions of JWRI. 38(2) P.5-P.11 Issue Date 2009-12

More information

Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding

Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding Digraj 1, Kulwant Singh 2, Sumit Kumar 3 1, 2, 3 Department of Mechanical Engineering, SLIET Longowal, Punjab,

More information

Fundamental Characteristics of a New Type Plasma Generator

Fundamental Characteristics of a New Type Plasma Generator Fundamental Characteristics of a New Type Plasma Generator KOBAYASHI Akira *and ISHIBASHI Norifumi ** Abstract Plasma jet at atmospheric pressure has the advantage of cost, because there is no need to

More information

CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS. P.H. Chong*, Z. Liu, P. Skeldon and G. E.

CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS. P.H. Chong*, Z. Liu, P. Skeldon and G. E. CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS P.H. Chong*, Z. Liu, P. Skeldon and G. E. Thompson Corrosion and Protection Centre, University of Manchester Institute

More information

Cladding and Additive Layer Manufacturing with a laser supported arc process

Cladding and Additive Layer Manufacturing with a laser supported arc process Cladding and Additive Layer Manufacturing with a laser supported arc process A. Barroi, J. Hermsdorf, R. Kling Laser Zentrum Hannover e.v., Hannover, 30419, Germany Abstract This paper describes the potential

More information

Structures and Mechanical Properties of Multilayer Friction Surfaced Aluminum Alloys

Structures and Mechanical Properties of Multilayer Friction Surfaced Aluminum Alloys ISSN 0386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 78, 2005 Structures and Mechanical Properties of Multilayer Friction Surfaced Aluminum Alloys Hiroshi TOKISUE*,

More information

CHAPTER 3 FINITE ELEMENT SIMULATION OF WELDING

CHAPTER 3 FINITE ELEMENT SIMULATION OF WELDING 47 CHAPTER 3 FINITE ELEMENT SIMULATION OF WELDING 3.1 INTRODUCTION Though welding process has many distinct advantages over other joining processes, it suffers from some major disadvantages like the evolution

More information

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1 Proceedings of the 12th International Conference on Aluminium Alloys, September 5 9, 5-9, 21, Yokohama, Japan 21 21 The Japan Institute of Light Metals pp. 2381-2386 2381 Jouji Oshikiri 1, Norio Nakamura

More information

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering The use of holographic optics in laser additive layer manufacture Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering Traditional Laser Beam Problems Shape Intensity Beam intensity distribution....

More information

Experimental Study of Tensile Test in Resistance Spot Welding Process

Experimental Study of Tensile Test in Resistance Spot Welding Process 1228 Experimental Study of Tensile Test in Resistance Spot Welding Process Abstract Resistance spot welding (RSW) is a widely used joining process for fabricating sheet metal assemblies in automobile industry.in

More information

ZIRCALOY WELDING IN OPAL REACTOR REFLECTOR VESSEL

ZIRCALOY WELDING IN OPAL REACTOR REFLECTOR VESSEL ZIRCALOY WELDING IN OPAL REACTOR REFLECTOR VESSEL Ortiz L. and Martínez R. INVAP SE, S. C. de Bariloche, Río Negro, Argentina Abstract This paper describes the development of the Zircaloy 4 welding processes

More information

Titanium Welding Technology

Titanium Welding Technology UDC 669. 295 : 621. 791. 754 Titanium Welding Technology Tadayuki OTANI* 1 Abstract In order to establish titanium welding technology TIG arc weldability and MIG arc weldability were surveyed. For TIG

More information

Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker

Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker Laser Diodes System for Flexible Manufacturing Authors: John M. Haake, Crystal M. Cook and Mark S. Zediker Introduction Industrial laser systems based on high power laser diodes are now available with

More information

Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy

Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy Chaiyoot Meengam 1, Prapas Muangjunburee 2, Jessada Wannasin 3 1,

More information

Welding characteristics and structures of same and different metal specimens using ultrasonic complex vibration welding equipments

Welding characteristics and structures of same and different metal specimens using ultrasonic complex vibration welding equipments Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Welding characteristics and structures of same and different metal specimens using ultrasonic complex

More information

WELDING TECHNOLOGY AND WELDING INSPECTION

WELDING TECHNOLOGY AND WELDING INSPECTION WELDING TECHNOLOGY AND WELDING INSPECTION PRESENTED BY: GOPAL KUMAR CHOUDHARY SVL ENGINEERING SERVICES CHENNAI CONTENTS: DEFINATION TYPES OF WELDING ELECTRODE GEOMETRY EQUIPMENT QUALITY PROCESS SAFETY

More information

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 1027-1033 Published Online October 2012 (http://www.scirp.org/journal/jmmce) Study on Effect of Welding Speed on Micro Structure

More information

More Info at Open Access Database

More Info at Open Access Database More Info at Open Access Database www.ndt.net/?id=15213 Non-Destructive Evaluation of Dissimilar Aluminum Alloys (AA1100 & AA2014) Welded Using Friction Stir Welding P.Balaji, V.Kalyanavalli, D.Sastikumar,

More information