International Engineering Research Journal Enhancement of Heat Transfer Rate by Use of Nano Fluid in Radiator of Automobile

Size: px
Start display at page:

Download "International Engineering Research Journal Enhancement of Heat Transfer Rate by Use of Nano Fluid in Radiator of Automobile"

Transcription

1 International Engineering Research Journal Enhancement of Heat Transfer Rate by Use of Nano Fluid in Radiator of Automobile Ashwin Hukkeri 1,Prof.S. S. Ghorpade 2 1 Mechanical Engineering Department. Pune University, Sinhgad Academy of Engineering Kondhwa Pune, India. 2 Mechanical Engineering Department. Pune University, Sinhgad Academy of Engineering Kondhwa Pune, India. Abstract The objective of this numerical study is to discuss the thermal performance of car radiator using Al2O3 Nano fluid in temperature with 92 C. In this study, the heat transfer with water based Nano-fluids was numerically compared to that of pure water as coolant in an automobile radiator. The size of nanoparticle used was 100 nm. 2.5 lpm Liquid flow rate has been taken in CFD analysis and air velocity is 16.67m/s. The fluid inlet temperature was 92 C is given to find the optimum heat transfer rate. This paper deals with CFD simulation of an existing radiator in ANSYS FLUENT. The modelled in done in SOLIDWORKS 14 and then analyzed for heat transfer rate. The radiator was analyzed with Nano fluid (Al2O3) then and reanalyzed for the same. Keywords:Nanofluid, Heat transfer rate, Ansys Fluent, Solidworks Introduction Modern car engines generate a huge amount of heat. This heat is created when the fuel and air mixture is ignited in the combustion chamber. This explosion causes the piston to be forced down inside the engine, moving the connecting rods, and turning the crankshaft to create a power. Metal temperatures around the combustion chamber can exceed 550 C. In order to prevent the overheating of the engine oil, cylinder walls, pistons, valves, and other components by these extreme temperatures, it is necessary to effectively dispose of the heat. Approximately 33% of the heat in combustion is converted into power to drive the vehicle and its accessories. Another 33% of the heat is carried off into the atmosphere through the exhaust system. The remaining 34% must be removed from the engine by the cooling system. The nanofluid has the potential to improve the engine cooling rates as compare with water-cooling. These improvements can be used to remove engine heat with a reduced size cooling system. Smaller cooling system leads to use of smaller and lighter radiators which in turn will lead to better performance and increased efficiency. Alternatively, improved cooling rates can be used to remove more heat from higher horsepower engines with same size of cooling system. V.L.Bhimani et.al. [1] experimentally investigated forced convective heat transfer in a water based nanofluid. Five different concentrations of nanofluids in the range of vol. % have been used with flow rate in the range of lit./min. The result shows that heat transfer enhancement of 40-45% compared to pure water at the concentration of 1% vol. Gaurav Sharma et al. [2] Experimentally investigated the thermal conductivity and viscosity of Al2O3-engine nano-coolant. For 0.5% vol. concentration of Al2O3 nanofluid at 40ºC The maximum improved thermal conductivity is 5.7% and the enhancement in viscosity is 124%. Adnan M. Hussein et al. [3] experimentally investigated the friction factor and forced convection heat transfer enhancement using SiO2 nanoparticles suspended into water. Four different concentrations of nanofluids in the range of 1 to 4 % (Vol.) with changed flow rate from 1 to 5 lpm have been used. The maximum value of friction factor was increased to 22% and a highest value of the heat transfer coefficient enhances upto 40% for SiO2 nanoparticles with 4% volume concentration. Rahul A.Bhogare et.al. [4] illustrated a review on application and challenges of nano-fluids as coolant in automobile radiator. Nanofluids have great potential to improve automotive and heavy duty engine cooling rates by increasing the efficiency, lowering the weight and reducing the complexity of thermal management Chavan D.K. et.al. [5] illustrated the study, analysis and design of automobile radiator proposed with CAD drawing and geometrical model of the fan. He investigated that velocity increases with the increase in rpm of radiator fan. So he concluded that for optimum efficiency eliminates corners and develop radiator of circular shape. Deepak Chintakayalaet. al. [6] studied the cooling effect by using a nanofluid as a coolant in a radiator and is analyzed for evaluating the fluid flow and heat transfer characteristics. This study is analyzed by using a CFD software FLUENT. It is clearly observed that loss in temperature for conventional coolant is 17 C and for

2 nanofluid as coolant it is 20ºC. From his study he concluded that the rate of heat transfer is better when nanofluid (Al2O3 + water ) is used as coolant than conventional coolant. Navid Bozorgan et.al.[7] numerically investigated the use of CuO - water nanofluid as a coolant in a radiator at Chevrolet suburban diesel engine with a given heat exchanger capacity. The results showed that for CuOwater nanofluid at 2 % volume concentration circulating through the flat tubes with Re while the automotive speed is 70 km/hr, the overall heat transfer coefficient and pumping power are approximately 10 % and 23.8 % more than that of base fluid for given conditions. 2.0 Radiator CAD Model The Computational Fluid Dynamics methodology used was the lattice Boltzmann method as implemented in the commercially available CFD software. Simulations were performed with full scale geometry and evaluated at 16.67m/s air velocity. The Lattice Boltzmann method was chosen to obtain consistency with previous study performed by authors as well as providing an efficient approach to simulate unsteady flow effects. Modeling is done in Solidworks 14.0 software with the following geometry dimensions: S. No. Table 2.1.Radiator Dimension Parameter 1 Inlet diameter 2 Outlet diameter 3 Length 4 Height 5 Thickness 6 Capacity Dimension 25 mm 20 mm 360 mm 410 mm 30 mm 1.5 lit Fig.2.1 CAD Geometry view 1 Fig.2.2 CAD Geometry view Nanofluid Properties The test fluids are water based nanofluids which comprise of water and small amount (1-5 vol. %) of gamma alumina nanoparticle. The mean grain size of this gamma alumina is 100 nm and some different properties are appeared in Table 1. There was no dispersant or stabilizer added to nanofluid. This is because of the way that the expansion of any specialists might change the liquid properties [15] and the authors were intrigued to simulate the easiest actual condition experienced in the car radiator. Moreover, making exceedingly turbulent stream condition in the radiator tubes and associating channels ensures the adjustment of the nanoparticle in water. The characteristics of water and Al2O3 nanoparticles at room temperature are summarized in Table Table 3.1: Nanoparticle characteristics

3 Purity 99% Grain size (nm) 60 nm Specific surface area (m2/g) 200 Silicon (Si) content (ppm) 3.5 Calcium (Ca) content (ppm) 1.6 Iron (Fe) content (ppm) 0.2 Cobalt (Co) content (ppm) 0.8 Table 3.2: Properties Comparison at room temperature Sr.No. Properties Al2O3 (nano particle) Water+Eth ylene Glycol 1 Density (Kg/m3) Specific heat (J/KgK) 3 Thermal conductivity (W/m-K) Viscosity (N-s/m The physical properties of Al2O3 Nano particles and water+ Ethylene Glycol are taken from [13]. The molecule concentration can be viewed as uniform all through the system; the effective physical properties of the mixtures concentrated on can be assessed utilizing some traditional formulas as generally utilized for two stage liquids. These relations have been utilized to foresee nanofluid physical properties like density, specific heat, viscosity and thermal conductivity at different temperatures and concentrations [14]. In this paper, the accompanying connections were utilized to compute these physical properties of nanofluid: "n" is empirical shape element given by n=3/ψ, and ψ is the molecule sphericity, characterized as the proportion of the surface range of a circle with volume equivalent to that of the molecule, to the surface territory of the molecule, and in this paper n thought to be 3. is volume division of the nanoparticle added to the water. The proportions of physical properties of the nanofluid to those of immaculate water as an element of Nanoparticle concentration. It is evident that the expansion of little measure of alumina nanoparticle can change pretty much all the physical properties of the base liquid. 4. Results and Discussions: In the present paper thermal performance of the radiator at constant air flow of 60Kmph and constant flow rate (2.5L/min) has been carried out. With increase in the volume fraction of Al2O3 particles dynamic viscosity of nanofluid has been increased. The overall heat transfer coefficient based on the air side increase in the volume concentration of Al2O3 particles in the base fluid. An overall heat transfer W can be achieved for Al2O3+mixture of water-eg nanofluid compared W for based fluid The CFD analysis of temperature variations of base fluid (water & EG), are show bellows, Fig.4.1 Temperature distribution for base fluid (water & EG) In the above equations, the subscripts "p", "w" and "nf" refer to the particles, water and nanofluid respectively.

4 Heat Transfer, Q W W Fig.4.2 Velocity profile The CFD analysis of temperature variations of Al2O3 nanoparticles mixing with base fluid (water & EG), are show bellows, Fig.4.3 Temperature distribution for nanofluid Fig.4.4 Velocity profile The calculated values of the inlet-outlet temperature, heat transfer and efficiency of the base fluid as well as nanofluid are tabulated in Table 4.1 Table 4.1 Base fluid vs Nanofluid Description Base fluid Nanofluid Inlet Temp 92 C 92 C Outlet Temp 42 C 82.6 C Air Temp 33 C 33 C From the obtained results the Heat transfer rate and efficiency of the nanofluid are high. The life time of Engine is also increases. 5. Conclusion Generally, contribution of radiator to an engine is considered when the efficiency of a radiator is good and constant. Currently, the temperature factor is dependent on the fluid used in the radiator. So modification of fluid in the radiator contributes to the engine cooling through efficient radiator action. In this numerical research work, the total heat transfer rate from an automotive radiator is determined using two working fluids: water and water based nanofluid (Al2O3) at concentrations 0.5% on volume basis. From the result work, the following conclusions were made. Rate of heat transfer is increased in car radiator by addition of 0.5% Al2O3 nano powder of 100nm size in pure water at constant coolant flow rate of 2.5lph and constant air flow rate of m/s References 1) V.L.Bhimani,.P.P.Rathon and A.S.Sorathiya, Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators.ijetae Vol.3, Issue 6,June ) Gaurav Sharma and Lal Kundan, Experimental investigation into thermal conductivity and viscocity of Al2O3 based engine coolant.ijrmet Vol. 3, Issue 6,MayOct ) Adnan M.Hussein, R.A.Bakar, K.Kadirgama,G.L.Ming Heat transfer augmentation for the car radiator by using nanofluid.mre, ISBN: doi. 4) Rahul A.Bhogare and B.S.Kotahwale A review on applications and challenges of nanofluids as coolant in automobile radiator International journal of scientific and research publications, volume 3,Issue 8, August 2013, ISSN ) Chavan D.K. and Tasgaonkar G.S. Study Analysis and Design of Automobile Radiator Proposed with

5 Cad Drawing and Geometrical Model of the Fan IJMPERD ISSN , Vol 3, Issue 2, June 2013, ) Deepak Chintakayala and, Rajamanickam C.S. CFD analysis of fluid flow and heat transfer of an automotive radiator with nano fluid IEEE. 7) Navid Bozorgan, Komalagan Krishnakumar,Nariman Bozorgan Numerical study on applications of CuO nanofluid in Automotive Diesel Engine Radiator Modern mechanical engineering 2012, 2, ) Paresh Machhar and Falgun Adroja Heat transfer enhancement of automobile radiator with TiO2 and water nanofluid International journal of engineering research and technology, ISSN , vol 2 Issue 5 may ) Ravikanth S.Vajjha,Debendra K.Das, Praveen K Namburu Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, International Journal of Heat and Fluid Flow 31 (2010) ) Qijun Yu, Anthony G. Straatman Brian Thompson Carbon-Foam finned tubes in air-water heat exchangers applied thermal engineering 26 (2006) ) Chad Harris, Kavin Kelly,Tao Wang,Andrew McCandles and Shariar Motakef Fabrication Modelling and Testing of Micro-Cross-Flow Heat Exchanger Journal of microelectromechanical system, vol-11, no-6 December 2002, IEEE. 12) B.C. Pak and I.Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) ) Rahul A. Bhogare, B.S. Kothawale e SSN: ,p-ISSN: XVolume 11, Issue Ver. V (May- Jun.014), PP ) S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Seifi Jamnani, S.M. Hoseini 2011 Elsevier Ltd. All rights resered.doi: /j.applthermaleng

II. WORKING OF AUTOMOBILE RADIATORS

II. WORKING OF AUTOMOBILE RADIATORS Thermal Analysis of Radiator with Different Nano Fluids V.Niveditha 1, Dr. S. Sunil Kumar Reddy 2 1 P.G. Scholar, 2 Professor & Head, Department of Mechanical Engineering, SIETK Puttur, A.P, INDIA Abstract:

More information

Enhancement in Heat Transfer Rate In Diesel Engine Radiator Using Nano Fluid -A Review

Enhancement in Heat Transfer Rate In Diesel Engine Radiator Using Nano Fluid -A Review Enhancement in Heat Transfer Rate In Diesel Engine Radiator Using Nano Fluid -A Review Payal R. Harkare 1, Dr. Sunil V.Prayagi 2 1 M-Tech (HPE) Third SEM, Dr.Babasaheb College of Engineering, Nagpur, India

More information

Experimental investigation of heat dissipation for cross flow heat exchanger with conventional coolant based hybrid nano fluid.

Experimental investigation of heat dissipation for cross flow heat exchanger with conventional coolant based hybrid nano fluid. Experimental investigation of heat dissipation for cross flow heat exchanger with conventional coolant based hybrid nano fluid. #1 Kiran Shivade, #2 Jayant Bhangale 1 PG Student,Heat Power Engg.,MCOERC,Nashik,

More information

Performance Investigation of Automobile Car Radiator using Nano fluid- A Review

Performance Investigation of Automobile Car Radiator using Nano fluid- A Review IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 09 March 2016 ISSN (online): 2349-784X Performance Investigation of Automobile Car Radiator using Nano fluid- A Review Pathan

More information

Nano fluids to Enhance Automobile Engine Cooling

Nano fluids to Enhance Automobile Engine Cooling International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 6 Issue 9 September 2017 PP. 43-49 Nano fluids to Enhance Automobile Engine Cooling Srikanth

More information

Experimental study and CFD analysis of Thermal performance improvement of car radiator by MgO/water nanofluid.

Experimental study and CFD analysis of Thermal performance improvement of car radiator by MgO/water nanofluid. Experimental study and CFD analysis of Thermal performance improvement of car radiator by MgO/water nanofluid. Mr. Sumit G. Wani. 1, Prof. Ravi H.C. 2 1PG student, Dr. D.Y.Patil School of Engineering Academy,

More information

Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger

Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 5 (2013), pp. 675-680 International Research Publication House http://www.irphouse.com Analysis of Heat Transfer

More information

Experimental Analysis of Automobile Radiator using MWCNT-Water Nanofluid

Experimental Analysis of Automobile Radiator using MWCNT-Water Nanofluid Experimental Analysis of Automobile Radiator using MWCNT-Water Nanofluid Archit Deshpande Department of Mechanical Engineering Smt. Kashibai Navale College of Engineering Pune, India Viraj Patil Department

More information

COOLING OF AN INTERNAL COMBUSTION ENGINE USING NANOFLUIDS: A REVIEW

COOLING OF AN INTERNAL COMBUSTION ENGINE USING NANOFLUIDS: A REVIEW Back to Index COOLING OF AN INTERNAL COMBUSTION ENGINE USING NANOFLUIDS: A REVIEW RAHUL TARODIYA *, JAHAR SARKAR Department of Mechanical Engineering Institute of Technology-BHU, Varanasi 221005, India

More information

Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant

Performance investigation of Automobile Radiator operated with Nanofluids Based Coolant Research Article International Journal of Thermal Technologies E-ISSN 2277 4114 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijtt/ Performance investigation of Automobile

More information

Numerical Prediction of Thermodynamics and Heat Transfer Characteristics of Nano Fluid.

Numerical Prediction of Thermodynamics and Heat Transfer Characteristics of Nano Fluid. Numerical Prediction of Thermodynamics and Heat Transfer Characteristics of Nano Fluid. Dr. S. Thanigaiarasu Associate Professor, Department of Aerospace Engineering, Madras Institute of Technology Campus,

More information

Experimental and Analytical Study of Aluminum-oxide Nanofluid Implication for Cooling System of an Amphibious Engine

Experimental and Analytical Study of Aluminum-oxide Nanofluid Implication for Cooling System of an Amphibious Engine Int J Advanced Design and Manufacturing Technology, Vol. 10/ No. 1/ March 2017 51 Experimental and Analytical Study of Aluminum-oxide Nanofluid Implication for Cooling System of an Amphibious Engine M.

More information

Investigation of Shell and Tube Heat Exchanger with Nano Fluid using ANSYS

Investigation of Shell and Tube Heat Exchanger with Nano Fluid using ANSYS IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 06 December 2015 ISSN (online): 2349-784X Investigation of Shell and Tube Heat Exchanger with Nano Fluid using ANSYS V.

More information

Computational Analysis to Determine the Heat Transfer Coefficients for SiO 2 /60EGW and SiO 2 /40EGW Based Nanofluids

Computational Analysis to Determine the Heat Transfer Coefficients for SiO 2 /60EGW and SiO 2 /40EGW Based Nanofluids 51, Issue 1 (2018) 61-70 Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage: www.akademiabaru.com/arfmts.html ISSN: 2289-7879 Computational Analysis to Determine the

More information

PERFORMANCE ANALYSIS OF OVERALL HEAT TRANSFER COEFFICIENT USING NANO FLUIDS ON AN AUTOMOBILE ENGINE TEST RIG

PERFORMANCE ANALYSIS OF OVERALL HEAT TRANSFER COEFFICIENT USING NANO FLUIDS ON AN AUTOMOBILE ENGINE TEST RIG Int. J. Mech. Eng. & Rob. Res. 2013 B Vishnuprasad et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 4, October 2013 2013 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF OVERALL

More information

International Engineering Research Journal EXPERIMENTAL ANALYSIS OF I.C ENGINE RADIATOR WITH Al2O3 NANO FLUID

International Engineering Research Journal EXPERIMENTAL ANALYSIS OF I.C ENGINE RADIATOR WITH Al2O3 NANO FLUID International Engineering Research Journal EXPERIMENTAL ANALYSIS OF I.C ENGINE RADIATOR WITH Al2O3 NANO FLUID Pravinkumar Jayatwar, M.S.Deshmukh Department of Mechaniacal Engineering,S.P.University,Pune,R.S.C.O.E

More information

HEAT TRANSFER ANALYSIS OF AL 2 O 3 NANOFLUID IN CIRCULAR TUBE WITH COPPER PLATE WINDING

HEAT TRANSFER ANALYSIS OF AL 2 O 3 NANOFLUID IN CIRCULAR TUBE WITH COPPER PLATE WINDING International Journal of Emerging Technology and Innovative Engineering Volume 3, Issue 1, January 217 (ISSN: 2394 6598) HEAT TRANSFER ANALYSIS OF AL 2 O 3 NANOFLUID IN CIRCULAR TUBE WITH COPPER PLATE

More information

Heat Transfer Enhancement in Heat Exchanger by using Nano Fluid: a Review

Heat Transfer Enhancement in Heat Exchanger by using Nano Fluid: a Review IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 89-93 www.iosrjournals.org Heat Transfer Enhancement in Heat Exchanger by using Nano Fluid: a Review

More information

Nano Fluids: A New Generation Coolants

Nano Fluids: A New Generation Coolants Nano Fluids: A New Generation Coolants 1 R J Bhatt, 2 H J Patel, 3 O G Vashi 1,2,3 Dept. of Mechanical Engineering, S V National Institute of Technology, Surat, Gujarat, India Abstract Today, the demand

More information

Enhancement of Heat Transfer in Automobile Radiator Using Nano Fluids through CFD Analysis

Enhancement of Heat Transfer in Automobile Radiator Using Nano Fluids through CFD Analysis Enhancement of Heat Transfer in Automobile Radiator Using Nano Fluids through CFD Analysis S.Krishna Prasad Department of Thermal Engineering Mr.N.Raghunadham Department of Thermal Engineering ABSTRACT:

More information

A Review Paper on Analysis of Automobile Radiator Ramesh J. Ladumor 1 Prof. V. Y. Gajjar 2 Prof. K. K. Araniya 3

A Review Paper on Analysis of Automobile Radiator Ramesh J. Ladumor 1 Prof. V. Y. Gajjar 2 Prof. K. K. Araniya 3 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 08, 2014 ISSN (online): 2321-0613 A Review Paper on Analysis of Automobile Radiator Ramesh J. Ladumor 1 Prof. V. Y. Gajjar

More information

Advance Cooling of Radiator by Using Nano Fluids

Advance Cooling of Radiator by Using Nano Fluids Advance Cooling of Radiator by Using Nano Fluids Mr. Akshay Kalore 1, Mr. Prashant Gavhale 2, Mr. Chaitanya Raut 3, Mr. Ajay Chitode 4 Student, Mechanical Engineering, Siddhivinayak Technical Campus, Khamgaon,

More information

PERFORMANCE INVESTIGATION OF WATER AND PROPYLENE GLYCOL MIXTURE BASED NANO-FLUIDS ON AUTOMOTIVE RADIATOR FOR ENHANCEMENT OF HEAT TRANSFER

PERFORMANCE INVESTIGATION OF WATER AND PROPYLENE GLYCOL MIXTURE BASED NANO-FLUIDS ON AUTOMOTIVE RADIATOR FOR ENHANCEMENT OF HEAT TRANSFER International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 822 833, Article ID: IJMET_08_07_091 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

EFFECT OF TITANIUM OXIDE NANOFLUID CONCENTRATION ON PRESSURE DROP

EFFECT OF TITANIUM OXIDE NANOFLUID CONCENTRATION ON PRESSURE DROP EFFECT OF TITANIUM OXIDE NANOFLUID CONCENTRATION ON PRESSURE DROP K. Abdul Hamid 1, W. H. Azmi 1, Rizalman Mamat 1, N. A. Usri 1 and Gholamhassan Najafi 2 1 Faculty of Mechanical Engineering, Universiti

More information

Effect of Nanofluid jet Impingement on its Heat Transfer Enhancement and Pumping Power

Effect of Nanofluid jet Impingement on its Heat Transfer Enhancement and Pumping Power Effect of Nanofluid jet Impingement on its Heat Transfer Enhancement and Pumping Power #1 Kiran.D.Londhe, #2 S.U.Deshpande, #3 R.K.Sidheshwar 1 Mechanical Engg. Dept., JSCOE, Pune, MH, India 2 Mechanical

More information

TO CONDUCT THE PERFORMANCE TEST ON CHILLER UNIT BY USING NANOFLUID COOLED CONDENSER

TO CONDUCT THE PERFORMANCE TEST ON CHILLER UNIT BY USING NANOFLUID COOLED CONDENSER Int. J. Mech. Eng. & Rob. Res. 2015 Anandakumar J, 2015 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 4, No. 1, January 2015 2015 IJMERR. All Rights Reserved TO CONDUCT THE PERFORMANCE TEST ON CHILLER

More information

Enhancement on the Performance of Refrigeration System Using the Nano-Refrigerant

Enhancement on the Performance of Refrigeration System Using the Nano-Refrigerant Journal of Energy and Power Engineering 11 (2017) 237-243 doi: 10.17265/1934-8975/2017.04.004 D DAVID PUBLISHING Enhancement on the Performance of Refrigeration System Using the Nano-Refrigerant Qasim

More information

IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 01, 2017 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 01, 2017 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 5, Issue 01, 2017 ISSN (online): 2321-0613 Experimental Study of Heat Transfer Enhancement in Automobile Radiator using Nanofluids

More information

THERMAL PERFORMANCE IMPROVEMENT OF FLAT PLATE SOLAR COLLECTOR USING NANO FLUIDS

THERMAL PERFORMANCE IMPROVEMENT OF FLAT PLATE SOLAR COLLECTOR USING NANO FLUIDS International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 627 635, Article ID: IJMET_08_07_070 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

Enhancement of Heat Transfer in Concentric Tube Heat Exchanger using Water Based Nano Fluid ( )

Enhancement of Heat Transfer in Concentric Tube Heat Exchanger using Water Based Nano Fluid ( ) Volume: 03 Issue: 0 May-201 www.irjet.net p-issn: 239-0072 Enhancement of Heat Transfer in Concentric Tube Heat Exchanger using Water Based Nano Fluid ( ) Dhiraj Valekar 1, Shubham Wagh 2, Umakant Tavhare

More information

An Experimental and CFD Analysis of CuO-H 2 O (DI) Nanofluid Based Parabolic Solar Collector

An Experimental and CFD Analysis of CuO-H 2 O (DI) Nanofluid Based Parabolic Solar Collector An Experimental and CFD Analysis of CuO-H 2 O (DI) Nanofluid Based Parabolic Solar Collector Ketan Ajay 1, Kundan Lal 2 1,2 ( Mechanical Engineering Department, Thapar University, India) Abstract : Parabolic

More information

Shidagonda I. Jabade and Prof.P. R. Kulkarni ijesird, Vol. I (X) April 2015/381

Shidagonda I. Jabade and Prof.P. R. Kulkarni ijesird, Vol. I (X) April 2015/381 Review on Performance of Automotive Radiator operated with Nanofluid based coolants (nanofluid as a coolant in a radiator) Shidagonda I. Jabade #, Prof.P. R. Kulkarni * # PG Student, Mechanical Engg. Department

More information

Influence of Viscosity of nanofluids on heat transfer Rate

Influence of Viscosity of nanofluids on heat transfer Rate Influence of Viscosity of nanofluids on heat transfer Rate *N.Seshaiah, 1 CV Subba Reddy * Professor of Mechanical Engineering, PBR Visvodaya Institute of Technology and Science, Kavai, Nellore, India

More information

Experimental Investigation of Water Based Copper and Aluminium Particles Nano Fluid

Experimental Investigation of Water Based Copper and Aluminium Particles Nano Fluid Experimental Investigation of Water Based Copper and Aluminium Particles Nano Fluid Maniamramasamy S 1, Ramanathan R 1, TTM.Kannan 2, K.Parthiban 1 1 Assistant Professor, 2 Associate Professor, Department

More information

CFD ANALYSIS OF RADIATORS WITH NANO FLUIDS

CFD ANALYSIS OF RADIATORS WITH NANO FLUIDS CFD ANALYSIS OF RADIATORS WITH NANO FLUIDS VODNALA VEDA PRAKASH, S.CHAKRADHARA GOUD Research Scholar, Prof. & Principal Shri JJT University Rajasthan, Moghal College of Engineering & Technology, Hyderabad

More information

HEAT TRANSFER ENHANCEMENT OF CAR RADIATOR USING AQUA BASED MAGNESIUM OXIDE NANOFLUIDS

HEAT TRANSFER ENHANCEMENT OF CAR RADIATOR USING AQUA BASED MAGNESIUM OXIDE NANOFLUIDS THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 2039-2048 2039 HEAT TRANSFER ENHANCEMENT OF CAR RADIATOR USING AQUA BASED MAGNESIUM OXIDE NANOFLUIDS by Hafiz Muhammad ALI *, Muhammad Danish AZHAR, Musab

More information

CHAPTER 2 LITERATURE SURVEY

CHAPTER 2 LITERATURE SURVEY 5 CHAPTER 2 LITERATURE SURVEY 2.1 INTRODUCTION The thermo physical properties required for calculation of convective heat transfer coefficient and Nusselt number are thermal conductivity, viscosity, specific

More information

Nanofluid : A Tool to Increase the Efficiency of Solar Collector

Nanofluid : A Tool to Increase the Efficiency of Solar Collector Nanofluid : A Tool to Increase the Efficiency of Solar Collector Barot Vishalkumar G Department of Mechanical Engineering (ME Energy engineering) Government Engineering College, Valsad, Gujarat, India

More information

Convective heat transfer and flow characteristics of Cu-water nanofluid

Convective heat transfer and flow characteristics of Cu-water nanofluid Vol. 45 No. 4 SCIENCE IN CHINA (Series E) August 2002 Convective heat transfer and flow characteristics of Cu-water nanofluid LI Qiang XUAN Yimin School of Power Engineering, Nanjing University of Science

More information

PERFORMANCE EVALUATION OF PARALLEL AND COUNTER FLOW HEAT EXCHANGER USING NANOFLUID

PERFORMANCE EVALUATION OF PARALLEL AND COUNTER FLOW HEAT EXCHANGER USING NANOFLUID PERFORMANCE EVALUATION OF PARALLEL AND COUNTER FLOW HEAT EXCHANGER USING NANOFLUID ABSTARCT Krishna R. Patel [1], D. C. Solanki [2], Rakesh Prajapati [3] Student (M. E. Thermal Engineering) [1], Professor

More information

The Effects of Ethylene Glycol to Ultrapure Water on Its Specific Heat Capacity and Freezing Point

The Effects of Ethylene Glycol to Ultrapure Water on Its Specific Heat Capacity and Freezing Point 2017, TextRoad Publication ISSN: 2090-4274 Journal of Applied Environmental and Biological Sciences www.textroad.com The Effects of Ethylene Glycol to Ultrapure Water on Its Specific Heat Capacity and

More information

Experimental Study of Convective Heat Transfer in Miniature Double Tube Hair-Pin Heat Exchanger

Experimental Study of Convective Heat Transfer in Miniature Double Tube Hair-Pin Heat Exchanger 125 Experimental Study of Convective Heat Transfer in Miniature Double Tube Hair-Pin Heat Exchanger M Kumar 1, V K Yadav 2, B Verma 3, K K Srivastava 4 1, 2, 3, 4 Department of chemical Engineering and

More information

Improving the Thermal Performance of Automobile Radiators - The Role of Internal Radiator Fins

Improving the Thermal Performance of Automobile Radiators - The Role of Internal Radiator Fins Improving the Thermal Performance of Automobile Radiators - The Role of Internal Radiator Fins Raja Suryan G T 1 Bannari Amman Institute of Technology, Sathy PG Scholar, Department of Mechanical Engg kingsun.gt@gmail.com

More information

Heat Transfer Enhancement in Shell and Tube Heat Exchanger by using Iron Oxide Nanofluid

Heat Transfer Enhancement in Shell and Tube Heat Exchanger by using Iron Oxide Nanofluid Heat Transfer Enhancement in Shell and Tube Heat Exchanger by using Iron Oxide Nanofluid 1 Sunny Rach, 2 Pratik patel, 3 Dr. Dipak A. Deore 1 PG student, 2 PG student, 3 Head of the department 1 S ad VidyaMandal

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257. Fluid Dynamics

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257. Fluid Dynamics s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257 Fluid Dynamics Time allowed: TWO hours Answer: Answer TWO from THREE questions in section A and TWO from THREE

More information

ANALYSIS OF EFFECTIVENESS FOR PLATE HEAT EXCHANGER (PHE) USING AL 2 O 3 AND TIO 2 BASED NANOFLUIDS

ANALYSIS OF EFFECTIVENESS FOR PLATE HEAT EXCHANGER (PHE) USING AL 2 O 3 AND TIO 2 BASED NANOFLUIDS ANALYSIS OF EFFECTIVENESS FOR PLATE HEAT EXCHANGER (PHE) USING AL 2 O 3 AND TIO 2 BASED NANOFLUIDS D.Bahar 1, Jakirahemed MD 2, K. Srikanth 3 1 Assistant Professor, Department of Mechanical Engineering,

More information

COOLING EFFECT ENHANCEMENT OF AUTOMOBILE RADIATOR USING NANOFLUID: A REVIEW

COOLING EFFECT ENHANCEMENT OF AUTOMOBILE RADIATOR USING NANOFLUID: A REVIEW COOLING EFFECT ENHANCEMENT OF AUTOMOBILE RADIATOR USING NANOFLUID: A REVIEW Rahul D. Pande 1, Prof. S. S. Jawre 2, Prof. A. A. Kanaskar 3 1 M. Tech. Scholar, Mechanical Engg. Department, S.S.P.A.C.E-Wardha,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): IJSRD - Internatial Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (line): 2321-0613 CFD Analysis of Heat Transfer in Shell and Tube Heat Exchanger with and without Alumina Nano-Particles

More information

Thermal Analysis of Shell and Tube Heat Exchanger using Titanium Carbide, Titanium Nitride and Zink Oxide Nanofluids

Thermal Analysis of Shell and Tube Heat Exchanger using Titanium Carbide, Titanium Nitride and Zink Oxide Nanofluids Thermal Analysis of Shell and Tube Heat Exchanger using Titanium Carbide, Titanium Nitride and Zink Oxide Nanofluids Hemasunder Banka 1 Raju P 2 Prof.Srinivasulu P 3 1M.Tech (TE) Student, 2Assistant professor,

More information

EXPERIMENTAL INVESTIGATION OF RELATIVE PERFORMANCE OF WATER BASED TiO 2 AND ZnO NANOFLUIDS IN A DOUBLE PIPE HEAT EXCHANGER

EXPERIMENTAL INVESTIGATION OF RELATIVE PERFORMANCE OF WATER BASED TiO 2 AND ZnO NANOFLUIDS IN A DOUBLE PIPE HEAT EXCHANGER EXPERIMENTAL INVESTIGATION OF RELATIVE PERFORMANCE OF WATER BASED TiO 2 AND ZnO NANOFLUIDS IN A DOUBLE PIPE HEAT EXCHANGER M. Chandra Sekhara Reddy 1, a, Ramaraju Ramgopal Varma 2,a Veeredhi Vasudeva Rao

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at  ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 412 417 6th BSME International Conference on Thermal Engineering (ICTE 2014) Convective performance of 0.1 % volume

More information

Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques

Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques Research Journal of Engineering Sciences ISSN 2278 9472 Heat Transfer Augmentation of Air Cooled Internal Combustion Engine Using Fins through Numerical Techniques Abstract Mishra A.K., Nawal S. and Thundil

More information

NUMERICAL INVESTIGATION OF FLOW AND TEMPERATURE CHARACTERISTICS ENHANCEMENT IN TUBOANNULAR COMBUSTOR

NUMERICAL INVESTIGATION OF FLOW AND TEMPERATURE CHARACTERISTICS ENHANCEMENT IN TUBOANNULAR COMBUSTOR Int. J. Engg. Res. & Sci. & Tech. 2016 S K MD Azharuddin et al., 2016 Research Paper ISSN 2319-5991 www.ijerst.com Vol. 5, No. 3, August 2016 2016 IJERST. All Rights Reserved NUMERICAL INVESTIGATION OF

More information

EFFECT OF TEMPERATURE ON HEAT TRANSFER COEFFICIENT OF TITANIUM DIOXIDE IN ETHYLENE GLYCOL-BASED NANOFLUID Pekan, Pahang, Malaysia

EFFECT OF TEMPERATURE ON HEAT TRANSFER COEFFICIENT OF TITANIUM DIOXIDE IN ETHYLENE GLYCOL-BASED NANOFLUID Pekan, Pahang, Malaysia Journal of Mechanical Engineering and Sciences (JMES) ISSN (Print): 2289-4659; e-issn: 2231-8380; Volume 8, pp. 1367-1375, June 2015 Universiti Malaysia Pahang, Malaysia DOI: http://dx.doi.org/10.15282/jmes.8.2015.11.0133

More information

ISSN: [Mujawar* et al., 5(12): December, 2016] Impact Factor: 4.116

ISSN: [Mujawar* et al., 5(12): December, 2016] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY THERMAL PERFORMANCE INVESTIGATION OF EVACUATED TUBE HEAT PIPE SOLAR COLLECTOR WITH NANOFLUID N. H. Mujawar*, S. M. Shaikh * M.

More information

Performance Analysis of an Automobile Radiator

Performance Analysis of an Automobile Radiator IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 12 May 2015 ISSN (online): 2349-6010 Performance Analysis of an Automobile Radiator using CFG Hardikkumar B Patel

More information

CFD Analysis for Production of Carbon Nanotubes

CFD Analysis for Production of Carbon Nanotubes International Journal of Current Engineering and Technology ISSN 2277-4106 2014 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Research Article CFD Analysis for Production

More information

Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system

Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system Korean J. Chem. Eng., 25(5), 966-971 (2008) SHORT COMMUNICATION Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system Byung-Hee Chun, Hyun Uk Kang, and Sung

More information

MODELING AND ANALYSIS OF FLAT SHAPE AND TRUNK SHAPE PISTON M. NARENDER* 1, D. BAHAR 1

MODELING AND ANALYSIS OF FLAT SHAPE AND TRUNK SHAPE PISTON M. NARENDER* 1, D. BAHAR 1 ISSN 2277-2685 IJESR/July 2018/ Vol-8/Issue-7/14-20 MODELING AND ANALYSIS OF FLAT SHAPE AND TRUNK SHAPE PISTON ABSTRACT M. NARENDER* 1, D. BAHAR 1 1 Assistant Professor, Department of Mechanical Engineering.,

More information

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment HEAT TRANSFER ANALYSIS AND OPTIMIZATION OF FINS BY VARIATION IN GEOMETRY 1 MAYANK JAIN, 2 MAHENDRA SANKHALA, 3 KANHAIYA PATIDAR, 4 LOKESH AURANGABADKAR 1,2,3 Student, Medicaps University, Indore (M.P.)

More information

Investigation of Automobile Radiator Using Nanofluid-CuO/Water Mixture as Coolant

Investigation of Automobile Radiator Using Nanofluid-CuO/Water Mixture as Coolant Investigation of Automobile Radiator Using Nanofluid-CuO/Water Mixture as Coolant Mahendra Godley, Bhanu Pratap Singh Tomar, Ajay Tripathi P.G. Student, Department of Automobile Engineering, RJIT BSF Academy,

More information

Design and Thermal Analysis on 220cc Engine Cylinder Fins By Varying Materials

Design and Thermal Analysis on 220cc Engine Cylinder Fins By Varying Materials Design and Thermal Analysis on 220cc Engine Cylinder Fins By Varying Materials C Santhosh Kumar Reddy M. Tech (Thermal Engineering), Department of Mechanical Engineering, Malla Reddy College of Engineering.

More information

Experimental Investigation of Shell and Tube Heat Exchanger using Nano-fluids

Experimental Investigation of Shell and Tube Heat Exchanger using Nano-fluids Experimental Investigation of Shell and Tube Heat Exchanger using Nano-fluids Kishan H. Maheshwari 1, Kartik Trivedi 2 1 ME Student, 2 Assistant Professor 1 Mechanical Engineering Department, 1 L. J. Institute

More information

STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER

STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER Journal of Engineering Science and Technology Vol. 10, No.12 (2015) 1575-1588 School of Engineering, Taylor s University STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER J. W. JEONG,

More information

CFD Modelling and Analysis of Different Plate Heat Exchangers

CFD Modelling and Analysis of Different Plate Heat Exchangers CFD Modelling and Analysis of Different Plate Heat Exchangers Ahmed Y Taha Al-Zubaydi a *, Guang Hong b and W. John Dartnall c Faculty of Engineering and Information Technology, UTS, Sydney, Australia

More information

Thermal performance of wickless heat pipe solar collector with surfactant added nanofluid and solar tracking- A Review

Thermal performance of wickless heat pipe solar collector with surfactant added nanofluid and solar tracking- A Review Thermal performance of wickless heat pipe solar collector with surfactant added nanofluid and solar tracking- A Review Abhijeet A. Pawar, Digvijay B. Shelke Abstract These Several techniques for heat transfer

More information

Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine

Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine Coupled Thermal Structural Finite Element Analysis for Exhaust Manifold of an Off-road Vehicle Diesel Engine Sweta Jain, AlkaBani Agrawal Abstract This paper present the Sequential Coupled Thermal - Structural

More information

Study of Effect of Nanofluid on Performance of Heat Pipe

Study of Effect of Nanofluid on Performance of Heat Pipe Study of Effect of Nanofluid on Performance of Heat Pipe Hrishikesh Hinge 1, Nilesh Dhokane 2 and Surendra Barhatte 3 1 Post Graduate Student, Mechanical Engineering Department, MIT College of Engineering,

More information

Heat Transfer Enhancement in Automobile Radiator Using Nanofluids: A Review

Heat Transfer Enhancement in Automobile Radiator Using Nanofluids: A Review Heat Transfer Enhancement in Automobile Radiator Using Nanofluids: A Review Naman Jinsiwale1, Prof. Vishal Achwal2 1Mechanical Engineering, S.I.R.T, Indore, Madhya Pradesh, India 2 Mechanical Engineering

More information

Thermal Analysis Of Engine Cylinder Fins By Varying Its Geometry And Material

Thermal Analysis Of Engine Cylinder Fins By Varying Its Geometry And Material Thermal Analysis Of Engine Cylinder Fins By Varying Its Geometry And Material Mr. N. Phani Raja Rao, Mr. T. Vishnu Vardhan 1. M.Tech- CAD/CAM pursuing Student, Intell Engineering College, Ananthapuramu.

More information

Structural and Thermal Analysis of Piston

Structural and Thermal Analysis of Piston International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Structural

More information

Numerical Investigation of Single Phase Fluid Flow and Heat Transfer In Rectangular Micro Channel Using Nanofluids as A Cooling Liquid

Numerical Investigation of Single Phase Fluid Flow and Heat Transfer In Rectangular Micro Channel Using Nanofluids as A Cooling Liquid RESEARCH ARTICLE OPEN ACCESS Numerical Investigation of Single Phase Fluid Flow and Heat Transfer In Rectangular Micro Channel Using Nanofluids as A Cooling Liquid Mr. Sanjay V. Barad, Prof. Mukesh N.

More information

Satya Deo Sharan Nirala Dept. of Mechanical Engineering Maulana Azad National Institute of Technology Bhopal, India

Satya Deo Sharan Nirala Dept. of Mechanical Engineering Maulana Azad National Institute of Technology Bhopal, India Design and Analysis of Brake Rotors of Three Materials Satya Deo Sharan Nirala Dept. of Mechanical Engineering Maulana Azad National Institute of Technology Bhopal, India Satyalalitpur123@gmail.com Abstract-

More information

Heat Transfer Enhancement in Double Pipe Heat Exchanger by Alumina Water Nanofluid

Heat Transfer Enhancement in Double Pipe Heat Exchanger by Alumina Water Nanofluid Heat Transfer Enhancement in Double Pipe Heat Exchanger by Alumina Water Nanofluid Mr. B. Parameswara Rao 1, Mr.V. Nageswara Rao 2, Dr.S.C.V. Ramana Murthy Naidu 3 Mr.T.Veeraiah 4 1M.Tech Scholar, Department

More information

Experimental Investigation and Comparative Thermal Performance Analysis of Shell and Tube Heat Exchanger by Using CFD

Experimental Investigation and Comparative Thermal Performance Analysis of Shell and Tube Heat Exchanger by Using CFD Experimental Investigation and Comparative Thermal Performance Analysis of Shell and Tube Heat Exchanger by Using CFD Gajanan P Nagre 1, Prof. A.V.Gadekar 2,Prof. D.V.Nehete 3 1 Student of post graduate,

More information

COMPARATIVE THERMAL ANALYSIS ON HEAT SINK WITH DIFFERENT GEOMETRIES

COMPARATIVE THERMAL ANALYSIS ON HEAT SINK WITH DIFFERENT GEOMETRIES COMPARATIVE THERMAL ANALYSIS ON HEAT SINK WITH DIFFERENT GEOMETRIES S.L.N.Reddy 1, P.H.C.Prasad 2, Mohammed Hussain 3 1 Department of Mechanical Engineering, Aditya Engineering College (India) 2 Department

More information

Investigation on the Impact on Thermal Performances of New Pin and Fin Geometries Applied to Liquid Cooling of Power Electronics

Investigation on the Impact on Thermal Performances of New Pin and Fin Geometries Applied to Liquid Cooling of Power Electronics Investigation on the Impact on Performances of New Pin and Fin Geometries Applied to Liquid Cooling of Power Electronics Matt Reeves, Jesus Moreno, Peter Beucher, Sy-Jenq Loong and Dwight Brown. MicrooCool

More information

Analysis of Shell and Tube Heat Exchanger Using Different Nano Fluids

Analysis of Shell and Tube Heat Exchanger Using Different Nano Fluids Analysis of Shell and Tube Heat Exchanger Using Different Nano Fluids Pavani Nookaratnam. D 1, Dharma Raju. T 2 1, 2 Department of Mechanical Engineering, Adarsh College of Engineering, Chebrolu, Andhrapradesh

More information

Influence of nanoparticles on the effectiveness of heat exchanger and associated pressure drop

Influence of nanoparticles on the effectiveness of heat exchanger and associated pressure drop International Journal of Engineering and Applied Sciences (IJEAS) Influence of nanoparticles on the effectiveness of heat exchanger and associated pressure drop N.Seshaiah, C.V Subba Reddy Abstract Heat

More information

Thermal Analysis of Solar Flat Plate Collector Using CFD

Thermal Analysis of Solar Flat Plate Collector Using CFD Thermal Analysis of Solar Flat Plate Collector Using CFD 1 Mohammed Abdul Junaid, 2 Mohammed Nazimuddin, 3 Mohd Arifuddin, 4 Mohammed Faisal Asst. Prof, Mechanical Engg Dept. Lords Institute of Engg &

More information

DESIGN MODIFICATION AND ANALYSIS OF TWO WHEELER COOLING FINS-A REVIEW

DESIGN MODIFICATION AND ANALYSIS OF TWO WHEELER COOLING FINS-A REVIEW DESIGN MODIFICATION AND ANALYSIS OF TWO WHEELER COOLING FINS-A REVIEW Mohsin A. Ali 1 and S.M Kherde 2 1 Mechanical Engineering Department, KGIET, Amravati, India 2 Professor, Mechanical Engineering Department,

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 12, December -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Performance

More information

Research Article. Kallalu Harika *, Tummala.Likhitha, Pulla Varsha Rani and R.Ramakanth. Abstract

Research Article. Kallalu Harika *, Tummala.Likhitha, Pulla Varsha Rani and R.Ramakanth. Abstract International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Experimental

More information

CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS

CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS CFD-BASED INVESTIGATION OF HEAT TRANSFER CHARACTERISTICS OF FLUE GAS-WATER HEAT EXCHANGER PANELS PRODUCED WITH A NOVEL MANUFACTURING PROCESS T. FUKUE 1, C. SPITAS 2, M. DWAIKAT 3 and M. ISHIZUKA 4 1 Department

More information

Effect of heat transfer enhancement and NO x emission using Al 2 O 3 /water nanofluid as coolant in CI engine

Effect of heat transfer enhancement and NO x emission using Al 2 O 3 /water nanofluid as coolant in CI engine Indian Journal of Engineering & Materials Sciences Vol. 20, October 2013, pp. 443-449 Effect of heat transfer enhancement and NO x emission using Al 2 O 3 /water nanofluid as coolant in CI engine M Raja

More information

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD PANKAJ JIVAN PATEL 1, KAILAS TUKARAM PATIL 2, MANKALAL HIRAJI PATIL 3 1 Student, Department of Mechanical Engineering, P.S.G.V.P.

More information

HEAT TRANSFER IN MINI HEAT EXCHANGER USING NANOFLUIDS. L.B. Mapa 1, Sana Mazhar 2 ABSTRACT

HEAT TRANSFER IN MINI HEAT EXCHANGER USING NANOFLUIDS. L.B. Mapa 1, Sana Mazhar 2 ABSTRACT Session B-T4-4 HEAT TRANSFER IN MINI HEAT EXCHANGER USING NANOFLUIDS L.B. Mapa 1, Sana Mazhar 2 1 Purdue University Calumet, Indiana; Email: mapa@calumet.purdue.edu 2 Purdue University Calumet, Indiana;

More information

ANALYZE THE THERMAL PROPERTIES BY VARYING

ANALYZE THE THERMAL PROPERTIES BY VARYING ANALYZE THE THERMAL PROPERTIES BY VARYING Comparison of Typing Speeds on Different Types of Keyboards and Factors Influencing It, Siddharth Ghoshal, GEOMETRY, Gaurav Acharya, MATERIAL Journal AND Impact

More information

Investigation on Automotive Radiator Performance Using Water, Coolant Oil and Nanofluid

Investigation on Automotive Radiator Performance Using Water, Coolant Oil and Nanofluid Investigation on Automotive Radiator Performance Using Water, Coolant Oil and Nanofluid G.P.Bala Kumar 1, F.Anand Raju 2 PG Student, Dept. of ME, Siddartha Institute of Engineering & Technology (SIETK),

More information

Heat Transfer Analysis of Advanced ic Engine Cylinder

Heat Transfer Analysis of Advanced ic Engine Cylinder IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. IV (May- Jun. 2016), PP 45-52 www.iosrjournals.org Heat Transfer Analysis of Advanced

More information

ISSN: [Sreekireddy * et al., 7(2): February, 2018] Impact Factor: 5.164

ISSN: [Sreekireddy * et al., 7(2): February, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL HEAT TRANSFER ANALYSIS OF METAL FOAM FOR SCRAMJET APPLICATION Pavani Sreekireddy* 1 & T. Kishen Kumar Reddy 1&2 *1 Mechanical

More information

Modelling of Material Removal in Abrasive Flow Machining Process Using CFD Simulation

Modelling of Material Removal in Abrasive Flow Machining Process Using CFD Simulation Journal of Basic and Applied Engineering Research Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 1, Number 2; October, 2014 pp. 73-78 Krishi Sanskriti Publications http://www.krishisanskriti.org/jbaer.html

More information

Performance Analysis of Evacuated Tube Heat Pipe Solar Water Heating System using Nanofluid coupled with parabolic Trough Concentrator

Performance Analysis of Evacuated Tube Heat Pipe Solar Water Heating System using Nanofluid coupled with parabolic Trough Concentrator IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 10, 2016 ISSN (online): 2321-0613 Performance Analysis of Evacuated Tube Heat Pipe Solar Water Heating System using Nanofluid

More information

Effect of Volume Concentration on Direct Absorption Solar Collector in Laminar and Turbulent Flow Using CuO-H2O Nanofluids

Effect of Volume Concentration on Direct Absorption Solar Collector in Laminar and Turbulent Flow Using CuO-H2O Nanofluids Effect of Volume Concentration on Direct Absorption Solar Collector in Laminar and Turbulent Flow Using CuO-H2O Nanofluids Lalit Jyani 1, Manpreet Singh 2, Shailendra Bohra 3 1,3 Department of Mechanical

More information

Keywords: - Waste heat Recovery, Desalination, Turbo spin heat exchanger, Heat transfer, Diesel engine exhaust

Keywords: - Waste heat Recovery, Desalination, Turbo spin heat exchanger, Heat transfer, Diesel engine exhaust EXPERIMENTAL STUDY ON WASTE HEAT RECOVERY FROM EXHAUST OF DIESEL ENGINE USING HEAT EXCHANGER Kavin Suthar 1, Vinaykumar 2 1 ME Thermal Engineering Student, MIT, Piludara 2 Assistant Professor in Mechanical

More information

Thermal Design Optimization of Finned Shell and Tube Heat Exchanger Using Taguchi Approach

Thermal Design Optimization of Finned Shell and Tube Heat Exchanger Using Taguchi Approach Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 8(3):131-135 (ISSN: 2141-7016) Scholarlink Research Institute Journals, 2017 (ISSN: 2141-7016) jeteas.scholarlinkresearch.com Thermal

More information

Effect of Twisted Tape Inserts and Stacks on Internal Cooling of Gas Turbine Blades

Effect of Twisted Tape Inserts and Stacks on Internal Cooling of Gas Turbine Blades Indian Journal of Science and Technology, Vol 9(31), DOI: 10.17485/ijst/2016/v9i31/95978, August 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Effect of Twisted Tape Inserts and Stacks on Internal

More information

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK

CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 CFD ANALYSIS OF CONVECTIVE FLOW IN A SOLAR DOMESTIC HOT WATER STORAGE TANK Mr. Mainak Bhaumik M.E. (Thermal

More information

A Review on applications and challenges of Nano-fluids as coolant in Automobile Radiator

A Review on applications and challenges of Nano-fluids as coolant in Automobile Radiator International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013 1 A Review on applications and challenges of Nano-fluids as coolant in Automobile Radiator Rahul A. Bhogare*

More information

Investigation on Heat Transfer through an Annular Bend Tube for Various Nano Fluids using Thermal and CFD analysis

Investigation on Heat Transfer through an Annular Bend Tube for Various Nano Fluids using Thermal and CFD analysis 34T IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 3 Issue 8, August 2016 Investigation on Heat Transfer through an Annular Bend Tube for Various Nano Fluids using

More information