Mouse Genetic Engineering David Ornitz Department of Developmental Biology

Size: px
Start display at page:

Download "Mouse Genetic Engineering David Ornitz Department of Developmental Biology"

Transcription

1 Mouse Genetic Engineering David Ornitz Department of Developmental Biology Novosibirsk, Russia

2 Time line for mouse genetic engineering Development of chimeras between embryos with different genotypes Genetically modified mice first derived by infecting embryos with retroviruses First DNA injection into mouse eggs First use of the term Transgenic First embryonic stem cells developed Germline contribution of ES cells First genetic modification of an ES cell (HPRT gene) Improved vectors for homologous recombination 1960s 1974, Tarkowski, Mintz, Gardner Jaenisch and Mintz Gordon, Brinster, Constantini, Lacy, Wagner Martin, Evans, Kaufman Bradley Smithies Thomas and Capecchi.

3 Time line for mouse genetic engineering - cont. Phenotypic consequences of targeted genes Conditional gene targeting-cre/lox Conditional gene targeting-flip/frt Multiple conditional alleles, cre, flip Somatic cloning of mice Lentiviral vectors for transgenesis RNAi in mice Sleeping Beauty transposon mutagenesis Conditional Mouse Knockout Project Genomic editing / Marth, Rajewsky Dymecki Martin Wakayama et al Lois, Baltimore Conklin,Rosenquist Jenkins,Copeland EUCOMM, KOMP, IMPC

4 The Nobel Prize in Physiology or Medicine 2007 "for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells" Mario R. Capecchi Sir Martin J. Evans Oliver Smithies

5 How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN, and knockdown experiments Ectopic (spatial or temporal) expression Allows gene regulatory elements to be tested Allows populations of cells to be marked with a reporter gene Targeted mutations Specific genes can be targeted Unexpected phenotypes (lethal phenotype may result prior to the spatial and temporal site of interest) Must be very careful to make a null allele Tissue-specific (conditional) targeted mutations Provides some of the best features of gene targeting and transgenic approaches May be combined with enhancer trap and gene trap experiments. An effective method to circumvent embryonic lethality.

6 How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN, and knockdown experiments Ectopic (spatial or temporal) expression Allows gene regulatory elements to be tested Allows populations of cells to be marked with a reporter gene Targeted mutations Specific genes can be targeted Unexpected phenotypes (lethal phenotype may result prior to the spatial and temporal site of interest) Must be very careful to make a null allele Tissue-specific (conditional) targeted mutations Provides some of the best features of gene targeting and transgenic approaches May be combined with enhancer trap and gene trap experiments. An effective method to circumvent embryonic lethality.

7 How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN, and knockdown experiments Ectopic (spatial or temporal) expression Allows gene regulatory elements to be tested Allows populations of cells to be marked with a reporter gene Targeted mutations Specific genes can be targeted Unexpected phenotypes (lethal phenotype may result prior to the spatial and temporal site of interest) Must be very careful to make a null allele Tissue-specific (conditional) targeted mutations Provides some of the best features of gene targeting and transgenic approaches May be combined with enhancer trap and gene trap experiments. An effective method to circumvent embryonic lethality.

8 Breeding mice gestation period-19 days (range is days depending on strain) age at weaning-21 days sexual maturity-females 4-5 weeks, males-6-8 weeks birthweight-1 gm weaning-8-12 gm adult gm

9 Preimplantation mouse development

10 Aggregation chimeras Before the use of microinjection aggregation chimeras were the only way to genetically modify cells and test them during mouse development Morula aggregation, used to make chimeras between two different genetic backgrounds ES/EC cell chimera add genetically modified cells to a mouse

11 Routes for Introducing Genes into Mice 1) Microinjection of DNA into zygotes (TALEN, CRISPR) 2) Injection of embryos with recombinant virus 3) Transfection of ES cells with cloned DNA Selection, Characterization Chimera formation Transgenic Mice

12

13 Transgenic Mice: Gene addition Random insertion of DNA into the mouse genome Permits GOF, DN and knockdown experiments Allows gene regulatory elements to be tested Allows populations of cells to be marked with a reporter gene Occasionally allows endogenous genes to be trapped

14 Components of a Transgene promoter + enhancer gene coding sequence or cdna polyadenylation signal promoter cdna splice/poly A Things that are good: introns Things that are bad: plasmid sequence, lack of introns

15 example: Elastase Promoter cell-type specific expression 200 bp is sufficient for expression Pr/En hgh poly A Pr/En v-ras splice/poly A cdna

16 Transgenic mouse issues: Tissue specificity ectopic expression chromosomal integration site may affect expression Temporal specificity Level of expression Insertional mutagenesis

17 How to make a transgenic mouse 1. Fusion Gene Construct 2. Superovulated Female Promoter ATG Coding Sequence p(a) Fertilized Eggs Microinjection 3. Germline Integration 4. DNA Analysis TRANSGENIC MOUSE 5. Breeding

18

19

20

21 from Manipulating the Mouse Embryo a laboratory manual, CSHL press

22

23

24

25

26 Homologous recombination using embryonic stem cells First completely unbiased experiment of gene function in an entire mammalian organism. Discover unanticipated early embryonic roles Potential problems: Embryonic lethality Redundancy

27 Events leading to the development of Embryonic Stem Cells Teratoma tumors composed of various tissues foreign to their site of origin. can be formed by transplanting pieces of embryos to extra uterine sites. Teratocarcinoma undifferentiated malignant stem cells, metastasize, lethal made by transplanting day 6-7 mouse embryos under the kidney capsule resulting tumors can be passaged and cultured to yield embryonal carcinoma cells - EC cells

28 Embryonic Stem Cells-cont. EC cell lines variety of stages of differentiation and variable capacity to differentiate exponential growth and feeder cells are required to prevent differentiation differentiation can be induced by aggregation differentiation can be induced by drugs, RA or DMSO. ES cells a normal pleuripotent cell line isolated from normal embryo without passing through a tumor stage. when reintroduced into the embryonic environment ES cells can generate high grade chimeras. essential to grow on feeder cells (STO fibroblasts or MEFs). LIF/DIA is required to maintain pleuripotency of ES cells.

29 Establishment of ES cell lines: transfer intact blastocysts into culture grow to stage of early post implantation embryo dissociate embryonic from extraembryonic tissue continue to culture ICM. 2 days after disaggregation of ICM 4 days after disaggregation First passage

30

31 Chimeric mouse ES cells derived from 129/SV strain, agouti coat color injected into a C57/B6 blastocyst. Mate chimeric mouse to Black mouse (C57/B6J) identify agouti offspring

32 Gene Knockout critical X

33 Gene Knockout critical genetic engineering using embryonic stem cells X

34 Practical issues for basic gene targeting: length of homology probes to detect homologous recombination vector design (with or without negative selection) Target gene Targeting vector Targeted allele

35 Homolgous recombination vs. random integration homologous recombination Target gene Targeting vector Targeted allele random integration

36 Issues in interpreting targeted mutations Must be very careful to make a null allele haplotype insufficient recessive Prove that an allele is null gene expression protein expression assay for activity of protein Other types of alleles hypomorphic allele dominant negative linked random mutation - generate multiple ES lines recessive

37 Issues in interpreting targeted mutations Must be very careful to make a null allele haplotype insufficient recessive Prove that an allele is null gene expression protein expression assay for activity of protein Other types of alleles hypomorphic allele dominant negative linked random mutation - generate multiple ES lines recessive

38 Issues in interpreting targeted mutations Must be very careful to make a null allele haplotype insufficient recessive Prove that an allele is null gene expression protein expression assay for activity of protein Other types of alleles hypomorphic allele dominant negative linked random mutation - generate multiple ES lines recessive

39 Xu, X., Weinstein, M., Li, C., Naski, M., Cohen, R. I., Ornitz, D. M., Leder, P., and Deng, C. (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated regulation loop between FGF8 and FGF10 is essential for limb induction, Development 125, Arman, E., Haffnerkrausz, R., Chen, Y., Heath, J. K., and Lonai, P. (1998). Targeted disruption of fibroblast growth factor (Fgf) receptor 2 suggests a role for fgf signaling in pregastrulation mammalian development, Proc. Natl. Acad. Sci., U S A 95,

40 Issues in interpreting targeted mutations - cont. Neighboring gene effect PGK promoter - neo may influence a nearby gene remove the selection cassette to avoid this potential problem Unexpected phenotype lethal phenotype may result prior to the developmental stage of interest Targeted allele PGK-Neo

41 Olson EN, Arnold HH, Rigby PW, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bhlh gene MRF4. Cell 85: 1-4.

42 Removing the Neo selection cassette critical genetic engineering using embryonic stem cells PGK-NEO loxp loxp flox = flanked by lox X PGK-NEO X

43 Removing the Neo selection cassette critical genetic engineering using embryonic stem cells PGK-NEO loxp loxp flox = flanked by lox X PGK-NEO X

44 Removing the Neo selection cassette critical genetic engineering using embryonic stem cells PGK-NEO loxp loxp flox = flanked by lox X germline promoter - Cre recombinase PGK-NEO X

45 Removing the Neo selection cassette critical genetic engineering using embryonic stem cells PGK-NEO loxp loxp flox = flanked by lox X germline promoter - Cre recombinase X

46 Advanced gene targeting issues Targeting one allele versus both alleles Gene replacement using recombinases Knockin mice

47 Conditional tissue-specific targeted mutations provides some of the best features of gene targeting and transgenic approaches may be combined with enhancer trap and gene trap experiments the targeted gene can be modified using cre and flip recombinases may be used in conjunction with inducible promoters

48 Regulated activation/inactivation of a gene using CreER fusion proteins critical loxp loxp flox = flanked by lox critical X

49 Regulated activation/inactivation of a gene using CreER fusion proteins critical loxp loxp flox = flanked by lox tissue specific promoter -CreER recombinase Cytosol critical X

50 Regulated activation/inactivation of a gene using CreER fusion proteins critical loxp loxp flox = flanked by lox tissue specific + tamoxifen nuclear translocation promoter -CreER recombinase Cytosol critical X

51 Regulated activation/inactivation of a gene using CreER fusion proteins critical loxp loxp flox = flanked by lox tissue specific + tamoxifen nuclear translocation promoter -CreER recombinase Cytosol X

52 EUCOMM gene targeting vector Frt SA-βgeo-PA LoxP PGK -neo Critical 5' hom ology 3' hom ology

53 EUCOMM gene targeting vector Frt SA-βgeo-PA LoxP PGK -neo Critical 5' hom ology 3' hom ology Cre Frt LoxP ogy SA-βgeo-PA null, reporter allele

54 EUCOMM gene targeting vector Frt SA-βgeo-PA LoxP PGK -neo Critical 5' hom ology 3' hom ology Cre Flp Frt SA-βgeo-PA LoxP Critical ogy null, reporter allele 3' conditional allele

55 Frt SA-βgeo-PA SA-T2A-CreER-PA LoxP PGK -neo Critical 5' hom ology 3' hom ology

56 Genomic Editing Zinc finger nucleases (ZFNs) TAL effector nucleases (TALENs) CRISPR/Cas9 RNA-guided nuclease (RGNs) (RGNs)

57 Genomic Editing General principle is to target a non-specific nuclease (FokI, Cas9) to a specific DNA sequence Double stranded break will induce: Error-prone non-homologous end-joining (NHEJ), which leads to variable length insertion/deletion mutations (indels) Homology-directed repair (HDR), which can be used to introduce precise alterations directed by a homologous DNA template

58 Genomic Editing Sander JD & Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32(4):

59 Zinc finger nucleases (ZFNs) Modular assembly of individual zinc fingers Left and Right target sequence with 5 nt spacer R L Rémy, 2010

60 TAL Effector Nucleases (TALENs) Nonspecific FokI nuclease domain fused to a customizable DNAbinding domain to target a single genomic locus FokI nuclease functions as a dimer to cleave double stranded DNA - can form unwanted dimers - off-target mutagenesis is relatively frequent Engineered TALEN variant exhibits equal on-target cleavage activity but tenfold lower average off-target activity in human cells Guilinger JP, et al. (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11(4):

61 TAL Effector Nucleases (TALENs) FokI nuclease domain TALEN repeats (DNA binding domain) R DNA target GTAGTCACTGCA GCT GTT GATGCATGCACT L TALEN repeats (DNA binding domain) FokI nuclease domain cleavage within spacer region

62 CRISPR/Cas9 System CRISPR (clustered regularly interspaced short palindromic repeats) Streptococcus pyogenes SF370 type II CRISPR locus - 4 genes: Cas9 nuclease two noncoding CRISPR RNAs (crrnas) trans-activating crrna (tracrrna) precursor crrna (pre-crrna) array containing nuclease guide Facilitates RNA-guided site-specific DNA cleavage Cas9 nucleases can be directed by short guide RNAs (grna) to induce precise cleavage at endogenous genomic loci Cas9 can also be converted into a nicking enzyme Cong et al., Science 2013; Mali et al, Nature Methods 2013

63 CRISPR/Cas9 System cont. Multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome Modified version of the CRISPR-Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression or label specific genomic loci in living cells Sander JD & Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32(4):

64 CRISPR/Cas9 System cont. Two components must be introduced into and/or expressed in cells or an organism to perform genome editing: 1. Cas9 nuclease 2. guide RNA (grna) guide RNA: protospacer/crrna fused to a fixed trans-activating RNA (tracrrna) Twenty nucleotides at the 5 end of the grna direct Cas9 to a specific target DNA site using standard RNA-DNA complementarity base-pairing rules Target sites must lie immediately 5 of a PAM sequence (protospacer adjacent motif) that matches the canonical form 5 -NGG Cas9 nuclease activity can be directed to any DNA sequence of the form N20-NGG simply by altering the first 20 nt of the grna to correspond to the target DNA sequence

65 Cas9-sgRNA targeting complexes sgrna (short guide RNA) Target recognition and cleavage require protospacer sequence complementary to the spacer and presence of the appropriate NGG PAM sequence 3 of the protospacer PAM - Protospaceradjacent motif

66 Type II CRISPR specificity suggest that target sites must perfectly match the PAM sequence NGG and the 8- to 12-base seed sequence at the 3 end of the grna. The importance of the remaining 8 to 12 bases is less well understood and may depend on the binding strength of the matching grnas or on the inherent tolerance of Cas9 itself.

67 Mali et al, Nature Methods, 2013 Cas9-sgRNA targeting complexes sgrna (short guide RNA) Target recognition and cleavage require protospacer sequence complementary to the spacer and presence of the appropriate NGG PAM sequence 3 of the protospacer PAM - Protospaceradjacent motif Cas9 enables programmable localization of dsdna, RNA, and proteins. Proteins can be targeted to any dsdna sequence by simply fusing them to Cas9

68 Overview of various Cas9-based applications Sander JD & Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32(4):

69 Key issues to consider with CRISPR/ Cas9 genomic editing technology Off-target modifications: Does a given engineered nuclease act at genomic locations other than its intended site? Critically important because unintended, off-target modifications in cell populations can lead to unexpected functional consequences in both research and therapeutic contexts - current consensus is that the off-target mutation frequency is relatively low Tsai SQ, Joung JK (2014) What's Changed with Genome Editing? Cell Stem Cell 15: 3-4.

70 Lineage tracing using inducible Cre recombinase Estrogen regulated Cre (CreER) Tetracycline induced Cre expression (TRE-Cre) Issues: Threshold levels of CRE required to induce recombination. Expression of Cre in multiple lineages or leaky expression. Different reporter mice vary in their sensitivity to CRE.

71 Regulated activation/inactivation of a gene using CreER fusion proteins ROSA26 promoter mtomato mgfp loxp loxp flox = flanked by lox ROSA26 promoter before recombination mtomato mgfp

72 Regulated activation/inactivation of a gene using CreER fusion proteins ROSA26 promoter mtomato mgfp loxp loxp flox = flanked by lox ROSA26 promoter tissue specific promoter -CreER recombinase before recombination mtomato mgfp Cytosol

73 Regulated activation/inactivation of a gene using CreER fusion proteins ROSA26 promoter mtomato mgfp loxp loxp flox = flanked by lox tissue specific + tamoxifen nuclear translocation promoter -CreER recombinase Cytosol ROSA26 promoter mgfp

74 Lgr5-expressing cells give rise to mature taste cells Lgr5-EGFP-IRES-creERT2, Rosa26-tdTomato Days after a single tamoxifen induction Yee et al. Lgr5-EGFP marks taste bud stem/ progenitor cells in posterior tongue. Stem Cells. 2013; 31(5):

75 Lgr5 stem/progenitor cells generate all three types of taste bud cells Type I taste cells with NTPDase2 Type II taste receptor cells with Trpm5 Type III taste receptor cells with serotonin

76

species- Mus musculus Engineering the mouse genome David Ornitz

species- Mus musculus Engineering the mouse genome David Ornitz species- Mus musculus Engineering the mouse genome David Ornitz How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN and knockdown experiments Ectopic (spatial or

More information

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Mouse Engineering Technology Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Core service and new technologies Mouse ES core Discussions

More information

species- Mus musculus Engineering the mouse genome David Ornitz

species- Mus musculus Engineering the mouse genome David Ornitz species- Mus musculus Engineering the mouse genome David Ornitz Time line for mouse genetic engineering Development of chimeras between embryos with different genotypes Transgenic mice first derived by

More information

Mouse Genetics 3/8/17. Outline. History of Mouse Genetics. History of the laboratory mouse. Mouse strains. Gene8c mapping How do we find genes?

Mouse Genetics 3/8/17. Outline. History of Mouse Genetics. History of the laboratory mouse. Mouse strains. Gene8c mapping How do we find genes? 3/8/17 Mouse Genetics Heather A Lawson Department of Gene8cs Spring 2017 Outline History of the laboratory mouse Mouse strains Gene8c mapping How do we find genes? Gene8c Engineering How do we analyze gene

More information

Bart Williams, PhD Van Andel Research Center

Bart Williams, PhD Van Andel Research Center A History of Genome Editing in the Laboratory Implications for Translational Applications Bart Williams, PhD Van Andel Research Center Introduction by Matthew Denenberg, MD DeVos Childrens Hospital Disclosures:

More information

CRISPR Applications: Mouse

CRISPR Applications: Mouse CRISPR Applications: Mouse Lin He UC-Berkeley Advantages of mouse as a model organism similar to human Can be genetically manipulated Isogenic and congenic genetic background An accelerated lifespan. Well-characterized

More information

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. transient. stable. - Two methods to produce transgenic animals: Only for teaching purposes - not for reproduction or sale CELL TRANSFECTION transient stable TRANSGENIC ANIMALS - Two methods to produce transgenic animals: 1- DNA microinjection 2- embryonic stem cell-mediated

More information

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D.

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D. Use of Gene Editing Technologies in Rodents Carlisle P. Landel, Ph.D. The Mouse as A Model Mammal Small, easy to maintain, fecund Well understood genetics Similarity to humans >90% Availability of inbred

More information

Introduction and History of Genome Modification. Adam Clore, PhD Director, Synthetic Biology Design

Introduction and History of Genome Modification. Adam Clore, PhD Director, Synthetic Biology Design Introduction and History of Genome Modification Adam Clore, PhD Director, Synthetic Biology Design Early Non-site Directed Genome Modification Homologous recombination in yeast TARGET GENE 5 Arm URA3 3

More information

CRISPR/Cas9 Genome Editing: Transfection Methods

CRISPR/Cas9 Genome Editing: Transfection Methods CRISPR/ Genome Editing: Transfection Methods For over 20 years Mirus Bio has developed and manufactured high performance transfection products and technologies. That expertise is now being applied to the

More information

TRANSGENIC TECHNOLOGIES: Gene-targeting

TRANSGENIC TECHNOLOGIES: Gene-targeting TRANSGENIC TECHNOLOGIES: Gene-targeting Reverse Genetics Wild-type Bmp7 -/- Forward Genetics Phenotype Gene or Mutations First Molecular Analysis Second Reverse Genetics Gene Phenotype or Molecular Analysis

More information

Experimental genetics - 2 Partha Roy

Experimental genetics - 2 Partha Roy Partha Roy Experimental genetics - 2 Making genetically altered animal 1) Gene knock-out k from: a) the entire animal b) selected cell-type/ tissue c) selected cell-type/tissue at certain time 2) Transgenic

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random insertion 2- embryonic stem cell-mediated gene

More information

Genome editing. Knock-ins

Genome editing. Knock-ins Genome editing Knock-ins Experiment design? Should we even do it? In mouse or rat, the HR-mediated knock-in of homologous fragments derived from a donor vector functions well. However, HR-dependent knock-in

More information

Theoretical cloning project

Theoretical cloning project Theoretical cloning project Needed to get credits Make it up yourself, don't copy Possible to do in groups of 2-4 students If you need help or an idea, ask! If you have no idea what to clone, I can give

More information

Easi CRISPR for conditional and insertional alleles

Easi CRISPR for conditional and insertional alleles Easi CRISPR for conditional and insertional alleles C.B Gurumurthy, University Of Nebraska Medical Center Omaha, NE cgurumurthy@unmc.edu Types of Genome edits Gene disruption/inactivation Types of Genome

More information

A Guide to CRISPR/Cas9

A Guide to CRISPR/Cas9 Genome editing and beyond freepik A Guide to CRISPR/Cas9 The latest advance in genomic DNA editing is the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system. This simple-touse

More information

CRISPR cas : Presented By: Pooya Rashvand Advised By: Dr. M.Aslanimehr

CRISPR cas : Presented By: Pooya Rashvand Advised By: Dr. M.Aslanimehr Journal Club & MSc Seminar CRISPR cas : Presented By: Pooya Rashvand Advised By: Dr. M.Aslanimehr CRISPR - cas : A New tool for Genetic Manipulations from Bacterial Immunity Systems Viral SS DNA RNA Guide

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Using CRISPR for genetic alteration

Using CRISPR for genetic alteration Using CRISPR for genetic alteration Joffrey Mianné. j.mianne@har.mrc.ac.uk Mary Lyon Centre, MRC Harwell. CRISPR/Cas origins Origin of the CRISPR/Cas system: Clustered-Regularly Interspaced Short Palindromic

More information

New Plant Breeding Technologies

New Plant Breeding Technologies New Plant Breeding Technologies Ricarda A. Steinbrecher, PhD EcoNexus / ENSSER Berlin, 07 May 2015 r.steinbrecher@econexus.info distributed by EuropaBio What are the NPBTs? *RNAi *Epigenetic alterations

More information

CRISPR: hot, hot, hot

CRISPR: hot, hot, hot CRISPR: hot, hot, hot 166 CRISPR is the latest technique for genome engineering and is generating tons of excitement due to its versatility, high specificity, and ease of use. CRISPR stands for clustered

More information

Lecture 17. Transgenics. Definition Overview Goals Production p , ,

Lecture 17. Transgenics. Definition Overview Goals Production p , , Lecture 17 Reading Lecture 17: p. 251-256, 260-261 & 264-266 Lecture 18: p. 258-264, 508-524 Transgenics Definition Overview Goals Production p.251-256, 260-261, 264-266 315 Definition A transgenic animal

More information

Genome Engineering with ZFNs, TALENs and CRISPR/Cas9

Genome Engineering with ZFNs, TALENs and CRISPR/Cas9 Genome Engineering with ZFNs, TALENs and CRISPR/Cas9 Designer Endonucleases ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced

More information

Student Learning Outcomes (SLOS) - Advanced Cell Biology

Student Learning Outcomes (SLOS) - Advanced Cell Biology Course objectives The main objective is to develop the ability to critically analyse and interpret the results of the scientific literature and to be able to apply this knowledge to afford new scientific

More information

Lecture 8: Transgenic Model Systems and RNAi

Lecture 8: Transgenic Model Systems and RNAi Lecture 8: Transgenic Model Systems and RNAi I. Model systems 1. Caenorhabditis elegans Caenorhabditis elegans is a microscopic (~1 mm) nematode (roundworm) that normally lives in soil. It has become one

More information

PLNT2530 (2018) Unit 9. Genome Editing

PLNT2530 (2018) Unit 9. Genome Editing PLNT2530 (2018) Unit 9 Genome Editing Unless otherwise cited or referenced, all content of this presenataion is licensed under the Creative Commons License Attribution Share-Alike 2.5 Canada 1 Genome Editing

More information

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13

Bi Lecture 3 Loss-of-function (Ch. 4A) Monday, April 8, 13 Bi190-2013 Lecture 3 Loss-of-function (Ch. 4A) Infer Gene activity from type of allele Loss-of-Function alleles are Gold Standard If organism deficient in gene A fails to accomplish process B, then gene

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Genome edi3ng with the CRISPR-Cas9 system

Genome edi3ng with the CRISPR-Cas9 system CRISPR-Cas9 Genome Edi3ng Bootcamp AHA Council on Func3onal Genomics and Transla3onal Biology Narrated video link: hfps://youtu.be/h18hmftybnq Genome edi3ng with the CRISPR-Cas9 system Kiran Musunuru,

More information

Expert information. Types of genetically engineered animals

Expert information. Types of genetically engineered animals Expert information Committee for Genetics and Breeding of Laboratory Animals Types of genetically engineered animals Status: June 2017 Authors: Ingrid Renner-Müller, Munich Johannes Schenkel, Heidelberg

More information

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission Transgenic Mice Transgenesis Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission integrates into all cells including sperm or egg Knockin mice DNA

More information

User Instructions:Transfection-ready CRISPR/Cas9 Reagents. Target DNA. NHEJ repair pathway. Nucleotide deletion. Nucleotide insertion Gene disruption

User Instructions:Transfection-ready CRISPR/Cas9 Reagents. Target DNA. NHEJ repair pathway. Nucleotide deletion. Nucleotide insertion Gene disruption User Instructions:Transfection-ready CRISPR/Cas9 Reagents Background Introduction to CRISPR/Cas9 genome editing In bacteria and archaea, clustered regularly interspaced short palindromic repeats (CRISPR)

More information

Transgenic Mice. Introduction. Generation of Transgenic Mice. Transgenic Mice: A Unique Tool for the Study of Mammalian Biology.

Transgenic Mice. Introduction. Generation of Transgenic Mice. Transgenic Mice: A Unique Tool for the Study of Mammalian Biology. Transgenic Mice Charles Babinet, Institut Pasteur, Paris, France Transgenic mice carry exogenous genetic material introduced by the experimenter. Homologous recombination is used to introduce programmed

More information

Return to Web Version

Return to Web Version Page 1 of 7 Page 1 of 7 Return to Web Version ZFN Technology Biowire Volume 10 Article 1 Have your genomic work cut out for you The genomes of several organisms, including humans, have been sequenced,

More information

CRISPR/Cas9 Gene Editing Tools

CRISPR/Cas9 Gene Editing Tools CRISPR/Cas9 Gene Editing Tools - Separations Simply Spectacular INDELS Identify indels Determine if one or both copies of your gene have indels The Guide-it Genotype Confirmation Kit: Simple detection

More information

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest C A. site-directed mutagenesis A C A T A DNA B. in vitro mutagenesis by PCR T A 1. anneal primer 1 C A 1. fill in

More information

A Survey of Genetic Methods

A Survey of Genetic Methods IBS 8102 Cell, Molecular, and Developmental Biology A Survey of Genetic Methods January 24, 2008 DNA RNA Hybridization ** * radioactive probe reverse transcriptase polymerase chain reaction RT PCR DNA

More information

Applications of Cas9 nickases for genome engineering

Applications of Cas9 nickases for genome engineering application note genome editing Applications of Cas9 nickases for genome engineering Shuqi Yan, Mollie Schubert, Maureen Young, Brian Wang Integrated DNA Technologies, 17 Commercial Park, Coralville, IA,

More information

Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm

Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm Improving CRISPR-Cas9 Gene Knockout with a Validated Guide RNA Algorithm Anja Smith Director R&D Dharmacon, part of GE Healthcare Imagination at work crrna:tracrrna program Cas9 nuclease Active crrna is

More information

ksierzputowska.com Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster

ksierzputowska.com Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster Research Title: Using novel TALEN technology to engineer precise mutations in the genome of D. melanogaster Research plan: Specific aims: 1. To successfully engineer transgenic Drosophila expressing TALENs

More information

CRISPR/Cas9 Gene Editing Tools

CRISPR/Cas9 Gene Editing Tools CRISPR/Cas9 Gene Editing Tools - Guide-it Products for Successful CRISPR/Cas9 Gene Editing - Why choose Guide-it products? Optimized methods designed for speed and ease of use Complete kits that don t

More information

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment.

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment. 1. (15 pts) John Gurdon won the 2012 Nobel Prize in Physiology or Medicine for work he did in the 1960 s. What was the major developmental hypothesis he set out to test? What techniques did he development

More information

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals:

TRANSGENIC ANIMALS. -transient transfection of cells -stable transfection of cells. - Two methods to produce transgenic animals: Giovanna Gambarotta- Only for teaching purposes. TRANSGENIC ANIMALS -transient transfection of cells -stable transfection of cells - Two methods to produce transgenic animals: 1- DNA microinjection - random

More information

Mouse Transgenic Technologies. Siva, Wai Hung TSANG (PhD), Scientific Officer Animal and Plant Care Facility, HKUST

Mouse Transgenic Technologies. Siva, Wai Hung TSANG (PhD), Scientific Officer Animal and Plant Care Facility, HKUST Mouse Transgenic Technologies Siva, Wai Hung TSANG (PhD), Scientific Officer Animal and Plant Care Facility, HKUST Advancement of Animal Care & Use Programs by Transgenic Services Tailor-made (Transgenesis)

More information

Genome Editing with Programmable Nucleases. Jin-Soo Kim Department of Chemistry Seoul National University

Genome Editing with Programmable Nucleases. Jin-Soo Kim Department of Chemistry Seoul National University Genome Editing with Programmable Nucleases Jin-Soo Kim Department of Chemistry Seoul National University 1 Method of the Year 2011: Engineered Nucleases RNA-guided Cas9 Endonuclease 3 FokI and the First

More information

The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton

The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton The Use of Genetically-Modified Mouse Models to Study the Actin Cytoskeleton Anthony Kee (PhD) Cellular and Genetic Medicine Unit School of Medical Sciences (a.kee@unsw.edu.au) 2017 Structure of the Prac

More information

Methods for Reverse genetics References:

Methods for Reverse genetics References: Methods for Reverse genetics References: 1. Alonso JM, Ecker JR. Moving forward in reverse: genetic technologies to enable genomewide phenomic screens in Arabidopsis. Nat Rev Genet. 2006 Jul;7(7):524-36.

More information

Concepts and Methods in Developmental Biology

Concepts and Methods in Developmental Biology Biology 4361 Developmental Biology Concepts and Methods in Developmental Biology June 16, 2009 Conceptual and Methodological Tools Concepts Genomic equivalence Differential gene expression Differentiation/de-differentiation

More information

CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing

CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing CRISPR/Cas9: Tools and Applications for Eukaryotic Genome Editing Fei Ann Ran Broad Institute Cambridge, Massachusetts ran@fas.harvard.edu I will provide some background on the CRISPR/Cas9 technology,

More information

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003 Xiaolin Bi is a post doctoral research fellow at the Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. Yikang S. Rong is the principal

More information

A) (5 points) As the starting step isolate genomic DNA from

A) (5 points) As the starting step isolate genomic DNA from GS Final Exam Spring 00 NAME. bub ts is a recessive temperature sensitive mutation in yeast. At º C bub ts cells grow normally, but at º C they die. Use the information below to clone the wild-type BUB

More information

New methods for gene engineering in animals

New methods for gene engineering in animals New methods for gene engineering in animals Technical Journal Club Special Series on Laboratory Animal Science Caihong Zhu 07.06.2016 Overview I. Definition of gene engineering II. History of gene engineering

More information

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology 1 Biotechnology is defined as the technology that involves the use of living organisms

More information

Testing Non-Transgenic CRISPR Technology for Wheat Improvement 13 TH IWGS - TULLN, AUSTRIA

Testing Non-Transgenic CRISPR Technology for Wheat Improvement 13 TH IWGS - TULLN, AUSTRIA Testing Non-Transgenic CRISPR Technology for Wheat Improvement KALI M BRANDT, HILARY L GUNN, BRETT L BUSCHKE, ADAM HEESACKER, NATHALIA MORET TI, ALEXANDER KARASEV, ROBERT S ZEMETRA 13 TH IWGS - TULLN,

More information

Analysis of gene function

Analysis of gene function Genome 371, 22 February 2010, Lecture 12 Analysis of gene function Gene knockouts PHASE TWO: INTERPRETATION I THINK I FOUND A CORNER PIECE. 3 BILLION PIECES Analysis of a disease gene Gene knockout or

More information

New Plant Breeding Techniques Group 1 Targeted Mutagenesis

New Plant Breeding Techniques Group 1 Targeted Mutagenesis WORKSHOP COMPERATIVE SITUATION OF NEW PLANT BREEDING TECHNIQUES 12-13 SEPTEMBER 2011 SEVILLE, SPAIN New Plant Breeding Techniques Group 1 Targeted Mutagenesis Maria Lusser Joint Research Centre, European

More information

CRISPR: A Simple Tool for Answering Complex Questions

CRISPR: A Simple Tool for Answering Complex Questions CRISPR: A Simple Tool for Answering Complex Questions www.bcm.edu/cbass c_bass@bcm.edu 713-798-8987 CRISPR-Cas systems CRISPRs: Clustered Regularly Interspaced Short Palindromic Repeats Cas: The accompanying

More information

IMPROVEMENT OF CRISPR GENE EDITING EFFICIENCY AND BEYONDS

IMPROVEMENT OF CRISPR GENE EDITING EFFICIENCY AND BEYONDS IMPROVEMENT OF CRISPR GENE EDITING EFFICIENCY AND BEYONDS YONGLUN LUO (ALUN) ALUN@BIOMED.AU.DK VIB, NOV. 21. 2017 Associate Professor, Department of Biomedicine, Aarhus University, Denmark Executive Director,

More information

CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems

CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems April 2008 CRISPRseek Workshop Design of target-specific guide RNAs in CRISPR-Cas9 genome-editing systems Lihua Julie Zhu August 1st 2014 Outline Background and Motives CRISPRseek Functionality Dependency

More information

CRISPR/Cas9 Mouse Production

CRISPR/Cas9 Mouse Production CRISPR/Cas9 Mouse Production Emory Transgenic and Gene Targeting Core http://cores.emory.edu/tmc Tamara Caspary, Ph.D. Scientific Director Teresa Quackenbush --- Lab Operations and Communications Coordinator

More information

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells.

The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Supplemental Materials Materials & Methods Generation of RRPA and RAPA Knock-in Mice The RRPA knock-in allele was generated by homologous recombination in TC1 ES cells. Targeted ES clones in which the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10163 Supplementary Table 1 Efficiency of vector construction. Process wells recovered efficiency (%) Recombineering* 480 461 96 Intermediate plasmids 461 381 83 Recombineering efficiency

More information

Supplementary Figure 1. Diagram for CATCHA construct. Nature Biotechnology doi: /nbt.3444

Supplementary Figure 1. Diagram for CATCHA construct. Nature Biotechnology doi: /nbt.3444 Supplementary Figure 1 Diagram for CATCHA construct. Supplementary Figure 2 Representative view of ebony (left) and non-ebony (right) F2 flies from experiments described in Fig. 1c. F0 #1 F0 #2 F0 #3 F0

More information

Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More. Ed Davis, Ph.D.

Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More. Ed Davis, Ph.D. TECHNICAL NOTE Genome Editing: Cas9 Stable Cell Lines for CRISPR sgrna Validation, Library Screening, and More Introduction Ed Davis, Ph.D. The CRISPR-Cas9 system has become greatly popular for genome

More information

Barley as a model for cereal engineering and genome editing. Wendy Harwood

Barley as a model for cereal engineering and genome editing. Wendy Harwood Barley as a model for cereal engineering and genome editing Wendy Harwood MonoGram 29 th April 2015 www.bract.org BRACT Transformation Platform Over-expression of single genes RNAi based silencing Promoter

More information

Generation and Application of Genetically Modified Mouse Models of Human Disease.

Generation and Application of Genetically Modified Mouse Models of Human Disease. Generation and Application of Genetically Modified Mouse Models of Human Disease. Nina Balthasar RCUK and BHF Research Fellow Department of Physiology and Pharmacology University of Bristol The Plan Techniques

More information

KEY Reproductive cloning Therapeutic cloning

KEY Reproductive cloning Therapeutic cloning 1. (20 pts) Define Reproductive and Therapeutic cloning. Make sure your descriptions clearly distinguish the critical differences between them. Describe an example of each. Reproductive cloning refers

More information

Understanding embryonic head development. ANAT2341 Tennille Sibbritt Embryology Unit Children s Medical Research Institute

Understanding embryonic head development. ANAT2341 Tennille Sibbritt Embryology Unit Children s Medical Research Institute Understanding embryonic head development ANAT2341 Tennille Sibbritt Embryology Unit Children s Medical Research Institute Head malformations among the most common category of congenital malformations in

More information

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development The only way to get from genotype to phenotype is through developmental processes. - Remember the analogy that the zygote contains

More information

Human Molecular Genetics Assignment 3 (Week 3)

Human Molecular Genetics Assignment 3 (Week 3) Human Molecular Genetics Assignment 3 (Week 3) Q1. Which one of the following is an effect of a genetic mutation? a. Prevent the synthesis of a normal protein. b. Alters the function of the resulting protein

More information

Transfection of CRISPR/Cas9 Nuclease NLS ribonucleoprotein (RNP) into adherent mammalian cells using Lipofectamine RNAiMAX

Transfection of CRISPR/Cas9 Nuclease NLS ribonucleoprotein (RNP) into adherent mammalian cells using Lipofectamine RNAiMAX Transfection of CRISPR/Cas9 Nuclease NLS ribonucleoprotein (RNP) into adherent mammalian cells using Lipofectamine RNAiMAX INTRODUCTION The CRISPR/Cas genome editing system consists of a single guide RNA

More information

Applications For CRISPR-Cas9 Stable Cell Lines

Applications For CRISPR-Cas9 Stable Cell Lines Applications For CRISPR-Cas9 Stable Cell Lines Presenter: March 22, 2017 Ed Davis, Ph.D. Senior Application Scientist GeneCopoeia, Inc. GeneCopoeia products & services Functional Genomics & Cell Biology

More information

Research techniques in genetics. Medical genetics, 2017.

Research techniques in genetics. Medical genetics, 2017. Research techniques in genetics Medical genetics, 2017. Techniques in Genetics Cloning (genetic recombination or engineering ) Genome editing tools: - Production of Knock-out and transgenic mice - CRISPR

More information

Stem Cel s Key Words:

Stem Cel s Key Words: Stem Cells Key Words: Embryonic stem cells, Adult stem cells, ips cells, self-renewal, differentiation, pluripotent, multipotent, Inner cell mass, Nuclear transfer (Therapeutic cloning), Feeder cells,

More information

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Test Bank for Molecular Cell Biology 7th Edition by Lodish Test Bank for Molecular Cell Biology 7th Edition by Lodish Link download full: http://testbankair.com/download/test-bank-formolecular-cell-biology-7th-edition-by-lodish/ Chapter 5 Molecular Genetic Techniques

More information

Introduction to CRISPR/Cas9 Background DNA Cleavage and Repair (NHEJ and HDR) Alternative Cas9 Variants Delivery of Cas9 and sgrna Library Products

Introduction to CRISPR/Cas9 Background DNA Cleavage and Repair (NHEJ and HDR) Alternative Cas9 Variants Delivery of Cas9 and sgrna Library Products Introduction to CRISPR/Cas9 Background DNA Cleavage and Repair (NHEJ and HDR) Alternative Cas9 Variants Delivery of Cas9 and sgrna Library Products which one is right for you? CRISPR Workflow abm s Toolbox

More information

Supplementary Figures and Figure legends

Supplementary Figures and Figure legends Supplementary Figures and Figure legends 3 Supplementary Figure 1. Conditional targeting construct for the murine Satb1 locus with a modified FLEX switch. Schematic of the wild type Satb1 locus; the conditional

More information

Lentiviral CRISPR guild RNA Cloning Kit for constructing CRISPR targeting grna lentivectors

Lentiviral CRISPR guild RNA Cloning Kit for constructing CRISPR targeting grna lentivectors Lentiviral CRISPR guild RNA Cloning Kit for constructing CRISPR targeting grna lentivectors Cat# Product Name Amount Application grna-h1-gb grna-h1-gp grna-h1-rb grna-h1-rp grna-h1-puro grna-h1-bsd grna-u6-gb

More information

Humanized Cas9 endonuclease expression lentivirus for CRISPR. Cat# Product Name Amounts

Humanized Cas9 endonuclease expression lentivirus for CRISPR. Cat# Product Name Amounts Humanized Cas9 endonuclease expression lentivirus for CRISPR Cat# Product Name Amounts LVP681 LVP681-PBS LVP682 LVP682-PBS LVP683 LVP683-PBS LVP678 LVP678-PBS LVP679 LVP679-PBS LVP680 LVP680-PBS LVP707

More information

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule

12/31/16. I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA. 1. DNA is a very large molecule I. Manipulating DNA (9.1) A. Scientists use several techniques to manipulate DNA 1. DNA is a very large molecule 3. Led to many biotechnology applications- genetic engineering, DNA fingerprinting, cloning,

More information

Exam 3 4/25/07. Total of 7 questions, 100 points.

Exam 3 4/25/07. Total of 7 questions, 100 points. Exam 3 4/25/07 BISC 4A P. Sengupta Total of 7 questions, 100 points. QUESTION 1. Circle the correct answer. Total of 40 points 4 points each. 1. Which of the following is typically attacked by the antibody-mediated

More information

Review Article Is BAC Transgenesis Obsolete? State of the Art in the Era of Designer Nucleases

Review Article Is BAC Transgenesis Obsolete? State of the Art in the Era of Designer Nucleases Journal of Biomedicine and Biotechnology Volume 2012, Article ID 308414, 5 pages doi:10.1155/2012/308414 Review Article Is BAC Transgenesis Obsolete? State of the Art in the Era of Designer Nucleases J.

More information

Trasposable elements: Uses of P elements Problem set B at the end

Trasposable elements: Uses of P elements Problem set B at the end Trasposable elements: Uses of P elements Problem set B at the end P-elements have revolutionized the way Drosophila geneticists conduct their research. Here, we will discuss just a few of the approaches

More information

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony 1. S. pombe is a distant relative of baker s yeast (which you used in quiz section). Wild type S. pombe can grow on plates lacking tryptophan (-trp plates). A mutant has been isolated that cannot grow

More information

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons)

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons) Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics BIT 220 End of Chapter 22 (Snustad/Simmons) Nucleic Acids as Therapeutic Agents Many diseases (cancer, inflammatory diseases) from

More information

CRISPR GENOMIC SERVICES PRODUCT CATALOG

CRISPR GENOMIC SERVICES PRODUCT CATALOG CRISPR GENOMIC SERVICES PRODUCT CATALOG DESIGN BUILD ANALYZE The experts at Desktop Genetics can help you design, prepare and manufacture all of the components needed for your CRISPR screen. We provide

More information

The Development and Application of the CRISPR/CAS System as a Powerful New Tool for Genome Editing: A CASe Study. Zoe Dubrow.

The Development and Application of the CRISPR/CAS System as a Powerful New Tool for Genome Editing: A CASe Study. Zoe Dubrow. The Development and Application of the CRISPR/CAS System as a Powerful New Tool for Genome Editing: A CASe Study Zoe Dubrow Biochemistry 158 1. Introduction Only a hundred and fifty years have passed since

More information

Lecture 12-2/14/2001 Transcription factors I

Lecture 12-2/14/2001 Transcription factors I Lecture 12-2/14/2001 Transcription factors I Topics we will cover today transgenic technology (contd from last time) Gene targeting conditional gene targeting gene trapping regulated expression of introduced

More information

Supporting Information

Supporting Information Supporting Information Park et al. 10.1073/pnas.1410555111 5 -TCAAGTCCATCTACATGGCC-3 5 -CAGCTGCCCGGCTACTACTA-3 5 -TGCAGCTGCCCGGCTACTAC-3 5 -AAGCTGGACATCACCTCCCA-3 5 -TGACAGGAACACCTACAAGT-3 5 -AAGGCACCTTTCTGTCTCCA-3

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System

TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System AD Award Number: DAMD17-98-1-8233 TITLE: Mammary Specific Expression of Cre Recombinase Under the Control of an Endogenous MMTV LTR: A Conditional Knock-out System PRINCIPAL INVESTIGATOR: Rama Kudaravalli,

More information

Construct Design and Cloning Guide for Cas9-triggered homologous recombination

Construct Design and Cloning Guide for Cas9-triggered homologous recombination Construct Design and Cloning Guide for Cas9-triggered homologous recombination Written by Dan Dickinson (ddickins@live.unc.edu) and last updated December 2013. Reference: Dickinson DJ, Ward JD, Reiner

More information

Genetics and Genomics in Medicine Chapter 9 Questions

Genetics and Genomics in Medicine Chapter 9 Questions Genetics and Genomics in Medicine Chapter 9 Questions Multiple Choice Questions Question 9.1 Which, if any, of the following can be classified as a type of augmentation therapy? a) Treatment using a small

More information

CRISPR RNA-guided activation of endogenous human genes

CRISPR RNA-guided activation of endogenous human genes CRISPR RNA-guided activation of endogenous human genes Morgan L Maeder, Samantha J Linder, Vincent M Cascio, Yanfang Fu, Quan H Ho, J Keith Joung Supplementary Figure 1 Comparison of VEGF activation induced

More information

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity

Chapter 5. Genetic Models. Organization and Expression of Immunoglobulin Genes 3. The two-gene model: Models to Explain Antibody Diversity Chapter 5 Organization and Expression of Immunoglobulin Genes 3 4 5 6 Genetic Models How to account for: ) Vast diversity of antibody specificities ) Presence of Variable regions at the amino end of Heavy

More information

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: )

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: ) Chapter 5 Genetic Analysis in Cell Biology (textbook: Molecular Cell Biology 6 ed, Lodish section: 5.1+5.4-5.5) Understanding gene function: relating function, location, and structure of gene products

More information

Efficient generation of conditional knockout mice by CLICK

Efficient generation of conditional knockout mice by CLICK Efficient generation of conditional knockout mice by CLICK Tomoji Mashimo Genome Editing Research and Development (R&D) Center and Institute of Experimental Animal Sciences, Graduate School of Medicine,

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Supplementary Methods Supplementary Discussion Supplementary Figure 1 Calculated frequencies of embryo cells bearing bi-allelic alterations. Targeted indel mutations induced by

More information

13-1 Changing the Living World

13-1 Changing the Living World 13-1 Changing the Living World In the past, variation was limited to the variations already in nature or random variations that resulted from mutations. Now, scientists can change DNA and swap genes from

More information