Fluorescence Microscopy

Size: px
Start display at page:

Download "Fluorescence Microscopy"

Transcription

1 Fluorescence Microscopy Dr. Arne Seitz Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP

2 Fluorescence Microscopy Why do we need fluorescence microscopy Basics about fluorescence Fluorescent dyes and staining procedures Fluorescent microscopy Advanced applications

3 Purpose of fluorescence microscopy Cells are usually transparent and therefore study of dynamic processes is not always easily possible. Thus a staining procedure is needed.

4 Different staining strategies Histological stain (Absorption) like e.g H&E staining (Hematoxilin and Eosin staining) Fluorescent dyes: Sensitivity / Selectivity

5 The term 'fluorescence' was coined Gabriel Stokes in his 1852 paper [1] ; the name was suggested "to denote the general appearance of a solution of sulphate of quinine and similar media". (Phil. Trans. R. Soc. Lond , [quote from page 387). The name itself was derived from the mineral fluorite (calcium difluoride), some examples of which contain traces of divalent europium, which serves as the fluorescent activator to provide a blue fluorescent emission. The fluorite which provoked the observation originally, and which remains one of the most outstanding examples of the phenomenon, originated from the Weardale region, of northern England. (from Wikipedia) What is fluorescence?

6 Absorption 10-3 *ε / (M -1 cm -1 ) CY3 CY wavelength / nm

7 Fluorescence energy diagram Jablonski Diagram (very simplified)

8 Absorbtion and Emission Spectra of Fluorophores => Scattered excitation light can be efficiently separated from fluorescence

9 Excitation and emission spectra of fluorescent dyes Stokes Shifted => Scattered excitation light can be efficiently separated from fluorescence

10 Excitation and Emission Spectra Excitation and emission spectra are not discrete.

11 Excitation and Emission Spectra The profile of the emission spectra are independent of the excitation wavelength

12 Jablonski Diagram (simplified) 1. Excitation s 2. Internal conversion s 3. Solvent relaxation s 4. Fluorescence 10-9 s 5. Intersystem crossing 10-9 s 6. Phosphorescence 10-3 s Saturation of excited state possible 5 T1 6

13 Bleaching Bleaching is irreversible (=fluorophore is destroyed) Bleaching is dependent on the excitation power Bleaching can also cause photodamage bleached bleached

14 Some Features of a Useful Fluorophore High Absoption High quantum yield High stability, little photobleaching Compatibility with biological systems (labeling efficiency)

15 Fluorescence Microscopy Specificity (molecules can be specifically labelled) Sensitivity (single molecule detection is possible) Fluorescence can report on the environment of the labelled molecule

16 Organelle Specific Fluorescent Stains

17 Fluorescent Stains DAPI binds DNA at AT-rich streches in the minor groove DAPI

18 Fluorescent Stains Mitotracker LysoSensor

19 Fluorophore Labeled Proteins/Antibodies

20 Molecules can be specifically labelled Fluorescein Fluorescein isothiocyanate (FITC)

21 Molecules can be specifically labelled IgG labelled IgG IgG labelled IgG

22 Molecules can be specifically labelled (e.g. Immunofluorescence)

23 Protein of interest Production of a specific antibody Proteins can be specifically labelled Fluorescent labbeleing of the antibody Staining of cells, tissue etc. Alternative: Detection via a fluorescently labelled secondary antibody Major limitation: Targeting in live cells.

24 Autofluorescent Proteins

25 Green Fluorescent Protein (GFP) 488 nm Aequorea victoria (Jellyfish) Chemistry Nobel price 2008 Osamu Shimomura Martin Chalfie Roger Y. Tsien

26 Applications of fluorescent proteins (FP) Two Most common applications of GFP variants From Chudakov et al, Trends Biotech., 2005

27

28 Protein Localization nucleus nucleolus nuclear envelope cytoplasm nucleus + cytoplasm mitochondria peroxisomes microtubules focal adhesions endoplasmic reticulum Golgi plasma membrane Dr. Arne Seitz 10µm

29 Summary Organelles and molecules can be labeled by: Organelle and protein specific fluorescent stains (e.g. Dapi). Labeling of antibodies/proteins with fluorophores. Autofluorescent proteins (e.g. GFPs). Live cell imaging: FP (Fluorescent proteins, e.g. GFP) are the method of choice to label proteins or organelles. Injection of labeled antibodies is possible. Organelle specific stains like e.g. DAPI can be toxic for the cell.

30 Fluorescent Microscopy Why do we need fluorescence microscopy Basics about fluorescence Fluorescent dyes and staining procedures Fluorescent microscopy Advanced applications

31 Fluorescence detection Excitation light (IE) Most excitation light Sample Fluorescent light (IFL) IE/IFL = 10 4 for strong fluorescence IE/IFL = for weak fluorescence (e.g. in situ hybrid.) In order to detect the fluorescence at 10% background the excitation light must be removed or attenuated by a factor up to 10 11

32 Epifluorescence Sample Objective Excitation Light

33 Epifluorescence Sample Back-scattered excitation light: IE/100 Objective Fluorescence

34 Epifluorescence Sample Objective Excitation Light Dichroic mirror (passes green but reflects blue light)

35 Epifluorescence Sample Back-scattered excitation light IE/100 Objective Dichroic mirror (passes green but reflects blue light) Fluorescence Detector

36 Epifluorescence (real world) Sample Back-scattered excitation light IE/100 Objective Dichroic mirror (passes green but reflects blue light) Back-scattered excitation light IE/10,000 Fluorescence Detector

37 Epifluorescence (real world) Sample Back-scattered excitation light IE/100 Objective Dichroic mirror (passes green but reflects blue light) Back-scattered excitation light IE/10,000 Back-scattered excitation light IE/10 11 Fluorescence Detector Emission filter (passes fluorescence but not back-scattered excitation light)

38 Typical Set-Up for Epifluorescence Sample Scattered light Objective HBO 488nm Dichroic mirror Alexa 488 Excitation Filterwheel Detector 520nm Emission Filterwheel

39 Set-Up for Green-Red Double Fluorescence Sample Scattered light Objective HBO 488nm Double dichroic mirror (λ1 = 505nm +λ2 = 560nm) Alexa 488 Excitation Filterwheel (Bandpass) Detector 520nm Emission Filterwheel (Bandpass)

40 Set-Up for Green-Red Double Fluorescence Sample Scattered light Objective HBO 550nm Double dichroic mirror Alexa 555 Excitation Filterwheel (Bandpass) Detector 590nm Emission Filterwheel (Bandpass, Longpass)

41 Implementation of Epifluorescence Dr. Arne Seitz

42 Implementation of Epifluorescence

43 Implementation of Epifluorescence

44 Typical filter profiles Longpass Bandpass Shortpass

45 Typical Triple Bandpass Filter DAPI GFP TexasRed

46 Single Color Detection (e.g. GFP)

47 Single Color Detection (e.g. GFP) Use longpass filter in the emission!

48 Double Color Detection (e.g. GFP and TRITC)

49 GFP-TRITC Detection Filter Cubes GFP-detection TRITC-detection Bandpass emission filters are necessary in multicolor imaging

50 Triple Filter Cube

51 Types of filters typically used Color glass filters (cheap, limited in wavelengths) Interference filters (high flexibility in wavelengths)

52 Light Sources Must fit the fluorescent dyes Must fit the Detectors

53 Light sources Halogen lamp Continuous spectrum: depends on temperature For 3400K maximum at 900 nm Lower intensity at shorter wavelengths Very strong in IR Mercury Lamp (HBO) Most of intensity in near UV Spectrum has a line structure Lines at 313, 334, 365, 406, 435, 546, and 578 nm Xenon lamp (XBO) Even intensity across the visible spectrum Has relatively low intensity in UV Strong in IR Metal halide lamp (Hg, I, Br) Stronger intensity between lines Stable output over short period of time Lifetime up to 5 times longer

54 Spectrum of a mercury arc lamp Dr. Arne Seitz Ideal for excitation of GFP2, CFP and DsRed imaging but less convenient for EGFP

55 Spectrum of a Xenon arc lamp

56 Light Emitting Diode Color Variations Light emitting diodes (LED) Pro: long lifetime Fast switching No unwanted excitation Contra: flexibility intensity Color Name Wavelength Semiconductor (Nanometers) Composition Infrared 880 GaAlAs/GaAs Ultra Red 660 GaAlAs/GaAlAs Super Red 633 AlGaInP Super Orange 612 AlGaInP Orange 605 GaAsP/GaP Yellow 585 GaAsP/GaP Incandescent White 4500K (CT) InGaN/SiC Pale White 6500K (CT) InGaN/SiC Cool White 8000K (CT) InGaN/SiC Pure Green 555 GaP/GaP Super Blue 470 GaN/SiC Blue Violet 430 GaN/SiC Ultraviolet 395 InGaN/SiC

57 Summary Epifluorescence microscopy set-up is very sensitive. Bandpass detection filters are necessary for multicolor detection. Ideal excitation light sources should fit the dyes in use.

58 More about fluorescence microscopy 1. Lecture Biomicroscopy I + II, Prof. Theo Lasser, EPFL 2. Books a) Principle of fluorescence spectroscopy, Joseph R. Lackowicz, Springer 2 nd edition (1999) 3. Internet a) b) b) Web sites of microscope manufactures Leica Nikon Olympus Zeiss 4. BIOp EPFL, SV-AI 0241, SV-AI Dr. Arne Seitz -

Fluorescence Microscopy

Fluorescence Microscopy Fluorescence Microscopy Dr. Arne Seitz Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Fluorescence Microscopy Why do we need fluorescence

More information

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP FLUORESCENCE MICROSCOPY

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP FLUORESCENCE MICROSCOPY FLUORESCENCE MICROSCOPY Internal course 2014 January 14 th FLUORESCENCE MICROSCOPY Why do we need it? - 2- UNSTAINED SPECIMEN Missing specificity 3 DIFFERENT STAINING STRATEGIES Histological stain (Absorption)

More information

Dino-Lite knowledge & education. Fluorescence Microscopes

Dino-Lite knowledge & education. Fluorescence Microscopes Dino-Lite knowledge & education Fluorescence Microscopes Dino-Lite Fluorescence models Smallest fluorescence microscope in the world Revolution to biomedical and educational applications Flexible Easy

More information

More on fluorescence

More on fluorescence More on fluorescence Last class Fluorescence Absorption emission Jablonski diagrams This class More on fluorescence Common fluorophores Jablonski diagrams to spectra Properties of fluorophores Excitation

More information

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky FLUORESCENCE Matyas Molnar and Dirk Pacholsky 1 Information This lecture contains images and information from the following internet homepages http://micro.magnet.fsu.edu/primer/index.html http://www.microscopyu.com/

More information

Concept review: Fluorescence

Concept review: Fluorescence 16 Concept review: Fluorescence Some definitions: Chromophore. The structural feature of a molecule responsible for the absorption of UV or visible light. Fluorophore. A chromophore that remits an absorbed

More information

Partha Roy

Partha Roy Fluorescence microscopy http://micro.magnet.fsu.edu/primer/index.html Partha Roy 1 Lecture Outline Definition of fluorescence Common fluorescent reagents Construction ti of a fluorescence microscope Optical

More information

Fluorescence Light Microscopy for Cell Biology

Fluorescence Light Microscopy for Cell Biology Fluorescence Light Microscopy for Cell Biology Why use light microscopy? Traditional questions that light microscopy has addressed: Structure within a cell Locations of specific molecules within a cell

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Zoltán Ujfalusi Biophysics seminar Dept. of Biophysics, University of Pécs 14-16 February 2011 Luminescence: light is not generated by high temperatures!!!

More information

MICROSCOPY. "micro" (small) "scopeo" (to watch)

MICROSCOPY. micro (small) scopeo (to watch) MICROSCOPY "micro" (small) "scopeo" (to watch) THE RELATIVE SIZES OF MOLECULES, CELLS AND ORGANISMS THE RELATIVE SIZES OF MOLECULES, CELLS AND ORGANISMS MICROSCOPY 1590 2012 MICROSCOPY THE LIGHT Light:

More information

A Brief History of Light Microscopy And How It Transformed Biomedical Research

A Brief History of Light Microscopy And How It Transformed Biomedical Research A Brief History of Light Microscopy And How It Transformed Biomedical Research Suewei Lin Office: Interdisciplinary Research Building 8A08 Email: sueweilin@gate.sinica.edu.tw TEL: 2789-9315 Microscope

More information

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength.

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength. Contact Details The electromagnetic spectrum Biological Spectroscopy Dr Alexander Galkin Email: a.galkin@qub.ac.uk Dr Alexander Galkin MSc Biomolecular Function - BBC8045 Office: MBC Room 186 Tel: (028)

More information

F* techniques: FRAP, FLIP, FRET, FLIM,

F* techniques: FRAP, FLIP, FRET, FLIM, F* techniques: FRAP, FLIP, FRET, FLIM, FCS Antonia Göhler March 2015 Fluorescence explained in the Bohr model Absorption of light (blue) causes an electron to move to a higher energy orbit. After a particular

More information

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy Fluorescence Microscopy Louisiana Tech University Ruston, Louisiana Microscopy Workshop Dr. Mark DeCoster Associate Professor Biomedical Engineering 1 Terms and concepts to know: Signal to Noise Excitation

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Tamás Huber Biophysics seminar Dept. of Biophysics, University of Pécs 05-07. February 2013. Luminescence: light emission of an excited system.

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Imaging of Cells using fluorescents dyes. By: Josué A. Benjamín Rivera September 27, 2018

Imaging of Cells using fluorescents dyes. By: Josué A. Benjamín Rivera September 27, 2018 Imaging of Cells using fluorescents dyes By: Josué A. Benjamín Rivera September 27, 2018 1 History Sir William Henry Perkin BRITISH CHEMIST In 1856, at the age of 18, William Henry Perkin set out with

More information

Widefield Microscopy Bleed-Through

Widefield Microscopy Bleed-Through In widefield microscopy the excitation wavelengths which illuminate the sample, and the emission wavelengths which reach the CCD camera are selected throughout a filter cube. A filter cube consists of

More information

Introduction to Fluorescence Jablonski Diagram

Introduction to Fluorescence Jablonski Diagram ntroduction to Fluorescence Jablonski Diagram Excited Singlet Manifold S1 internal conversion S2 k -isc k isc Excited riplet Manifold 1 S0 k nr k k' f nr fluorescence k p phosphorescence Singlet round

More information

Fluorescence spectroscopy

Fluorescence spectroscopy Fluorescence spectroscopy The light: electromagnetic wave Tamás Huber Biophysics seminar Dept. of Biophysics, University of Pécs 05-06. February 2014. 1 Luminescence: light emission of an excited system.

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

Advanced fluorescence microscopy techniques

Advanced fluorescence microscopy techniques Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities TÁMOP-4.1.1.C-13/1/KONV-2014-0001 Advanced

More information

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics MPSF educator packet This packet contains illustrations and figures from the Molecular Probes School of Fluorescence website. They illustrate concepts from the basic physical properties that underlie fluorescence

More information

What to look for in a fluorophore. What to do with a fluorophore. Types of fluorochromes

What to look for in a fluorophore. What to do with a fluorophore. Types of fluorochromes What to do with a fluorophore Intracellular localization (ER, Golgi, PM, nuclear, lysosome, MT, actin,...) Dynamic processes (protein synthesis, trafficking, turnover, DNA replication, cytoskeletal remodeling,

More information

Fluorescence Microscopy: A Biological Perspective

Fluorescence Microscopy: A Biological Perspective Fluorescence Microscopy: A Biological Perspective From nanometre to metre: the scale of life Instrumentation and accessible scale limits the questions that can be addressed in biology Why are there limits?

More information

Advanced fluorescence microscopy techniques

Advanced fluorescence microscopy techniques Practice-oriented, student-friendly modernization of the biomedical education for strengthening the international competitiveness of the rural Hungarian universities TÁMOP-4.1.1.C-13/1/KONV-2014-0001 Advanced

More information

Janos Szabad Department of Biology University of Szeged 6720 Szeged, Somogyi str

Janos Szabad Department of Biology University of Szeged 6720 Szeged, Somogyi str Janos Szabad Department of Biology University of Szeged 6720 Szeged, Somogyi str. 4. E-mail: szabad.janos@med.u-szeged.hu - Through the use of antibodies - against the protein - against a fusion partner

More information

Practical light microscopy: an introduction

Practical light microscopy: an introduction Practical light microscopy: an introduction Dr. Mark Leake, Oxford University www.physics.ox.ac.uk/users/leake Aim of today s talk: Explanation of the very (very) basics of how a light microscope works

More information

1. The fluorescence process.

1. The fluorescence process. 1. The fluorescence process. 1.1 introduction Fluorescence is the result of a three-stage process that occurs in certain molecules (generally polyaromatic hydrocarbons or heterocycles) called fluorophores

More information

Biochemistry. Biochemical Techniques. 18 Spectrofluorimetry

Biochemistry. Biochemical Techniques. 18 Spectrofluorimetry Description of Module Subject Name Paper Name 12 Module Name/Title 1. Objectives 1.1 To understand technique of Spectrofluorimetry. 1.2 To explain instrumentation design 1.3 What are applications of Spectrofluorimetry?

More information

Con-focal and Multi-photon Microscope Experiment Fundamental. Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS

Con-focal and Multi-photon Microscope Experiment Fundamental. Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS Con-focal and Multi-photon Microscope Experiment Fundamental Qian Hu, Lab of Laser Scanning Confocal & Two-Photon Microscopy, ION, CAS 1. Light is Electromagnetic Wave ν = c / λ 2. Image of a Point Source

More information

2004 Debye Lecture 4 C. B. Murray. Quantum Dot Applications: Sun Screen. Solar Cells. Bio-tagging. Solid State Lighting?

2004 Debye Lecture 4 C. B. Murray. Quantum Dot Applications: Sun Screen. Solar Cells. Bio-tagging. Solid State Lighting? 2004 Debye Lecture 4 C. B. Murray Quantum Dot Applications: Sun Screen Solar Cells Bio-tagging Solid State Lighting? Quantum Dot Solar cells Nanocrystal Solar Cells Double-labeling of mitochondria

More information

cell and tissue imaging by fluorescence microscopy

cell and tissue imaging by fluorescence microscopy cell and tissue imaging by fluorescence microscopy Steven NEDELLEC Plateforme Micropicell SFR Santé François Bonamy Nantes 1 A matter of size Limit of resolution 0.15mm aims: building the image of an object

More information

ANAT 3231 Cell Biology Lab12 Stem Cell Analysis

ANAT 3231 Cell Biology Lab12 Stem Cell Analysis ANAT 3231 Cell Biology Lab12 Stem Cell Analysis 2 June 2010 Dr Antonio Lee Neuromuscular & Regenera9ve Medicine Unit School of Medical Sciences, UNSW Introduction to Flow Cytometry Contributed by Vittoria

More information

Lesson Plan: Fluorescence

Lesson Plan: Fluorescence Lesson Plan: Fluorescence Background Fluorescence is produced when a material or substance absorbs light of a given color and then gives off light of another color. The light that is given off, or emitted,

More information

Confocal Microscopes. Evolution of Imaging

Confocal Microscopes. Evolution of Imaging Confocal Microscopes and Evolution of Imaging Judi Reilly Hans Richter Massachusetts Institute of Technology Environment, Health & Safety Office Radiation Protection What is Confocal? Pinhole diaphragm

More information

Cell Imaging. Cell Imaging 48

Cell Imaging. Cell Imaging 48 Cell Imaging 48 bio-rad.com/zoe Cell Imaging Bio-Rad s suite of tools for fluorescence microscopy and cell imaging includes the ZOE fluorescent cell imager and nuclear dyes. See Also PureBlu Hoechst 33342

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

The Basics of Flow Cytometry

The Basics of Flow Cytometry The Basics of Flow Cytometry F ACS C ore F acility Janine Bögli, Biozentrum, 29. January 2018 The functions of the FACS Core Facility Centralization of equipment and expertise Train users Sorter operation

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Intracellular localization and trafficking of proteins or How (and why) to find a needle in a haystack

Intracellular localization and trafficking of proteins or How (and why) to find a needle in a haystack Intracellular localization and trafficking of proteins or How (and why) to find a needle in a haystack :: The Structure of a Cell :: Relative sizes SUBUNITS 0.2 mm (200 μm) minimum resolvable by unaided

More information

11/19/2013. Janine Zankl FACS Core Facility 13. November Cellular Parameters. Cellular Parameters. Monocytes. Granulocytes.

11/19/2013. Janine Zankl FACS Core Facility 13. November Cellular Parameters. Cellular Parameters. Monocytes. Granulocytes. DEPARTEMENT BIOZENTRUM Janine Zankl FACS Core Facility 13. November 2013 Cellular Parameters Granulocytes Monocytes Basophils Neutrophils Lymphocytes Eosinophils Cellular Parameters 1 What Is Flow Cytometry?

More information

Each question may have MULTIPLE correct answers. Select all that are correct.

Each question may have MULTIPLE correct answers. Select all that are correct. Knowledge Assessment Flow Cytometry Workshop, Part 1 April 20, 2015 Each question may have MULTIPLE correct answers. Select all that are correct. 1. Tandem dyes are a. highly stable fluorophores after

More information

Live cell microscopy

Live cell microscopy Live cell microscopy 1. Why do live cell microscopy? 2. Maintaining living cells on a microscope stage. 3. Considerations for imaging living cells. 4. Fluorescence labeling of living cells. 5. Imaging

More information

Spectral Separation of Multifluorescence Labels with the LSM 510 META

Spectral Separation of Multifluorescence Labels with the LSM 510 META Microscopy from Carl Zeiss Spectral Separation of Multifluorescence Labels with the LSM 510 META Indians living in the South American rain forest can distinguish between almost 200 hues of green in their

More information

Compensation: Fundamental Principles

Compensation: Fundamental Principles Flow Cytometry Seminar Series 2017 : Fundamental Principles Spillover correction in multicolor flow cytometry 28.02.2017 http://www.cytometry.uzh.ch Contents Fluorescence and its detection Absorption and

More information

ab CytoPainter ER Staining Kit Red Fluorescence

ab CytoPainter ER Staining Kit Red Fluorescence ab139482 CytoPainter ER Staining Kit Red Fluorescence Instructions for Use Designed to detect Human endoplasmic reticulum by microscopy. This product is for research use only and is not intended for diagnostic

More information

Imaging facilities at WUR

Imaging facilities at WUR Imaging facilities at WUR Advanced light microscopy facilities at Wageningen UR Programme Thursday 13 June 2013 Lunch meeting organized by Cat-Agro Food 12.00 Welcome and sandwich lunch 12.10 Introduction

More information

QuantaMaX and standard filters for fluorescence

QuantaMaX and standard filters for fluorescence QuantaMaX and standard filters for fluorescence Our fluorescence filter product line is comprised of Stock QuantaMAX and Standard Vivid and Basic excitation, emission and dichroic interference filters,

More information

Sapphire. Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING

Sapphire. Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING Sapphire Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING Breakthrough image capture and analysis The Sapphire Biomolecular Imager is a next generation laser scanning system that provides

More information

August 15, 2018 $ " % ' & OMe. NEt2 MeO

August 15, 2018 $  % ' & OMe. NEt2 MeO Taking a deep look: a near infrared fluorescent dye for long term bioimaging ~ Promising photostable tool for single molecule tracking and multicolor imaging ~ August 15, 2018 A team of researchers at

More information

NPS Calorimeter Curing System

NPS Calorimeter Curing System NPS Calorimeter Curing System All known crystals suffer from radiation damage. The most common damage phenomenon is radiation-induced absorption (reduction in crystal s light attenuation length). Studies

More information

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f Microscopes and Microscopy MCB 380 Good information sources: Alberts-Molecular Biology of the Cell http://micro.magnet.fsu.edu/primer/ http://www.microscopyu.com/ Approaches to Problems in Cell Biology

More information

Flow Cytometry - The Essentials

Flow Cytometry - The Essentials Flow Cytometry - The Essentials Pocket Guide to Flow Cytometry: 1. Know your Cytometer 2. Understanding Fluorescence and Fluorophores 3. Gating Process 4. Controls 5. Optimization 6. Panel Building 7.

More information

INTRODUCTION TO FLOW CYTOMETRY

INTRODUCTION TO FLOW CYTOMETRY DEPARTEMENT BIOZENTRUM INTRODUCTION TO FLOW CYTOMETRY F ACS C ore F acility Janine Zankl FACS Core Facility 3. Dezember 2015, 4pm Cellular Parameters Granulocytes Monocytes Basophils Lymphocytes Neutrophils

More information

Lab 1: Ensemble Fluorescence Basics

Lab 1: Ensemble Fluorescence Basics Lab 1: Ensemble Fluorescence Basics This laboratory module is divided into two sections. The first one is on organic fluorophores, and the second one is on ensemble measurement of FRET (Fluorescence Resonance

More information

Color-Rich Fluoro-Max Dyed Microparticles March 2008

Color-Rich Fluoro-Max Dyed Microparticles March 2008 Fluoro-Max Dyed Microparticles March 2008 Introduction Dyed Microparticles Thermo Scientific Seradyn dyed and fluorescent microparticles are monodisperse particles prepared by unique and proprietary emulsion

More information

1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES

1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES 1. INTRODUCTION 2. EXPERIMENTAL 3. REFERENCES 1 1. INTRODUCTION Fluorescence spectroscopy is one of the most widely used spectroscopic techniques in the fields of biochemistry and molecular biophysics

More information

SPHERO TM Fluorescent Particles

SPHERO TM Fluorescent Particles The SPHERO TM fluorescent microparticles are prepared by either staining polystyrene particles with a fluorophore solution or by polymerizing a fluorophore in styrene in the presence of polystyrene core

More information

ab CytoPainter ER Staining Kit Red Fluorescence

ab CytoPainter ER Staining Kit Red Fluorescence ab139482 CytoPainter ER Staining Kit Red Fluorescence Instructions for Use Designed to detect Human endoplasmic reticulum by microscopy. This product is for research use only and is not intended for diagnostic

More information

ABSORPTION STRUCTURES IN THE VISIBLE REFLECTION SPECTRUM OF MINERALS ABSTRACT

ABSORPTION STRUCTURES IN THE VISIBLE REFLECTION SPECTRUM OF MINERALS ABSTRACT Economic Geology Vol. 60, 1965, pp. 1721-1725 ABSORPTION STRUCTURES IN THE VISIBLE REFLECTION SPECTRUM OF MINERALS REINHOLD GERHARZ ABSTRACT Narrow and faint absorption lines have been observed in the

More information

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis

Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Selected Topics in Electrical Engineering: Flow Cytometry Data Analysis Bilge Karaçalı, PhD Department of Electrical and Electronics Engineering Izmir Institute of Technology Outline Experimental design

More information

Fluorescence Spectroscopy. Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana

Fluorescence Spectroscopy. Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana Fluorescence Spectroscopy Student: Marin Cristina Antonia Coordinator:S.l. Preda Liliana Fluorescence Electron in the ground state is excited to a higher energy state After loss of some energy in vibrational

More information

PALM/STORM, BALM, STED

PALM/STORM, BALM, STED PALM/STORM, BALM, STED Last class 2-photon Intro to PALM/STORM Cyanine dyes/dronpa This class Finish localization super-res BALM STED Localization microscopy Intensity Bins = pixels xx 2 = ss2 + aa 2 /12

More information

Absorption of an electromagnetic wave

Absorption of an electromagnetic wave In vivo optical imaging?? Absorption of an electromagnetic wave Tissue absorption spectrum Extinction = Absorption + Scattering Absorption of an electromagnetic wave Scattering of an electromagnetic wave

More information

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING Marc Verhaegen CMCS, MONTREAL, MAY 11 th, 2017 OVERVIEW Hyperspectral Imaging Multiplex Biological Imaging Multiplex Single Particle

More information

QUICK GUIDE TO STED SAMPLE PREPARATION

QUICK GUIDE TO STED SAMPLE PREPARATION Page 1 13 Author Wernher Fouquet Date 2014-01-23 Quick Guide to STED Sample Preparation This document provides you with information about sample preparation for STED microscopy. It contains some tips and

More information

The most extensively used technique for tissue analysis is light microscopy.

The most extensively used technique for tissue analysis is light microscopy. Fluorescence Theory Quantum yield Wavelength shift Ligand interactions Membrane interactions Using quenchning effects Fluorescence in-vivo Localization Distance measurements FRET The most extensively used

More information

THE PAST, PRESENT, AND FUTURE OF LIGHTING

THE PAST, PRESENT, AND FUTURE OF LIGHTING THE PAST, PRESENT, AND FUTURE OF LIGHTING WHY CARE ABOUT LIGHTING? Lighting Statistics 38% of industrial and commercial electricity use is for lighting. 10% to 20% of home electricity use is for lighting.

More information

Accessorize Your Imaging. Ian Clements Invitrogen Corp

Accessorize Your Imaging. Ian Clements Invitrogen Corp Accessorize Your Imaging Ian Clements Invitrogen Corp Imaging Tools and Accessories Antifade Reagents Prolong Gold SlowFade Gold Image-iT FX Signal Enhancer FocalCheck Microscope Test Slides Fluorescent

More information

Cell analysis and bioimaging technology illustrated

Cell analysis and bioimaging technology illustrated Cell analysis and bioimaging technology illustrated The Cell Analysis Center Scientific Bulletin Part 1 Sysmex has been studying and exploring principles of automated haematology analysers, making full

More information

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa Single cell molecular profiling using Quantum Dots Technical Journal Club 01.10.2013 Rahel Gerosa Molecular Profiling Powerful technique to study complex molecular networks underlying physiological and

More information

Confocal Microscopy & Imaging Technology. Yan Wu

Confocal Microscopy & Imaging Technology. Yan Wu Confocal Microscopy & Imaging Technology Yan Wu Dec. 05, 2014 Cells under the microscope What we use to see the details of the cell? Light and Electron Microscopy - Bright light / fluorescence microscopy

More information

[6.2] Rename Scheme 1 as Figure 1 : renamed as requested

[6.2] Rename Scheme 1 as Figure 1 : renamed as requested David Casto; Thanh Le Department of Chemistry, University of Missouri 205 Schlundt Hall 600 S. College Avenue Columbia, MO 65211 Telephone: (816) 332-0299 E-mail: ptld49@mail.missouri.edu Professor Rainer

More information

Multiphoton Microscopy: Seeing deeper and clearer

Multiphoton Microscopy: Seeing deeper and clearer Multiphoton Microscopy: Seeing deeper and clearer Since the invention of simple microscope by Leuwenhoek and Hooke in the 17th century, different types of light microscopy techniques (such as phase contrast,

More information

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging Rice/TCU REU on Computational Neuroscience Fundamentals of Molecular Imaging June 2, 2009 Neal Waxham 713-500-5621 m.n.waxham@uth.tmc.edu Objectives Introduction to resolution in light microscopy Brief

More information

Imaging of BacMam Transfected U-2 OS Cells

Imaging of BacMam Transfected U-2 OS Cells A p p l i c a t i o n N o t e Imaging of BacMam Transfected U-2 OS Cells Optimization of Transfection Conditions Using the Cytation 3 Multi- Mode Reader and Gen5 Data Analysis Software Paul Held Ph. D.

More information

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements

Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Time-resolved Measurements Using the Agilent Cary Eclipse Fluorescence Spectrophotometer A Versatile Instrument for Accurate Measurements Technical Overview Authors Dr. Fabian Zieschang, Katherine MacNamara,

More information

Nodes of regulation in cellular systems

Nodes of regulation in cellular systems Nodes of regulation in cellular systems cell membrane signal transduction ligands receptors oligomerization transport signal transduction modified protein Golgi transcription factor transport ER transport

More information

Attune TM Acoustic Focusing Cytometer Training. Manik Punj Attune Training

Attune TM Acoustic Focusing Cytometer Training. Manik Punj Attune Training Attune TM Acoustic Focusing Cytometer Training Manik Punj Attune Training Attune Training Agenda Section 1 An Introduction to Flow Cytometry Section 2 An Introduction to Acoustic Focusing Hydrodynamic

More information

Prototype Microfluidic System for Fluorescence-Based Chemical Sensing

Prototype Microfluidic System for Fluorescence-Based Chemical Sensing Doi: 10.12982/cmujns.2014.0064 625 Prototype Microfluidic System for Fluorescence-Based Chemical Sensing Pattareeya Kittidachachan 1, Suparat Rujihan 1 and Badin Damrongsak 2* 1 Department of Physics,

More information

Basic Fluorescence Microscopy and Sample Preparation. Eva Wegel

Basic Fluorescence Microscopy and Sample Preparation. Eva Wegel Basic Fluorescence Microscopy and Sample Preparation Eva Wegel eva.wegel@bioch.ox.ac.uk Visible Light 390 700 nm visible to the human eye White light is split into its components through a prism Reason:

More information

The Green Fluorescent Protein. w.chem.uwec.edu/chem412_s99/ppt/green.ppt

The Green Fluorescent Protein. w.chem.uwec.edu/chem412_s99/ppt/green.ppt The Green Fluorescent Protein w.chem.uwec.edu/chem412_s99/ppt/green.ppt www.chem.uwec.edu/chem412_s99/ppt/green.ppt Protein (gene) is from a jellyfish: Aequorea victoria www.chem.uwec.edu/chem412_s99/ppt/green.ppt

More information

[A complex community of T cells, B cells, NK, DC monocytes,neutrophils, etc.] Lymphocyte Communication Does not Obey at least one Aristotelian Ideal:

[A complex community of T cells, B cells, NK, DC monocytes,neutrophils, etc.] Lymphocyte Communication Does not Obey at least one Aristotelian Ideal: [A complex community of T cells, B cells, NK, DC monocytes,neutrophils, etc.] Lymphocyte Communication Does not Obey at least one Aristotelian Ideal: Broadcast An entire city should be of a sufficiently

More information

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting

Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Institute of Industrial Information Technology Applicability of Hyperspectral Fluorescence Imaging to Mineral Sorting Optical Characterization of Materials, March 19, 2015 Sebastian Bauer, M.Sc. (Head:

More information

FRET and FRET based Microscopy Techniques

FRET and FRET based Microscopy Techniques Big Question: We can see rafts in Model Membranes (GUVs or Supported Lipid Bilayers, LM), but how to study in cells? Do rafts really exist in cells? Are they static large structures? Are they small transient

More information

Super-resolution Microscopy

Super-resolution Microscopy Semr oc kwhi t epaperser i es : 1. Introduction Super-resolution Microscopy Fluorescence microscopy has revolutionized the study of biological samples. Ever since the invention of fluorescence microscopy

More information

Principles of flow cytometry: overview of flow cytometry and its uses for cell analysis and sorting. Shoreline Community College BIOL 288

Principles of flow cytometry: overview of flow cytometry and its uses for cell analysis and sorting. Shoreline Community College BIOL 288 Principles of flow cytometry: overview of flow cytometry and its uses for cell analysis and sorting Shoreline Community College BIOL 288 Flow Cytometry What is Flow Cytometry? Measurement of cells or particles

More information

APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications. Physical and Fluorescence Properties

APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications. Physical and Fluorescence Properties APPLICATION NOTE Rev. 7/2017, v4.0 Fluorescent Nanodiamonds: Bio-applications Fluorescent nanodiamonds (FNDs) offer a unique alternative to currently existing fluorescent biomarkers. With exceptional photo

More information

CytoPainter Golgi Staining Kit Green Fluorescence

CytoPainter Golgi Staining Kit Green Fluorescence ab139483 CytoPainter Golgi Staining Kit Green Fluorescence Instructions for Use Designed for the detection of Golgi bodies by microscopy This product is for research use only and is not intended for diagnostic

More information

Sapphire. Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING

Sapphire. Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING Sapphire Biomolecular Imager THE NEXT GENERATION OF LASER-BASED IMAGING Breakthrough image capture and analysis The Sapphire Biomolecular Imager is a next generation laser scanning system that provides

More information

Analysis of Luminescence Properties of Phosphorescent Polyimides under Low Temperature and Vacuum Conditions

Analysis of Luminescence Properties of Phosphorescent Polyimides under Low Temperature and Vacuum Conditions SCIENTIFIC INSTRUMENT NEWS 2017 Vol. M A R C H 8 Technical magazine of Electron Microscope and Analytical Instruments. Article Analysis of Luminescence Properties of Phosphorescent Polyimides under Low

More information

Azure Biosystems Western Blotting Workflow

Azure Biosystems Western Blotting Workflow Azure Biosystems Western Blotting Workflow PROBE PLAN SEPARATE ANALYZE VISUALIZE PLAN Plan your experiment and choose your detection method Chemiluminescent Western Blotting The most common method for

More information

COPYRIGHTED MATERIAL. Tissue Preparation and Microscopy. General Concepts. Chemical Fixation CHAPTER 1

COPYRIGHTED MATERIAL. Tissue Preparation and Microscopy. General Concepts. Chemical Fixation CHAPTER 1 CHAPTER 1 Tissue Preparation and Microscopy General Concepts I. Biological tissues must undergo a series of treatments to be observed with light and electron microscopes. The process begins by stabilization

More information

OPTIQUE et BIOLOGIE. Cycle ingénieur 2A mars/mai Nathalie Westbrook Karen Perronet Groupe Biophotonique, Institut d Optique

OPTIQUE et BIOLOGIE. Cycle ingénieur 2A mars/mai Nathalie Westbrook Karen Perronet Groupe Biophotonique, Institut d Optique OPTIQUE et BIOLOGIE Cycle ingénieur 2A mars/mai 2017 Nathalie Westbrook Karen Perronet Groupe Biophotonique, Institut d Optique Outline of the course (18h) 14 & 21 / 03 / 2017: Molecular and Cellular Biology

More information

Classroom Tested Lesson

Classroom Tested Lesson Classroom Tested Lesson Video Description Secrets of the Sequence, Show 124, Episode 2 A Green Light for Biology approximately 10 minutes viewing time This discovery known as Green Fluorescent Protein

More information

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life Super Resolution Microscopy STORM/PALM Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 1/31/211 Looking into microscopic world of life 1 µm 1 µm 1 nm 1 nm 1 nm 1 Å Naked

More information

NEWTON 7.0 BIOLUMINESCENCE & FLUORESCENCE IMAGING IN VIVO - IN VITRO IMAGING

NEWTON 7.0 BIOLUMINESCENCE & FLUORESCENCE IMAGING IN VIVO - IN VITRO IMAGING NEWTON 7.0 BIOLUMINESCENCE & FLUORESCENCE IMAGING IN VIVO - IN VITRO IMAGING The NEWTON s protocol driven image acquisition is as quick as it is intuitive: adjust your exposure, save, print or quantify.

More information

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000 Confocal Microscopy of Electronic Devices James Saczuk Consumer Optical Electronics EE594 02/22/2000 Introduction! Review of confocal principles! Why is CM used to examine electronics?! Several methods

More information

ADVANCED PRACTICAL COURSE IN BIOPHYSICS: FRET

ADVANCED PRACTICAL COURSE IN BIOPHYSICS: FRET : FRET 1 INTRODUCTION Fluorescence spectroscopy and fluorescence microscopy are essential tools in biology. Biological molecules can be labeled with fluorescent molecules and thus, their localization and

More information