HTGR development in Japan and present status

Size: px
Start display at page:

Download "HTGR development in Japan and present status"

Transcription

1 HTGR development in Japan and present status Taiju SHIBATA Senior Principal Researcher Group Leader, International Joint Research Group HTGR Hydrogen and Heat Application Research Center Japan Atomic Energy Agency (JAEA) WORKSHOP V VINCO TECHNICAL MEETING 9 th International School on Nuclear Power, 17 th November 2017, Warsaw, Poland

2 Contents 1. Outline of HTTR 2. Graphite components 3. Operation Experience of HTTR 4. Present Status for HTGR development p.1

3 High Temperature Engineering Test Reactor (HTTR) Location of HTTR The Pacific H T T R Japan JAEA 2

4 Bird s eye View of HTTR Reactor Building High Temperature Engineering Test Reactor (HTTR) Fuel handling machine Control room Air cooler Secondary pressurized water cooler Spent fuel storage pool Intermediate heat exchanger Reactor core Primary pressurized water cooler Reactor pressure vessel Reactor containment vessel p.3

5 Major Specifications of HTTR Thermal power Average power density Coolant Outlet coolant temperature Inlet coolant temperature Primary coolant pressure Moderator / Reflector Core height Core diameter Fuel Uranium enrichment Fuel element type Pressure vessel Containment vessel S. Saito et al., JAERI-1332 (1994). 30MW 2.5MW/m 3 Helium gas 850 C/950 C 395 C 4MPa Graphite 2.9m 2.3m Low enriched UO % (Ave. 6%) Prismatic block/ Coated Fuel Particle 2 1/4Cr-1Mo steel 13m(H) 6m(ID) Steel containment 30m(H) 18.5m(ID) p.4

6 High temperature engineering test reactor (HTTR) The first HTGR built in Japan Thermal power: 30MWth Reactor outlet coolant temperature: 950 o C Construction of Reactor Research and development Conceptual design 1969 ~1984 History of HTTR R&D Establishment of fundamental technology ~ First Application and permission of construction Detail design H T T R Basic design System integrity design Conceptual design Construction Experimental very high temperature gas cooled reactor for multipurpose Proposal of a prototype of commercial HTGR s system Start of Loss of Forced cooling test 950 /50 days operation 850 /30 days operation Reactor outlet coolant temperature 950 Safety demonstration test (Control rods withdrawal test) Reactor thermal power (30MW), Reactor outlet coolant temperature 850 criticality Safety demonstration tests Flow rate (%) Power (%) Temp. ( o C) Tripping gas circulators Core cooling flow rate reached zero. Core cooling flow rate Results of test Reactor power Results of test Analysis Maximum fuel temperature Analysis Time (h) No CR reactivity control. No core cooling. Reactor is kept stable naturally with only physical phenomena. Research and development Fuel and Material Oarai gas loop 1 (OGL 1) Reactor physics Very high temperature reactor critical assembly (VHTRC) OECD/NEA project Japan USA France Germany Korea Czech Hungary Thermal Hydraulics A helium engineering demonstration loop (HENDEL) p.5

7 HTTR s design, construction and operational experiments (MHI, Toshiba/IHI, Hitachi, Fuji Electric, KHI and etc.) Design optimization based on extensive technical database Primary coolant system (MHI) Construction of efficient transport and cooling system for very high temperature heat (950 o C) Concentric hot gas duct Primary pressurized water cooler He/He intermediate heat exchanger (IHX) (Toshiba/IHI) Developed new heat (950 o C) resistance material to enable IHX Japanese Technologies for HTTR extraction of heat and making of derivative equipment based on such material HTTR Reactor pressure vessel (Hitachi) Developed new material having high resistance to very high temperature and pressure and construct new pressure vessel using such material Fuel (Nuclear Fuel Industries) Reactor internals (Fuji Electric) Graphite material IG 110 (Toyo Tanso) Reactor internals Advanced technology to coat uranium fuel using ceramics with high radioactivity retaining performance High strength High heat conduction Irradiationresistance p.6

8 Fuel Assembly High density PyC SiC Low density PyC Fuel kernel,.0.6.mm (UO 2 ) 0.92 mm Dowel pin Fuel handling hole 41.mm Fuel channel 8 mm Center hole Graphite matrix Coated fuel particle 39 mm End plug (both sides) Fuel compact Graphite sleeve 580 mm 26 mm Fuel compact 34.mm Fuel rod Dowel socket 360.mm Fuel graphite block Fuel assembly (Pin-in-block type) S. Saito et al., JAERI-1332 (1994). p.7

9 Contents 1. Outline of HTTR 2. Graphite components 3. Operation Experience of HTTR 4. Present Status for HTGR development p.8

10 Graphite in HTTR IG 110 PGX ASR 0RB Bulk density (Mg/m 3 ) Mean tensile strength (MPa)* Mean compressive strength (MPa)* Young s modulus (GPa) (±1/3S u )** Mean thermal expansion coefficient (10 6 K) (293~673K) Thermal conductivity (W/m K) (673K) Ash (ppm) Max. 100 Max Max Grain size (μm) Mean 20 Max. 800 Max * : at room temperature ** : Determined from the cord joining two points (one point is the one-third of the specified minimum tensile strength and the other is the one-third of the specified minimum compressive strength) on the stress-strain curve. JAERI-1332 p.9

11 Graphite Structural Design Code JAERI-1332, JAERI-M Divided into two components from the view point of requirement, replaceability, function and in-service condition Core graphite components Replaceable reflector block (IG-110) Control rod guide block (IG-110) Fuel block (IG-110) Core support graphite components Permanent reflector block (PGX) Hot plenum block (PGX) Support post (IG-110) Lower plenum block (PGX) Carbon block (ASR-0RB) Bottom block (PGX) Requirement : high strength, irradiation stability Replaceability: routine Function : keep fuel at original position, reflector and guide of control rod In-service condition : high neutron fluence (up to n/m 2 ) Requirement : high strength Replaceability: not available Function : support core, reflector In-service condition : low neutron fluence (up to n/m 2 ) Graphite structural design code was established for the HTTR. p.10

12 Integrity Assurance Approach Database Design Manufacturing Inspection Design data including irradiation effect Proof test Structural design code Inspection standards QA/QC management JAERI-M JAERI-M Pre service inspection In service In service inspection method JAERI-Tech JAEA-Data/Code Crack propagation or unexpected oxidation were not supposed First fuel loading Inspection by TV camera Link among Database, Design, Manufacturing and In-service phases are considered. A special committee at Atomic Energy Society in Japan established a draft of standard for graphite core components in HTGR (JAEA-Research ). In service inspection Reactor not in operation Surveillance test Inspection by TV camera Reactor in operation Monitoring of regional temperature distribution p.11

13 Dimensional Change by Irradiation Dimensional change (%) IG-110 HTTR JAEA-Research Irradiation-induced dimensional change of graphite First stage : Shrinkage due to decrease of porosity Second stage: Max. shrinkage (Turn Around: TA) TA depends on irradiation temp. Fast neutron fluence ( n/m 2, E>0.1MeV) Third stage: Expansion from TA due to creation of micro cracks Ref. JAEA-Research p.12

14 Young s Modulus Change by Irradiation Rel. Young s modulus change (E/E 0-1) 照射による縦弾性係数変化率 (E/E 0-1) Irradiation 照射温度 Temperature ( ) ( C) IG Fast Neutron 高速中性子照射量 Fluence( n/m 2, 2 E>29fJ),E>29fJ) Ref.) JAERI-M p.13

15 Thermal Conductivity Change by Irradiation Rel. 照射による熱伝導率の変化率 thermal conductivity change (K/K0) 0 ) Irradiation 照射温度 Temperature ( ) ( ) Fast 高速中性子照射量 Neutron Fluence (10 25 n/m 2,,E>29fJ) E>0.1MeV) IG-110 Ref.) JAERI-M p.14

16 Advantage of IG 110 Graphite Neutron irradiation causes residual stress in graphite components. Safety margin to material data Safety margin to design limit Fig. Example of calculated residual stress for graphite blocks during HTTR operation and limit of stress Ref. J. SUMITA, Characteristics of First Loaded IG-110 Graphite in HTTR Core, JAEA-Technology p.15

17 Contents 1. Outline of HTTR 2. Graphite components 3. Operation Experience of HTTR 4. Present Status for HTGR development p.16

18 High Temperature Continuous Operation Purpose 2010: Reactor outlet helium gas temperature 950 o C 50 days continuous operation To establish fundamental technologies of HTGR To demonstrate stable heat supply to a future heat application system Evaluation of fuel performance (FP retention) Evaluation of core physics Evaluation of impurity control technology in helium coolant Evaluation of IHX performance Evaluation of structural integrity of components Accumulation of operation and maintenance technologies p.17

19 Fuel Performance in HTTR Fractional release of fission gas ( 88 Kr) Operational limit of the HTTR : (U.S.A.) Fort St. Vrain (Germany) AVR (Japan) HTTR Reactor outlet helium gas temperature 950 o C 50 days continuous operation Continuous high temperature operation K. Takamatsu et al., JAEA Research (2010). Operation date in 2010 p.18

20 Loss of Forced Cooling Test Loss of forced cooling (LOFC) & Loss of vessel cooling (LOVC) simulation of station blackout Vessel cooling system (VCS) Vessel cooling system (2 units) Secondary pressurized water cooler (SPWC) Core is cooled from the outside by radiation and natural convection. Water cooling tube Reactor RPV Heat Auxiliary cooling system Intermediate heat exchanger (IHX) Primary pressurized water cooler (PPWC) Heat removal adjustment panel Cooling water : Stop of circulator and pump p.19

21 Loss of Forced Cooling Test Loss of forced cooling test (LOCF test) : Stop of all circulators in primary circuit Stop of all primary circulators flow rate of primary coolant : 100% 0%) Test Date Test Condition Dec.21, 2010 Increase of reactor core temperature Decrease of reactor power due to negative reactivity feedback ( resonance absorption of neutron in U 238 ) Reactor power and fuel temperature remain in stable condition Ref ) Leaflet of HTTR, JAEA. Flow rate (%) Power (%) Temp. ( o C) Initial reactor power 30% (9MW) Without scram (no movement of CR) Test Results Stop of circulator Core flow rate Test result Reactor power Test result Peak fuel temperature Analytical result Elapsed time (hr) 20 p.20

22 Contents 1. Outline of HTTR 2. Graphite components 3. Operation Experience of HTTR 4. Present Status for HTGR development p.21

23 Policies of HTGR Development in Japan Technical development of HTGR is stated in the following policies approved by the Cabinet. Strategic Energy Plan approved by the Cabinet on April 11, 2014 Under international cooperation, government of Japan facilitates R&D of nuclear technologies that serve the safety improvement of nuclear use, such as hightemperature gas cooled reactors which are expected to be utilized in various industries including hydrogen production and which has inherent safety. Growth Strategy 2017 approved by the Cabinet on June 9, calls for future R&D concerning the HTGR development to be promoted using JAEA s HTGR test reactor and through international cooperation. Strategic Roadmap of hydrogen and fuel cell issued by the committee in the METI on June 23, METI : Ministry of Economy, Trade and Industry p.22

24 Ongoing Activities under MEXT MEXT established a committee including MEXT, METI, JAEA, industries and universities to discuss roadmap and conceptual design for the first demonstration plant. Specification of commercial HTGR, R&D plan, introduction scenario are being discussed. Industry Vendors Users (Electricity/Hydrogen/Heat Utilization) Toshiba Corporation Nippon Steel & Sumitomo Metal Corporation Hitachi, Ltd. Iwatani Corporation Fuji Electric Co., Ltd. Chiyoda Corporation Mitsubishi Heavy Industries, Ltd. Toyo Engineering Corporation Fuel/Graphite manufactures JGC Corporation Nuclear Fuel Industries, Ltd. Hitachi Zosen Corporation Toyo Tanso Co., Ltd. Trading company/think tank Toyota Motor Corporation Marubeni Utility Services, Ltd. Nissan Motor Co., Ltd. Canon Institute for Global Studies Honda R&D Co.,Ltd. Academy Government University of Tokyo Ministry of Education, Culture, Sports, Science and Tokyo Institute of Technology Technology (MEXT) Tokyo City University Japan Atomic Energy Agency (JAEA) Toyo University of Agriculture and Technology Kyushu University Observer: Japan Electrical Manufacturers Association, Japan Atomic Power Company, Institute of Applied Energy, Ministry of Economy, Trade and Industry (METI) p.23

25 Overview of HTGR and Heat Application Technologies HTTR (1) Reactor technology Reactor outlet coolant temperature 950 o C at 30 MWt (April 2004) 950 o C / 50 days operation (March 2010) Advanced fuel development HTTR tests for HTGR safety enhancement Safety review by NRA is underway (3) Commercial HTGR design Design study of commercial HTGR systems Core design of plutonium burning HTGR (2) Heat application technologies He compressor Hydrogen facility Completion of basic technologies related to hydrogen production facility and gas turbine power generation Establishment of operation control technology and facility reliability for IS process 31 hrs. hydrogen production with 0.02m 3 /h (October 2016) (4) HTTR GT/H2 test Coupling to HTTR Licensing demonstration Plant performance test Establishment of safety design philosophy and international standardization for commercial HTGRs Integrated demonstration of HTGR heat application system technologies p.24

26 HTTR GT/H 2 Test (Basic Design Outline) Objective of HTTR GT/H 2 test Demonstration of system technologies for HTGR helium gas turbine power generation and H 2 production Establishment of safety standard and design consideration for coupling between reactor and heat application system Improvement of cost evaluation reliability Recuperator / Precooler Secondary heat exchanger Helium gas turbine Plant cycle schematic Reactor IHX Isolation valves Gas turbine Precooler H 2 facility Generator Recuperator HTTR Isolation valves Reactor Intermediate heat exchanger (IHX) HTTR GT/H 2 test facility (Planned) p.25

27 Thank you for your attention. JAEA is willing to cooperate future HTGR program with Japanese mature technologies! Taiju SHIBATA

28

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan Taiju SHIBATA Senior Principal Researcher Group Leader, International Joint Research Group HTGR Hydrogen and Heat

More information

High Temperature Materials

High Temperature Materials High Temperature Materials Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency High Temperature Materials in HTGR Graphite components

More information

HTTR test program towards coupling with the IS process

HTTR test program towards coupling with the IS process HTTR test program towards coupling with the IS process T. Iyoku, N.Sakaba, S. Nakagawa, Y.Tachibana, S. Kasahara, and K.Kawasaki Japan Atomic Energy Agency (JAEA) 1 Contents 1. Outline of the HTTR (High

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT Takakazu TAKIZUKA Japan Atomic Energy Research Institute The 1st COE-INES International Symposium, INES-1 October 31 November 4, 2004 Keio Plaza Hotel,

More information

Operation of the High-Temperature Engineering Test Reactor

Operation of the High-Temperature Engineering Test Reactor Operation of the High-Temperature Engineering Test Reactor Nozomu Fujimoto, Naoki Nojiri, Yukio Tachibana and Toshihiko Mizushima Department of HTTR Japan Atomic Energy Agency (JAEA) -1- Contents 1. 1.

More information

Status of HTTR Project in JAEA

Status of HTTR Project in JAEA Status of HTTR Project in JAEA Kazuhiko Kunitomi Nuclear Hydrogen and Heat Application Research Center Japan Atomic Energy Agency (JAEA) TWGGCR meeting at IAEA March 5, 2013 The HTTR Project HTTR (1) Reactor

More information

Present Status and Future Plan of HTTR Project

Present Status and Future Plan of HTTR Project Present Status and Future Plan of HTTR Project Tatsuo Iyoku *, Toshio Nakazawa, Kozou Kawasaki, Hideyuki Hayashi, and Seigo Fujikawa Department of HTTR Project, Japan Atomic Energy Research Institute Narita-cho,

More information

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR)

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) Shusaku Shiozawa * Department of HTTR Project Japan Atomic Energy Research Institute (JAERI) Japan Abstract It is essentially important

More information

The Next Generation Nuclear Plant (NGNP)

The Next Generation Nuclear Plant (NGNP) The Next Generation Nuclear Plant (NGNP) Dr. David Petti Laboratory Fellow Director VHTR Technology Development Office High Temperature, Gas-Cooled Reactor Experience HTGR PROTOTYPE PLANTS DEMONSTRATION

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA ELSEVIER www.elsevier.com/locate/pnucene Progress in Nuclear Energy; Vol. 47, No. 1-4, pp. 283-291,2005 Available online at www.sciencedirect.com 2005 Elsevier Ltd. All rights reserved s =, E N e E ~)

More information

Nuclear Energy and Hydrogen Production The Japanese Situation

Nuclear Energy and Hydrogen Production The Japanese Situation Nuclear Energy and Production The Japanese Situation S. SAITO Vice Chairman, Atomic Energy Commission of Japan. Design, Research and Development and Operation Experiences of HTGR in Japan. Introduction

More information

Current Status and Future Challenges of Innovative Reactors Development in Japan

Current Status and Future Challenges of Innovative Reactors Development in Japan Innovation for Cool Earth Forum 2017, Tokyo, Japan, October 4-5, 2017 Current Status and Future Challenges of Innovative Reactors Development in Japan 5 October, 2017 Yutaka Sagayama Assistant to the President

More information

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi Accident, 8-11 April 2014, IAEA Head quarters, Vienna, Austria Safety Design of HTGR by JAEA

More information

Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR

Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR N. Sakaba, H. Sato, H. Ohashi, T. Nishihara, K. Kunitomi Monday, 16 April 2007 IAEA-CN-152, Oarai, Japan Japan Atomic

More information

Safety Evaluation of VHTR Cogeneration System

Safety Evaluation of VHTR Cogeneration System Safety Evaluation of VHTR Cogeneration System Hiroyuki Sato, Tetsuo Nishihara, Xinglong Yan, Kazuhiko Kunitomi Japan Atomic Energy Agency IAEA International Conference on Non-electric Applications of Nuclear

More information

Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR -

Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR - Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR - Hamamoto S. 1, Sakaba N. 1 1 Japan Atomic Energy Agency, Higashiibaraki,

More information

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident IAEA Technical Meeting on on Re evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor Fuel and Structural Materials, 10 12 July 2012, Vienna, Austria Naturally

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

HTGR Brayton Cycle Technology and Operations

HTGR Brayton Cycle Technology and Operations MIT Workshop on New Cross-cutting Technologies for Nuclear Power Plants, Cambridge, USA, January 30-3, 207 HTGR Brayton Cycle Technology and Operations Xing L. Yan HTGR Hydrogen and Heat Application Research

More information

DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING

DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING K. KUNITOMI, T. TAKEDA Q642788 Department of HTTR Project, Japan Atomic Research Institute, Ibaraki T. HORIE, K. IWATA Heat Exchangers Division,

More information

HTR Research and Development Program in China

HTR Research and Development Program in China HTR Research and Development Program in China Yuanhui XU Institute of Nuclear and New Energy Technology Tsinghua University, Beijing, China 2004 Pacific Basin Nuclear Conference And Technology Exhibit

More information

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries International Nuclear Energy Volume 21, Article ID 918567, 18 pages http://dx.doi.org/1.1155/21/918567 Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

More information

Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA

Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA Hirofumi Ohashi, Yoshitomo Inaba, Tetsuo Nishihara, Tetsuaki

More information

ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO

ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO ANALYSIS OF NATURAL CIRCULATION TESTS IN THE EXPERIMENTAL FAST REACTOR JOYO Nabeshima K, Doda N, and Ohshima H Fast Reactor Computational Engineering Department Japan Atomic Energy Agency (JAEA) 4002 Narita-cho,

More information

Safety of Experimental Facility in JRR-3

Safety of Experimental Facility in JRR-3 Safety of Experimental Facility in JRR-3 Regional Workshop on the Application of the Code of the Conduct on the Safety Research Reactors 22-27 September 2013 in Yogyakarta, Indonesia H. Horiguchi Contents

More information

Research and Development For Nuclear Production of Hydrogen in Japan

Research and Development For Nuclear Production of Hydrogen in Japan Research and Development For Nuclear Production of Hydrogen in Japan OECD/NEA Third Information Exchange Meeting on the Nuclear Production of Hydrogen October 5, 2005, Oarai, Japan Masao Hori Nuclear Systems

More information

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management What s New in Power Reactor Technologies, Cogeneration and the Fuel Cycle Back End? A Side Event in the 58th General Conference, 24 Sept 2014 Fast and High Temperature Reactors for Improved Thermal Efficiency

More information

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Yuliang SUN Institute of Nuclear and New Energy Technology, Tsinghua University Beijing 100084, PR China 1 st Workshop on PBMR Coupled

More information

Current Activities on the 4S Reactor Deployment

Current Activities on the 4S Reactor Deployment PSN Number: PSN-2010-0586 Document Number: AFT-2010-000134 rev.000(1) Current Activities on the 4S Reactor Deployment The 4th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors: Benefits

More information

Thermal Fluid Characteristics for Pebble Bed HTGRs.

Thermal Fluid Characteristics for Pebble Bed HTGRs. Thermal Fluid Characteristics for Pebble Bed HTGRs. Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Beijing, China Oct 22-26, 2012 Overview Background Key T/F parameters

More information

The new material irradiation infrastructure at the BR2 reactor. Copyright 2017 SCK CEN

The new material irradiation infrastructure at the BR2 reactor. Copyright 2017 SCK CEN The new material irradiation infrastructure at the BR2 reactor The new material irradiation infrastructure at the BR2 reactor Steven Van Dyck, Patrice Jacquet svdyck@sckcen.be Characteristics of the BR2

More information

Module 11 High Temperature Gas Cooled Reactors (HTR)

Module 11 High Temperature Gas Cooled Reactors (HTR) Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Module 11 High Temperature Gas Cooled Reactors (HTR) 1.3.2017 Development

More information

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June 2011

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June 2011 2245-10 Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems 13-18 June 2011 The Part 3: Nuclear Process Heat Reactors Research Center Juelich Institute for

More information

Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel

Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel Demonstration Test Program for Long term Dry Storage of PWR Spent Fuel 16 November 2010 K.Shigemune, The Kansai Electric Power Co., Inc. The Japan Atomic Power Company Kyushu Electric Power Co., Inc. Mitsubishi

More information

Gas Cooled Fast Reactors: recent advances and prospects

Gas Cooled Fast Reactors: recent advances and prospects Gas Cooled Fast Reactors: recent advances and prospects C. Poette a, P. Guedeney b, R. Stainsby c, K. Mikityuk d, S. Knol e a CEA, DEN, DER, F-13108 Saint-Paul lez Durance, CADARACHE, France. b CEA, DEN,

More information

Design Features, Economics and Licensing of the 4S Reactor

Design Features, Economics and Licensing of the 4S Reactor PSN Number: PSN-2010-0577 Document Number: AFT-2010-000133 rev.000(2) Design Features, Economics and Licensing of the 4S Reactor ANS Annual Meeting June 13 17, 2010 San Diego, California Toshiba Corporation:

More information

HIGH TEMPERATURE GAS-COOLED REACTOR FOR HEAT SUPPLY AS A NATURALLY SAFE AND INNOVATIVE NUCLEAR SYSTEM

HIGH TEMPERATURE GAS-COOLED REACTOR FOR HEAT SUPPLY AS A NATURALLY SAFE AND INNOVATIVE NUCLEAR SYSTEM CIGS 3 rd International Symposium on Global Warming HIGH TEMPERATURE GAS-COOLED REACTOR FOR HEAT SUPPLY AS A NATURALLY SAFE AND INNOVATIVE NUCLEAR SYSTEM December 11, 2013 Masuro OGAWA Nuclear Hydrogen

More information

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2008

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2008 1944-19 Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies 19-30 May 2008 Gas-Cooled Reactors Technology Options, Operating Research Reactors and Demonstration Plant Project

More information

Module 11 High Temperature Gas Cooled Reactors (HTR)

Module 11 High Temperature Gas Cooled Reactors (HTR) Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Module 11 High Temperature Gas Cooled Reactors (HTR) 1.10.2013 Development of Helium Reactor

More information

Concept and technology status of HTR for industrial nuclear cogeneration

Concept and technology status of HTR for industrial nuclear cogeneration Concept and technology status of HTR for industrial nuclear cogeneration D. Hittner AREVA NP Process heat needs from industry Steam networks In situ heating HTR, GFR 800 C VHTR > 800 C MSR 600 C SFR, LFR,

More information

The design features of the HTR-10

The design features of the HTR-10 Nuclear Engineering and Design 218 (2002) 25 32 www.elsevier.com/locate/nucengdes The design features of the HTR-10 Zongxin Wu *, Dengcai Lin, Daxin Zhong Institute of Nuclear Energy and Technology, Tsinghua

More information

Evaluation of high temperature gas cooled reactor performance:

Evaluation of high temperature gas cooled reactor performance: IAEA-TECDOC-1382 Evaluation of high temperature gas cooled reactor performance: Benchmark analysis related to initial testing of the HTTR and HTR-10 November 2003 The originating Section of this publication

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Co-ordination and Synthesis of the European Project of Development of HTR Technology (HTR-C) Contract No: FIKI-CT-2000-20269 (Duration: November 2000

More information

4.3 SAFETY RESEARCH PROGRAM OF LWR FUELS AND MATERIALS USING THE JAPAN MATERIALS TESTING REACTOR

4.3 SAFETY RESEARCH PROGRAM OF LWR FUELS AND MATERIALS USING THE JAPAN MATERIALS TESTING REACTOR 4.3 SAFETY RESEARCH PROGRAM OF LWR FUELS AND MATERIALS USING THE JAPAN MATERIALS TESTING REACTOR Satoshi Hanawa a, Jin Ogiyanagi a, Yasuhiro Chimi a, Hideo Sasajima a, Jinichi Nakamura a, Yutaka Nishiyama

More information

CURRENT STATUS OF JMTR

CURRENT STATUS OF JMTR CURRENT STATUS OF JMTR M. Ishihara, N. Kimura, N. Takemoto, M. Ooka, M. Kaminaga, T. Kusunoki, Y. Komori and M. Suzuki Neutron Irradiation and Testing Reactor Center Japan Atomic Energy Agency, 4002 Narita,

More information

ANTARES The AREVA HTR-VHTR Design PL A N TS

ANTARES The AREVA HTR-VHTR Design PL A N TS PL A N TS ANTARES The AREVA HTR-VHTR Design The world leader in nuclear power plant design and construction powers the development of a new generation of nuclear plant German Test facility for HTR Materials

More information

Core Management and Fuel Handling for Research Reactors

Core Management and Fuel Handling for Research Reactors Core Management and Fuel Handling for Research Reactors A. M. Shokr Research Reactor Safety Section Division of Nuclear Installation Safety International Atomic Energy Agency Outline Introduction Safety

More information

RELAP-5 Loss of Forced Cooling (LOFC) Transient Response Modeling for the PB-AHTR

RELAP-5 Loss of Forced Cooling (LOFC) Transient Response Modeling for the PB-AHTR RELAP-5 Loss of Forced Cooling (LOFC) Transient Response Modeling for the PB-AHTR Alain Griveau and Per F. Peterson U.C. Berkeley Report UCBTH-06-003 Sept. 17, 2006 U.C. Berkeley completed the first full

More information

Severe Accident Countermeasures of SFR (on Monju)

Severe Accident Countermeasures of SFR (on Monju) Severe Accident Countermeasures of SFR (on Monju) Mamoru Konomura FBR Plant Engineering Center Japan Atomic Energy Agency 1. Safety Approach of Monju Safety Approaches in early LMFBR There were several

More information

BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy

BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy Dr PJA Howarth Head of Group Science Strategy BNFL/Westinghouse is a large, international supplier of products and services for nuclear industry

More information

VHTR System Prof. Dr. LI Fu

VHTR System Prof. Dr. LI Fu VHTR System Prof. Dr. LI Fu GIF VHTR SSC INET, Tsinghua University, China GIF Symposium, Chiba, Japan May 19, 2015 Outlines What s VHTR? How about VHTR? What are main R&D topics? How to collaborate in

More information

Utilization of research reactors for fundamental studies in university related activities in Japan

Utilization of research reactors for fundamental studies in university related activities in Japan Utilization of research reactors for fundamental studies in university related activities in Japan IAEA International Conference on Research Reactors Safe Managements and Effective Utilization Sydney,

More information

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY Beijing, CHINA, September 22-24, 2004 #Paper F02 Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Very-High-Temperature Reactor System

Very-High-Temperature Reactor System Atomic Energy Society of Japan Journal of NUCLEAR SCIENCE and TECHNOLOGY (JNST) Very-High-Temperature Reactor System Ing. S. BOUČEK 1, Ing. R. VESECKÝ 2 1 Faculty of Electrical Engineering, Czech Technical

More information

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018 DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM Yujie DONG INET, Tsinghua University, China January 24, 2018 Meet the Presenter Dr. Dong is a Professor in Nuclear Engineering at the Tsinghua University, Beijing,

More information

Nuclear Cogeneration

Nuclear Cogeneration Nuclear Cogeneration International Workshop on Acceleration and Applications of Heavy Ions 26 February - 10 March 2012 Heavy Ion Laboratory, Warsaw, Poland Ludwik Pieńkowski Heavy Ion Laboratory University

More information

Modular Helium Reactor (MHR) for Oil Sands Extraction

Modular Helium Reactor (MHR) for Oil Sands Extraction Modular Helium Reactor (MHR) for Oil Sands Extraction Alexander Telengator and Arkal Shenoy General Atomics 30th Annual CNS Conference 1 WORLD ENERGY COMPOSITION Fossil fuels provide ~ 85% of World energy

More information

Gas Cooled Fast Reactor

Gas Cooled Fast Reactor Gas Cooled Fast Reactor 10 th GIF-INPRO/IAEA Interface Meeting IAEA Headquarters, Vienna. 11-12 April 2016 Branislav Hatala VUJE, a.s., Slovak Republic, (Euratom) GFR Reference concept The GFR system is

More information

Technologies of HTR-PM Plant and its economic potential

Technologies of HTR-PM Plant and its economic potential IAEA Technical Meeting on the Economic Analysis of HTGRs and SMRs 25-28 August 2015, Vienna, Austria Technologies of HTR-PM Plant and its economic potential Prof. Dr. Yujie Dong INET/Tsinghua University

More information

The Gen IV Modular Helium Reactor

The Gen IV Modular Helium Reactor The Gen IV Modular Helium Reactor and its Potential for Small and Medium Grids presented to Society of Nuclear Engineers of Croatia 26 January 2007 by David E. Baldwin, Ph.D. Sustainable Energy has Become

More information

Fuel Management Effects on Inherent Safety of Modular High Temperature Reactor

Fuel Management Effects on Inherent Safety of Modular High Temperature Reactor Journal of NUCLEAR SCIENCE and TECHNOLOGY, 26[7], pp. 647~654 (July 1989). 647 Fuel Management Effects on Inherent Safety of Modular High Temperature Reactor Yukinori HIROSEt, Peng Hong LIEM, Eiichi SUETOMI,

More information

Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup M.H. Altaf and Atom N.H. Badrun Indonesia / Atom Vol. 40 Indonesia No. 3 (2014) Vol. 40107 No. - 112 3 (2014) 107-112 Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering

More information

Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant

Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant A. Terada, Y. Imai, H. Noguchi, H. Ota, A. Kanagawa, S. Ishikura, S. Kubo, J. Iwatsuki, K. Onuki and R. Hino

More information

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1079 Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium Yasunori Ohoka * and Hiroshi

More information

Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS

Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS Chapter 4 THE HIGH TEMPERATURE GAS COOLED REACTOR TEST MODULE CORE PHYSICS BENCHMARKS 4.1 HTR-10 GENERAL INFORMATION China has a substantial programme for the development of advanced reactors that have

More information

Development Projects of Supercritical-water Cooled Power Reactor (SCPR) in JAPAN

Development Projects of Supercritical-water Cooled Power Reactor (SCPR) in JAPAN Development Projects of Supercritical-water Cooled Power Reactor (SCPR) in JAPAN Information Exchange Meeting on SCWR Development 1 November 19, 2002 The University of Tokyo Toshiba Corp. Hitachi, Ltd.

More information

STP-NU-018 CREEP-FATIGUE DATA AND EXISTING EVALUATION PROCEDURES FOR GRADE 91 AND HASTELLOY XR

STP-NU-018 CREEP-FATIGUE DATA AND EXISTING EVALUATION PROCEDURES FOR GRADE 91 AND HASTELLOY XR STP-NU-018 CREEP-FATIGUE DATA AND EXISTING EVALUATION PROCEDURES FOR GRADE 91 AND HASTELLOY XR Date of Issuance: May 21, 2009 This report was prepared as an account of work sponsored by U.S. Department

More information

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs Matt Richards, Arkal Shenoy, and Mike Campbell General Atomics IAEA International Conference on Non-Electric Applications of Nuclear Energy

More information

Safety design approach for JSFR toward the realization of GEN-IV SFR

Safety design approach for JSFR toward the realization of GEN-IV SFR Safety design approach for JSFR toward the realization of GEN-IV SFR Advanced Fast Reactor Cycle System R&D Center Japan Atomic Energy Agency (JAEA) Shigenobu KUBO Contents 1. Introduction 2. Safety design

More information

Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack. Brahmananda Chakraborty Bhabha Atomic Research Centre, India

Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack. Brahmananda Chakraborty Bhabha Atomic Research Centre, India Physics Design of 600 MWth HTR & 5 MWth Nuclear Power Pack Brahmananda Chakraborty Bhabha Atomic Research Centre, India Indian High Temperature Reactors Programme Compact High Temperature Reactor (CHTR)

More information

Module 09 High Temperature Gas Cooled Reactors (HTR)

Module 09 High Temperature Gas Cooled Reactors (HTR) c Module 09 High Temperature Gas Cooled Reactors (HTR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Development of Helium

More information

Core Management and Fuel handling for Research Reactors

Core Management and Fuel handling for Research Reactors Core Management and Fuel handling for Research Reactors W. Kennedy, Research Reactor Safety Section Division of Nuclear Installation Safety Yogyakarta, Indonesia 23/09/2013 Outline Introduction Safety

More information

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor

Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor Analysis of Unprotected Transients in the Lead-Cooled ALFRED Reactor G. Bandini (ENEA/Bologna) E. Bubelis, M. Schikorr (KIT/Karlsruhe) A. Alemberti, L. Mansani (Ansaldo Nucleare/Genova) Consultants Meeting:

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria Module 12 Generation IV Nuclear Power Plants Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Generation IV Participants Evolution of Nuclear

More information

Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors

Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors Trends in Transmutation Performance and Safety Parameters Versus TRU Conversion Ratio of Sodium-Cooled Fast Reactors The Tenth OECD Nuclear Energy Agency Information Exchange Meeting on Actinide and Fission

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Hydrogen and Nuclear H2NET Summer 2005 Meeting

Hydrogen and Nuclear H2NET Summer 2005 Meeting ydrogen and Nuclear 2NET Summer 2005 Meeting 24 th June 2005 Dr PJA owarth ead of Group Science Strategy ydrogen Economy Supply Chain Energy Source ydrogen Production Distribution & Storage End Usage Scope

More information

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation 4th GIF Symposium Presentation UIC, Paris, France October 16-17, 2018 Main Outlines VHTR -

More information

Development of a DesignStage PRA for the Xe-100

Development of a DesignStage PRA for the Xe-100 Development of a DesignStage PRA for the Xe-100 PSA 2017 Pittsburgh, PA, September 24 28, 2017 Alex Huning* Karl Fleming Session: Non-LWR Safety September 27th, 1:30 3:10pm 2017 X Energy, LLC, all rights

More information

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled

UNIT-5 NUCLEAR POWER PLANT. Joining of light nuclei Is not a chain reaction. Cannot be controlled UNIT-5 NUCLEAR POWER PLANT Introduction Nuclear Energy: Nuclear energy is the energy trapped inside each atom. Heavy atoms are unstable and undergo nuclear reactions. Nuclear reactions are of two types

More information

Very High Temperature Reactor

Very High Temperature Reactor Very High Temperature Reactor LI Fu GIF VHTR SSC Chair INET, Tsinghua University, China GIF Symposium San Diego November 15-16, 2012 Outline 1. Original VHTR Features 2. Key VHTR Development Targets 3.

More information

Ability of New Concept Passive-Safety Reactor "KAMADO" - Safety, Economy and Hydrogen Production -

Ability of New Concept Passive-Safety Reactor KAMADO - Safety, Economy and Hydrogen Production - GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1092 Ability of New Concept Passive-Safety Reactor "KAMADO" - Safety, Economy and Hydrogen Production - Tetsuo MATSUMURA*, Takanori KAMEYAMA, Yasushi

More information

FEASIBILITY STUDY ON DEPLOYMENT OF THE FIRST UNIT OF RUTA-70 REACTOR IN OBNINSK: DISTRICT HEATING, TECHNOLOGICAL, AND MEDICAL APPLICATIONS

FEASIBILITY STUDY ON DEPLOYMENT OF THE FIRST UNIT OF RUTA-70 REACTOR IN OBNINSK: DISTRICT HEATING, TECHNOLOGICAL, AND MEDICAL APPLICATIONS International Conference on Non-Electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications 16 19 April 2007, Oarai, Japan FEASIBILITY STUDY ON

More information

AREVA HTR Concept for Near-Term Deployment

AREVA HTR Concept for Near-Term Deployment AREVA HTR Concept for Near-Term Deployment L. J. Lommers, F. Shahrokhi 1, J. A. Mayer III 2, F. H. Southworth 1 AREVA Inc. 2101 Horn Rapids Road; Richland, WA 99354 USA phone: +1-509-375-8130, lewis.lommers@areva.com

More information

SmAHTR the Small Modular Advanced High Temperature Reactor

SmAHTR the Small Modular Advanced High Temperature Reactor SmAHTR the Small Modular Advanced High Temperature Reactor Presented to DOE FHR Workshop Oak Ridge National Laboratory September 20-21, 2010 By Sherrell Greene Director, Nuclear Technology Programs Oak

More information

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory I. Introduction Benchmark Specification for HTGR Fuel Element Depletion Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory Anthony P. Ulses Office of Research U.S. Nuclear

More information

Production of Rhenium by Transmuting Tungsten Metal in Fast Reactors with Moderator

Production of Rhenium by Transmuting Tungsten Metal in Fast Reactors with Moderator Journal of Energy and Power Engineering 10 (2016) 159-165 doi: 10.17265/1934-8975/2016.03.003 D DAVID PUBLISHING Production of Rhenium by Transmuting Tungsten Metal in Fast Reactors with Moderator Tsugio

More information

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading ANTARES Application for Cogeneration Oil Recovery from Bitumen and Upgrading Michel Lecomte Houria Younsi (ENSEM) Jérome Gosset (ENSMP) ENC Conference Versailles 11-14 December 2005 1 Presentation Outline

More information

Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300)

Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300) Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300) Kazuhiko Kunitomi 1*, Shoji Katanishi 1, Shoji Takada 1, Takakazu Takizuka 1, Xing Yan 1, Shinichi Kosugijyama 1, Hiroyuki

More information

HTR-PM Project Status and Test Program

HTR-PM Project Status and Test Program IAEA TWG-GCR-22 HTR-PM Project Status and Test Program SUN Yuliang Deputy Director, INET/ Tsinghua University March 28 April 1, 2011 1 Project organization Government INET R&D, general design, design of

More information

HTGR Plant Design. Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia

HTGR Plant Design. Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia HTGR Plant Design Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Hiroyuki Sato Japan Atomic Energy Agency GTHTR300: JAEA s Commercial HTGR General features

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev IAEA Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi

More information

The HTR/VHTR Project in Framatome ANP

The HTR/VHTR Project in Framatome ANP The HTR/VHTR Project in Framatome ANP Framatome ANP Dominique HITTNER HTR-VHTR Project R&D manager Framatome ANP Framatome ANP The reference concept of ANTARES programme: a flexible heat source for heat

More information

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France

Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France Irradiation Facilities at the Advanced Test Reactor International Topical Meeting on Research Reactor Fuel Management Lyon, France S. Blaine Grover Idaho National Laboratory March 12, 2007 Agenda Advanced

More information

20 Years of German R&D on Nuclear Heat Applications

20 Years of German R&D on Nuclear Heat Applications Mitglied der Helmholtz-Gemeinschaft 20 Years of German R&D on Nuclear Heat Applications Werner von Lensa, Karl Verfondern Research Centre Jülich, Germany 4th Int. Freiberg Conference on IGCC & XtL Technologies

More information

Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants

Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants Status of Development, ANS Standard 53.1, Nuclear Safety Criteria for the Design of Modular Helium Cooled Reactor Plants M. LaBar General Atomics 3550 General Atomics Court San Diego, CA 92121-1122 Abstract

More information