HTGR Plant Design. Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia

Size: px
Start display at page:

Download "HTGR Plant Design. Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia"

Transcription

1 HTGR Plant Design Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Hiroyuki Sato Japan Atomic Energy Agency

2 GTHTR300: JAEA s Commercial HTGR General features A Generation IV system Cooperative design of JAEA and domestic industries (MHI, Fuji electric, KHI, etc.) Multiple applications, passive safety, compelling economics, flexible plant siting Near-term deployable H 2 plant Reactor power plant Plant Design Plant is designed to minimize R&D and to obtain compelling economics Original design features of conventional steel pressure vessel, non-intercooled direct cycle, horizontal gas turbine Water or air coolable Turbine Compressor 140 o C 0.5% of main flow Non-intercooled, horizontal gas turbine Recuperator Gas turbine Thermal rating: 600 MW Net electricity: up to 300MWe Hydrogen rate: up to 5.2 t/hr Helium gas turbine Reactor Inherent RPV cooling scheme Air cooler Precooler Reactor Dry cooling configuration p.2

3 GTHTR300 Outline GTHTR300 (Gas Turbine High Temperature Reactor 300) Recuperator Helium Gas Turbine Reactor power (max. output) 600 MWt Reactor temperature o C Reactor coolant pressure 7 MPa Refueling interval/period yrs/30 days Plant load factor 90% Precooler Reactor Sole Power Generation Plant Cogeneration Plant p.3

4 Design Philosophy Simplicity, Economical Competitiveness and Originality (SECO) 1. Sharing of common technologies by all design variants a unified reactor primary circuit an aerodynamically and mechanically similar line of gas turbines the selected hydrogen production process, the IS process 2. Focused development that limits cost and risk HTTR-type high burnup fuel, a baseline gas turbine, and IS process ation 3. Original design attributes Conventional material RPV, high burnup fuel cycle Horizontal gas turbine, non-intercooled power conversion cycle New IS process technologies p.4

5 Design Features K. Kunitomi, JAEA-Conference (2007). p.5

6 System Configuration, Reactor Standpipe Control rod guide tube Upper shroud Recuperator 588 o C 850 o C Turbine Compressor RPV Core barrel Reactor 136 o C, 7.0 MPa Generator 28 o C, 3.5 MPa Hot plenum block 22 o C Precooler Core support plate Plant Layout (GTHTR300) Reactor bird s eye view (GTHTR300) p.6

7 Core, Fuel Element Control rod insertion hole Reserve shut down channel Helium coolant Upper plate Control rod guide block ダウエル A Dowel pin Spacer Fuel compact Fuel block Fuel block Outer replaceable reflector Permanent side reflector Inner replaceable reflector Fuel brock horizontal cross section Fuel channel Fuel brock handling hole Coolant channel Center rod Bottom plate Fuel rod vertical cross section Core horizontal cross section (GTHTR300) Fuel block & fuel rod cross sections (GTHTR300) p.7

8 Why Helium Gas Turbine? 1 Most efficient and economical power generation possible by HTGR Direct Brayton cycle helium turbine enables 50% efficiency at least count of components 2 Wide range of heat application without drawbacks in efficiency Cogeneration of desalination, which utilizes sensible waste heat rejected of Brayton power generation cycle can attain overall energy efficiency of 88% 3 Exclusion of water related safety events High temperature waste heat rejection enables efficient dry cooling which can eliminate core water ingress accident and allow inland installation p.8

9 Why Helium Gas Turbine? Baseline Design for GTHTR300: 6 turbine stages, 20 compressor stages, non-intercooled, horizontal shaft, 3600 rpm synchronous, magnetic bearing, and 300 MWe class Aerodynamic Scaling from baseline design for all other units: GTHTR300+, GTHTR300C and GTHTR300H: X. Yan, JAEA-Conference (2007). p.9

10 Helium Gas Turbine Outline Only R&D on the baseline design is necessary (see design philosophy) ophy) JAEA s R&D activities: 1 1. Brayton cycle helium gas loop: 2. Helium turbine aerodynamics R&D: 3. Helium compressor aerodynamics R&D: 4. Magnetic bearing design and control: Designed and partially constructed Designed and partially built Program nearly completed Test rig under commissioning X. Yan, JAEA-Conference (2007). p.10

11 Compressor Aerodynamics R&D The Background Neither successful helium compressor nor proven design existed, prior to the present program! The R&D Goal Development of high performance helium compressor for VHTR The Results 1. Proposal of original design techniques 2. 1/3 of full scale compressor tests 3. Establishment of performance evaluation methods X. Yan, JAEA-Conference (2007). p.11

12 R&D Results (1/3) The Results (1/3) 1. Proposal of original design techniques 1 High performance compressor flowpath: nonintercooled, synchronous, and minimum number of compressor stages 2 Tight blade tip clearance: 1.2 mm equivalent in full scale, through a patented shaft-bearing system 3 3D blade airfoil: shown to eliminate boundary layer flow separation on blade Airfoil Case-A CASE MPa Airfoil A streaklines Steaklines 1S 1C 1 32 streaklines Steaklines Airfoil Case-B CASE MPa 1S Airfoil B 1C Rotor blade stator blade Rotor blade stator blade 3 TE Contour of Mach Number TE Contour of Mach Number X. Yan, JAEA-Conference (2007). p.12

13 R&D Results (2/3) 2. 1/3 of full scale compressor tests 1) Internal flowpath boundary layer measurements 2) Airfoil performance measurements 3) Inlet/outlet casing geometry performance measurements 4) Compressor efficiency and surge margin Detailed internal flowpath measurement of aerodynamic variables Helium compressor test rig X. Yan, JAEA-Conference (2007). p.13

14 R&D Results (3/3) Polytrophic Polytropic efficiency Efficiency (ηp, %) η p, % The Results (3/3 B) 3. Establishment of performance evaluation methods B. Reynolds Correlation method Extensive test measurements Viscous CFD analytical insights to identify flow regimes Correlation of efficiency with Compressor performance Reynolds impact number, on Re plant -n, subject efficiency to critical Reynolds number new method existing method Compressor Compressor Compressor performance performance Overall plant efficiency efficiency impact on plant efficiency impact on plant efficiency 92% 46.0% Compressor Overall plant Compressor efficiency Overall efficiency plant efficiency efficiency 92% 46.0% 92% 46.0% 87% 43.5% Efficiency vs. Reynolds Number Correlation for Blade Section (from Case-1 all runs & Case-2 run1 measurement) η p ~ R e Correlation of efficiency based on test data Efficiency New method 1 ~Re R e,critcal =4x10 5 for 1/3 scale p n Critical Re in 1/3 scale test pinch point R e extrapolation (full scale, 4 stages) R e,critcal =1.2x10 6 for full scale Throughflow prediction (full scale, 20 stages) Efficiency pinch point for commercial GT Existing methods Airfoil Case 1: Inlet A Airfoil Case 1: Inlet B Airfoil Case 2: Inlet B Airfoil Case 2: Inlet C Reynolds number Reynolds number X. Yan, JAEA-Conference (2007). Chord Re in commercial GT Efficiency pinch point for 1/3 scale test Critical Re in commercial GT 92% 92% 87% 88% p.14

15 Building Size Comparison GTHTR300 (275MWe 4) BWR-5 (1100MWe) m 68.5 m Reactor Building Turbine Building A 45 m 84.0 m 建屋容積 :485,000 m m 47 m 24 m 53 m 80 m 76 m A 22 m Turbine Building A-A 断面 Building capacity:533,000 m m 11 m Building Capacity:674,000 m 3 Reactor + Affiliation:354,000 m 3 Turbine:320,000 m 3 79 % of BWR-5 K. Kunitomi, JAEA-Conference (2007). p.15

16 Safety Analysis (1/2) Axial distance (m) Max. fuel temp. < Limit temp. (1600 o C) Upper reflector Fuel region 0hr 30hr 70hr 120hr 200hr 1000hr 5000hr 10000hr 系列 2 Lower reflector Temperature ( ) Temperature distribution in GTHTR300 during DLOFC Cooling panels Reactor pressure vessel Stack Air outlet Air inlet Upward air flow (natural circulation) Insulator Downward air flow (natural circulation) Heat removal by radiation and natural circulation Concrete biological shield Decay heat is removed passively from the outside of RPV K Katanishi et al., Nucl. Eng. Des.,237, (2007). p.16

17 Safety Analysis (2/2) Flow rate (kg/h) Time (Days) Natural circulation flow in GTHTR300 SiC (s) + O 2 (g) SiO (g) + CO (g) SiC (s) + 3/2O 2 (g) SiO 2 (g) + CO (g) Fuel failure due to oxidation in GTHTR300 The fuel remains intact during DLOFC accident K Katanishi et al., Nucl. Eng. Des.,237, (2007). p.17

18 Economics (1/2) Analysis condition (plant specifications) GTHTR300 1) : Commercial HTGR designed by JAEA in cooperation with reactor vendors - plant unit: 4 units/plant - plant power: thermal power 600MWt/unit electric power ~275MWe/unit (gross) ~269MWe/unit (net) - average burn-up: 120GWd/ton Key assumption Construct at current LWR site Take into account standardization of design, related codes & standards, operation & maintenance practices, components, regulatory, and project management equipment directly carried from an on-site exclusive port a reactor building and structures based on those of the HTTR seismic condition same as that of the HTTR including design and fabrication of facilities, plant construction cost and test operations p.18

19 Economics (2/2) a) Plant construction cost (NOAK) c) Power generation cost (NOAK) GTHTR300 Reactor components Power conversion system Auxiliary system GTHTR300 capital cost operating cost fuel cost LWR(PWR) Electric and control system buildings LWR(PWR) Construction cost (10000 Yen/kWe) Power generation cost (Yen/kWh) b) Fuel cost (NOAK) GTHTR300 LWR(PWR) Fuel cost (Yen/kWh) U purchase, conversion enritchment fabrication MOX storage reprocessing waste disposal Ref) K. Kunitomi, et al., Proc. ICAPP2007, Nice, France, May 13-18, 2007, Paper Power production by HTGR has economical advantage against LWR fleet because of significant cost savings through simplified plant design, high efficiency power conversion, etc. Can expect further improvement by increasing turbine inlet temperature, and taking into account profit from waste heat usage such as desalination 19 p.19

20 Multi-purpose Small-sized HTGR Project Scope: Electricity and heat supply to Kurchatov in Republic of Kazakhstan at an early date Establishment of exporting business & creation of new industries in the future Design philosophy: Utilize technologies based on the HTTR construction as much as possible Simplification of engineered safety features actuation systems from the HTTR Demonstrate technologies required in commercial plant such as helium gas turbine, etc. Status: 2010: System design 1), Safety design 2) 2011: Core design3), 4) 2012: Plant design 5), Safety Evaluation 2) Conceptual design completed Reactor IHX Steam generator Steam turbine Isolation valve H 2 plant District heating 1) H. Ohashi, et al., JAEA-Technology (2011). 2) H. Ohashi, et al., JAEA-Technology (2013). 3) M. Goto, et al., JAEA-Technology (2012). 4) Y. Inaba, et al., JAEA-Technology (2012). 5) H. Ohashi, et al., JAEA-Technology (2013). p.20

21 Core Design Approach for Small-sized HTGR 3480 mm Core depth [m] Core height (cm) 3.48 m Core height (cm) Target Average power density: 3.5 MW/m 3 Enrichment count : Less than 6 Effective Full Power Days: 730 days Approach Optimization of power distribution by enrichment arrangement - Follow optimized power distribution curve for axial direction - Flatten power distribution in radial direction Preservation of optimized power distribution during the whole operational time by BP arrangement - Maintain CR position in the first layer of fuel region Results Result Criteria Average power density [MW/m 3 ] 3.5 > 3.5 Enrichment count 3 < 6 Effective Full Power Days Maximum fuel temp. [ o C] 1467 < 1495 Ref) M. Goto, et al., Proc. ICAPP2012, Chicago, IL, USA, Oct. 9-13, 2012, Paper Optimized curve Fuel region 1 Fuel region 2 Fuel region 3 Fuel region Coolant flow CR position Power density density (W/cc) Burn-up (EFPD) [MW/m 3 ] p.21

22 Business Model for Small-sized HTGR (1/2) Manufacturing cost [$/bbl] Gas to liquids (GTL) is a refinery process to convert natural gas into liquid synthetic fuels such as gasoline or diesel fuel. Manufacturing cost highly depends on raw material cost, i.e. natural gas price. HTGR can contribute to reduce natural gas consumption by 30% by replacing its use for fuel with high temperature heat & steam from HTGR Plant size: 15,000 bbl/day Construction cost: 488 M$ Lifetime: 15 years 44% 61% 70% 76% Natural gas price [$/MMBTu] HTGR Raw material cost Capex Operation cost *Pertamania & JOGMEC, Feasibility study of Gas to Liquid technology (2003). High temperature heat Steam Fuel use / Loss Material Air Air Separation 30% 70% Natural gas Gas Synthesis Gas processing FT(Fischer-Tropsch) process Upgrading Process Natural Gas Diesel Naphtha Parafin GTL process Synthetic fuel 850 o C 200 o C o C Replace by heat supplied from HTGR p.22

23 Manufacturing cost [$/bbl] Manufacturing cost [$/bbl] Business Model for Small-sized HTGR (2/2) Analysis condition - Reactor thermal power: 200MW - Construction cost: $2B (Conservative assumption) - Fuel & O&M cost: Based on literature* - Heat utilization: 90% Analysis results Manufacturing cost of HTGR-GTL combined process becomes low considering export loss of natural gas even the construction cost of HTGR becomes high. The break-even point of natural gas price is 8.8 USD/MMBtu considering export loss HTGR+GTL GTL Diesel HTGR+GTL general GTL Diesel Natural gas price: 10 USD/MMBtu 50 0 $8.8/MMBTu Natural gas export loss Diesel HTGR (Fuel) HTGR (O&M) HTGR (Capital) GTL (Non gas O&M) GTL (Capital) GTL (Gas usage) GTL w export loss HTGR+GTL Natural gas price [$/MMBTu] HTGR-GTL combined process would be economically competitive against conventional oil refinery & general GTL process *INL, TEV-1196 (2012) p.23

24 Nuclear Renewable Hybrid System Electric power + Constant power Hydrogen Short time-scale (seconds/minitues) Adjust power generation rate by coolant flow rate control corresponding to renewable output variation. Constant power Nuclear Solar, Wind Time Heat supply rate control Nuclear renewable hybrid system with HTGR cogeneration system for electricity and hydrogen Coolant inventory Recuperator Reactor Core H 2 plant Power generation rate control Bypass flow rate Gas turbine Renewable energy power plant Power output Power synthesis Power output Constant power Electric grid Precooler IHX Allowable core thermal capacitance: 850 MJ/ o C Generator Control flow Coolant flow p.24

HTGR Brayton Cycle Technology and Operations

HTGR Brayton Cycle Technology and Operations MIT Workshop on New Cross-cutting Technologies for Nuclear Power Plants, Cambridge, USA, January 30-3, 207 HTGR Brayton Cycle Technology and Operations Xing L. Yan HTGR Hydrogen and Heat Application Research

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT Takakazu TAKIZUKA Japan Atomic Energy Research Institute The 1st COE-INES International Symposium, INES-1 October 31 November 4, 2004 Keio Plaza Hotel,

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA ELSEVIER www.elsevier.com/locate/pnucene Progress in Nuclear Energy; Vol. 47, No. 1-4, pp. 283-291,2005 Available online at www.sciencedirect.com 2005 Elsevier Ltd. All rights reserved s =, E N e E ~)

More information

HTR Process Heat Applications

HTR Process Heat Applications HTR Process Heat Applications Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency HTR Heat Applications Hydrogen production Hydrogen

More information

Safety Evaluation of VHTR Cogeneration System

Safety Evaluation of VHTR Cogeneration System Safety Evaluation of VHTR Cogeneration System Hiroyuki Sato, Tetsuo Nishihara, Xinglong Yan, Kazuhiko Kunitomi Japan Atomic Energy Agency IAEA International Conference on Non-electric Applications of Nuclear

More information

Load-following Operations of VHTR Gas-turbine Cogeneration System for Developing Countries

Load-following Operations of VHTR Gas-turbine Cogeneration System for Developing Countries International Journal of Gas Turbine, Propulsion and Power Systems October 212, Volume 4, Number 3 Loadfollowing Operations of VHTR Gasturbine Cogeneration System for Developing Countries Hiroyuki Sato

More information

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries International Nuclear Energy Volume 21, Article ID 918567, 18 pages http://dx.doi.org/1.1155/21/918567 Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

More information

Current Status and Future Challenges of Innovative Reactors Development in Japan

Current Status and Future Challenges of Innovative Reactors Development in Japan Innovation for Cool Earth Forum 2017, Tokyo, Japan, October 4-5, 2017 Current Status and Future Challenges of Innovative Reactors Development in Japan 5 October, 2017 Yutaka Sagayama Assistant to the President

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

EM 2 : Nuclear Power for the 21 st Century

EM 2 : Nuclear Power for the 21 st Century EM 2 : Nuclear Power for the 21 st Century Presented at the Canon Institute for Global Studies Climate Change Symposium Climate Change and the Role of Nuclear Energy By Dr. Christina Back February 5, 2016

More information

HTR Research and Development Program in China

HTR Research and Development Program in China HTR Research and Development Program in China Yuanhui XU Institute of Nuclear and New Energy Technology Tsinghua University, Beijing, China 2004 Pacific Basin Nuclear Conference And Technology Exhibit

More information

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan Taiju SHIBATA Senior Principal Researcher Group Leader, International Joint Research Group HTGR Hydrogen and Heat

More information

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR)

PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) PRESENT STATUS OF THE HIGH TEMPERATURE ENGINEERING TEST REACTOR (HTTR) Shusaku Shiozawa * Department of HTTR Project Japan Atomic Energy Research Institute (JAERI) Japan Abstract It is essentially important

More information

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident

Safety Design of HTGR by JAEA in the light of the Fukushima Daiichi accident Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi Accident, 8-11 April 2014, IAEA Head quarters, Vienna, Austria Safety Design of HTGR by JAEA

More information

Technologies of HTR-PM Plant and its economic potential

Technologies of HTR-PM Plant and its economic potential IAEA Technical Meeting on the Economic Analysis of HTGRs and SMRs 25-28 August 2015, Vienna, Austria Technologies of HTR-PM Plant and its economic potential Prof. Dr. Yujie Dong INET/Tsinghua University

More information

Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300)

Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300) Design and Development of Gas Turbine High Temperature Reactor 300 (GTHTR300) Kazuhiko Kunitomi 1*, Shoji Katanishi 1, Shoji Takada 1, Takakazu Takizuka 1, Xing Yan 1, Shinichi Kosugijyama 1, Hiroyuki

More information

Operation of the High-Temperature Engineering Test Reactor

Operation of the High-Temperature Engineering Test Reactor Operation of the High-Temperature Engineering Test Reactor Nozomu Fujimoto, Naoki Nojiri, Yukio Tachibana and Toshihiko Mizushima Department of HTTR Japan Atomic Energy Agency (JAEA) -1- Contents 1. 1.

More information

Modularity Approach of the Modular Pebble Bed Reactor (MPBR)

Modularity Approach of the Modular Pebble Bed Reactor (MPBR) Modularity Approach of the Modular Pebble Bed Reactor () Marc Berte Professor Andrew Kadak Massachusetts Institute of Technology Nuclear Engineering Department Nuclear Energy Research Initiative Grant

More information

Design Features, Economics and Licensing of the 4S Reactor

Design Features, Economics and Licensing of the 4S Reactor PSN Number: PSN-2010-0577 Document Number: AFT-2010-000133 rev.000(2) Design Features, Economics and Licensing of the 4S Reactor ANS Annual Meeting June 13 17, 2010 San Diego, California Toshiba Corporation:

More information

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident IAEA Technical Meeting on on Re evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor Fuel and Structural Materials, 10 12 July 2012, Vienna, Austria Naturally

More information

HTTR test program towards coupling with the IS process

HTTR test program towards coupling with the IS process HTTR test program towards coupling with the IS process T. Iyoku, N.Sakaba, S. Nakagawa, Y.Tachibana, S. Kasahara, and K.Kawasaki Japan Atomic Energy Agency (JAEA) 1 Contents 1. Outline of the HTTR (High

More information

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S http://dx.doi.org/10.5516/net.10.2012.070 A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S X. YAN *, Y. TACHIBANA, H. OHASHI, H. SATO, Y. TAZAWA, and K. KUNITOMI Japan Atomic Energy

More information

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading ANTARES Application for Cogeneration Oil Recovery from Bitumen and Upgrading Michel Lecomte Houria Younsi (ENSEM) Jérome Gosset (ENSMP) ENC Conference Versailles 11-14 December 2005 1 Presentation Outline

More information

The Next Generation Nuclear Plant (NGNP)

The Next Generation Nuclear Plant (NGNP) The Next Generation Nuclear Plant (NGNP) Dr. David Petti Laboratory Fellow Director VHTR Technology Development Office High Temperature, Gas-Cooled Reactor Experience HTGR PROTOTYPE PLANTS DEMONSTRATION

More information

Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR

Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR Conceptual system design of non-nuclear grade IS process to be coupled with the HTTR N. Sakaba, H. Sato, H. Ohashi, T. Nishihara, K. Kunitomi Monday, 16 April 2007 IAEA-CN-152, Oarai, Japan Japan Atomic

More information

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY Beijing, CHINA, September 22-24, 2004 #Paper F02 Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized

More information

Status of HTTR Project in JAEA

Status of HTTR Project in JAEA Status of HTTR Project in JAEA Kazuhiko Kunitomi Nuclear Hydrogen and Heat Application Research Center Japan Atomic Energy Agency (JAEA) TWGGCR meeting at IAEA March 5, 2013 The HTTR Project HTTR (1) Reactor

More information

AREVA HTR Concept for Near-Term Deployment

AREVA HTR Concept for Near-Term Deployment AREVA HTR Concept for Near-Term Deployment L. J. Lommers, F. Shahrokhi 1, J. A. Mayer III 2, F. H. Southworth 1 AREVA Inc. 2101 Horn Rapids Road; Richland, WA 99354 USA phone: +1-509-375-8130, lewis.lommers@areva.com

More information

Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA

Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA Current Status of Research and Development on System Integration Technology for Connection between HTGR and Hydrogen Production System at JAEA Hirofumi Ohashi, Yoshitomo Inaba, Tetsuo Nishihara, Tetsuaki

More information

The Gen IV Modular Helium Reactor

The Gen IV Modular Helium Reactor The Gen IV Modular Helium Reactor and its Potential for Small and Medium Grids presented to Society of Nuclear Engineers of Croatia 26 January 2007 by David E. Baldwin, Ph.D. Sustainable Energy has Become

More information

Present Status and Future Plan of HTTR Project

Present Status and Future Plan of HTTR Project Present Status and Future Plan of HTTR Project Tatsuo Iyoku *, Toshio Nakazawa, Kozou Kawasaki, Hideyuki Hayashi, and Seigo Fujikawa Department of HTTR Project, Japan Atomic Energy Research Institute Narita-cho,

More information

Current Activities on the 4S Reactor Deployment

Current Activities on the 4S Reactor Deployment PSN Number: PSN-2010-0586 Document Number: AFT-2010-000134 rev.000(1) Current Activities on the 4S Reactor Deployment The 4th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors: Benefits

More information

GENERATION IV NUCLEAR ENERGY SYSTEMS

GENERATION IV NUCLEAR ENERGY SYSTEMS GENERATION IV NUCLEAR ENERGY SYSTEMS HOW THEY GOT HERE AND WHERE THEY ARE GOING David J. Diamond Brookhaven National Laboratory Energy Sciences and Technology Department Nuclear Energy and Infrastructure

More information

HTGR PROJECTS IN CHINA

HTGR PROJECTS IN CHINA HTGR PROJECTS IN CHINA ZONGXIN WU and SUYUAN YU * Institute of Nuclear and New Energy Technology, Tsinghua University Beijing, 100084, China * Corresponding author. E-mail : suyuan@tsinghua.edu.cn Received

More information

High Temperature Materials

High Temperature Materials High Temperature Materials Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency High Temperature Materials in HTGR Graphite components

More information

GT-MHR international project of high-temperature helium cooled reactor with direct gas-turbine power conversion cycle

GT-MHR international project of high-temperature helium cooled reactor with direct gas-turbine power conversion cycle IAEA-CN-114/E-2 GT-MHR international project of high-temperature helium cooled reactor with direct gas-turbine power conversion cycle V.I. Kostin 1, N.G. Kodochigov 1, A.V. Vasyaev 1, N.N. Ponomarev-Stepnoy

More information

HTGR development in Japan and present status

HTGR development in Japan and present status HTGR development in Japan and present status Taiju SHIBATA Senior Principal Researcher Group Leader, International Joint Research Group HTGR Hydrogen and Heat Application Research Center Japan Atomic Energy

More information

Nuclear-Power Ammonia Production

Nuclear-Power Ammonia Production Nuclear-Power Ammonia Production William L. Kubic, Jr. Process Engineering, Modeling,and Analysis Group, New Mexico October 9, 2006 Why Nuclear-Powered Ammonia Production? Many in the nuclear community

More information

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at PR&PP Collaborative Study with GIF System Steering Committees A Compilation of Design Information and Crosscutting Issues Related to PR&PP Characterization Presented at Workshop on PR&PP Evaluation Methodology

More information

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs Matt Richards, Arkal Shenoy, and Mike Campbell General Atomics IAEA International Conference on Non-Electric Applications of Nuclear Energy

More information

DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING

DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING DEVELOPMENT OF COMPACT HEAT EXCHANGER WITH DIFFUSION WELDING K. KUNITOMI, T. TAKEDA Q642788 Department of HTTR Project, Japan Atomic Research Institute, Ibaraki T. HORIE, K. IWATA Heat Exchangers Division,

More information

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Yuliang SUN Institute of Nuclear and New Energy Technology, Tsinghua University Beijing 100084, PR China 1 st Workshop on PBMR Coupled

More information

Nuclear Cogeneration

Nuclear Cogeneration Nuclear Cogeneration International Workshop on Acceleration and Applications of Heavy Ions 26 February - 10 March 2012 Heavy Ion Laboratory, Warsaw, Poland Ludwik Pieńkowski Heavy Ion Laboratory University

More information

Generation IV Gas-cooled Reactor System Concepts

Generation IV Gas-cooled Reactor System Concepts Generation IV Gas-cooled Reactor System Concepts Technical Working Group 2 -- Gas Cooled Reactor Systems Generation IV Roadmap Session ANS Winter Meeting Reno, NV November 13, 2001 1 People Involved in

More information

Oregon State University s Small Modular Nuclear Reactor Experimental Program

Oregon State University s Small Modular Nuclear Reactor Experimental Program Oregon State University s Small Modular Nuclear Reactor Experimental Program IEEE Conference on Technologies for Sustainability August 1, 2013 Portland, Oregon Brian Woods Oregon State University brian.woods@oregonstate.edu,

More information

HTR-PM of 2014: toward success of the world first Modular High Temperature Gas-cooled Reactor demonstration plant

HTR-PM of 2014: toward success of the world first Modular High Temperature Gas-cooled Reactor demonstration plant HTR-PM of 2014: toward success of the world first Modular High Temperature Gas-cooled Reactor demonstration plant ZHANG/Zuoyi Chief Scientist, HTR-PM project Director, INET of Tsinghua University Vice

More information

Super Critical CO 2 Gas Turbine Cycle FBRs

Super Critical CO 2 Gas Turbine Cycle FBRs The First COE-INES International Symposium at Keio Plaza Hotel, November 3, 2004 Super Critical CO 2 Gas Turbine Cycle FBRs Yasuyoshi Kato Research Laboratory for Nuclear Reactors Tokyo Institute of Technology

More information

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June 2011

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems June 2011 2245-10 Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems 13-18 June 2011 The Part 3: Nuclear Process Heat Reactors Research Center Juelich Institute for

More information

ANTARES The AREVA HTR-VHTR Design PL A N TS

ANTARES The AREVA HTR-VHTR Design PL A N TS PL A N TS ANTARES The AREVA HTR-VHTR Design The world leader in nuclear power plant design and construction powers the development of a new generation of nuclear plant German Test facility for HTR Materials

More information

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Danrong Song, Biao Quan Nuclear Power Institute of China, Chengdu, China songdr@gmail.com Abstract Developing

More information

VHTR System Prof. Dr. LI Fu

VHTR System Prof. Dr. LI Fu VHTR System Prof. Dr. LI Fu GIF VHTR SSC INET, Tsinghua University, China GIF Symposium, Chiba, Japan May 19, 2015 Outlines What s VHTR? How about VHTR? What are main R&D topics? How to collaborate in

More information

Non-Electric Applications of Nuclear Energy

Non-Electric Applications of Nuclear Energy Non-Electric Applications of Nuclear Energy I. Khamis Nuclear Power Technology Development Section Department of Nuclear Energy Contents Introduction An overview of current experience on nonelectric applications

More information

Gas Cooled Fast Reactors: recent advances and prospects

Gas Cooled Fast Reactors: recent advances and prospects Gas Cooled Fast Reactors: recent advances and prospects C. Poette a, P. Guedeney b, R. Stainsby c, K. Mikityuk d, S. Knol e a CEA, DEN, DER, F-13108 Saint-Paul lez Durance, CADARACHE, France. b CEA, DEN,

More information

Research and Development Program on HTTR Hydrogen Production System

Research and Development Program on HTTR Hydrogen Production System GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1062 Research and Development Program on HTTR Hydrogen Production System Yoshiyuki INAGAKI, Tetsuo NISHIHARA, Tetsuaki TAKEDA, Koji HAYASHI, Yoshitomo

More information

High Temperature Reactors in the Nuclear Energy System from position of the Hydrogen Economy

High Temperature Reactors in the Nuclear Energy System from position of the Hydrogen Economy High Temperature Reactors in the Nuclear Energy System from position of the Hydrogen Economy P.N. Alekseev, A.L. Balanin, P.A. Fomichenko, E.I. Grishanin, D.A. Krylov, V.A. Nevinitsa, T.D. Schepetina,

More information

Concept of power core components of the SlimCS fusion DEMO reactor

Concept of power core components of the SlimCS fusion DEMO reactor Concept of power core components of the SlimCS fusion DEMO reactor K. Tobita, H. Utoh, Y. Someya, H. Takase, N. Asakura, C. Liu and the DEMO Design Team Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193

More information

Codes and Standards Needs for PBMR

Codes and Standards Needs for PBMR ASME NUCLEAR CODES AND STANDARDS South Africa, October 7-8, 2008 Codes and Standards Needs for PBMR Neil Broom Code Specialist PBMR What is the PBMR? The Pebble Bed Modular Reactor is: A graphite-moderated,

More information

INVESTIGATION OF A DRY AIR COOLING OPTION FOR AN S-CO 2 CYCLE

INVESTIGATION OF A DRY AIR COOLING OPTION FOR AN S-CO 2 CYCLE The 4th International Symposium - Supercritical CO 2 Power Cycles September 9-10, 2014, Pittsburgh, Pennsylvania INVESTIGATION OF A DRY AIR COOLING OPTION FOR AN S-CO 2 CYCLE Anton Moisseytsev Principal

More information

The design features of the HTR-10

The design features of the HTR-10 Nuclear Engineering and Design 218 (2002) 25 32 www.elsevier.com/locate/nucengdes The design features of the HTR-10 Zongxin Wu *, Dengcai Lin, Daxin Zhong Institute of Nuclear Energy and Technology, Tsinghua

More information

HTR-PM Project Status and Test Program

HTR-PM Project Status and Test Program IAEA TWG-GCR-22 HTR-PM Project Status and Test Program SUN Yuliang Deputy Director, INET/ Tsinghua University March 28 April 1, 2011 1 Project organization Government INET R&D, general design, design of

More information

Reactor Technology and Cogeneration for a Cleaner Environment

Reactor Technology and Cogeneration for a Cleaner Environment Reactor Technology and Cogeneration for a Cleaner Environment I. Khamis Head, Non-electric Applications Unit Nuclear Power Technology Development Section Department Nuclear Energy Content Reactor technology

More information

Flexible Conversion Ratio Fast Reactor

Flexible Conversion Ratio Fast Reactor American Nuclear Society Student Conference March 29-31, 2007, Oregon State University, Corvallis, OR Flexible Conversion Ratio Fast Reactor Anna Nikiforova Massachusetts Institute of Technology Center

More information

Small Reactors R&D in China. ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna

Small Reactors R&D in China. ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna Small Reactors R&D in China ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna CONTENT 1 Introduction of SMR 2 CAP150 developed by SNERDI/SNPTC 3 CAP FNPP developed

More information

Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant

Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant Experimental and Analytical Results on H 2 SO 4 and SO 3 Decomposer for IS Process Pilot Plant A. Terada, Y. Imai, H. Noguchi, H. Ota, A. Kanagawa, S. Ishikura, S. Kubo, J. Iwatsuki, K. Onuki and R. Hino

More information

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water

LOCA analysis of high temperature reactor cooled and moderated by supercritical light water GENES4/ANP23, Sep. 15-19, Kyoto, JAPAN Paper 116 LOCA analysis of high temperature reactor cooled and moderated by supercritical light water Yuki Ishiwatari 1*, Yoshiaki Oka 1 and Seiichi Koshizuka 1 1

More information

Concept and technology status of HTR for industrial nuclear cogeneration

Concept and technology status of HTR for industrial nuclear cogeneration Concept and technology status of HTR for industrial nuclear cogeneration D. Hittner AREVA NP Process heat needs from industry Steam networks In situ heating HTR, GFR 800 C VHTR > 800 C MSR 600 C SFR, LFR,

More information

BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy

BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy BNFL/Westinghouse s Perspective on the Nuclear Hydrogen Economy Dr PJA Howarth Head of Group Science Strategy BNFL/Westinghouse is a large, international supplier of products and services for nuclear industry

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century Presented at the Canon Institute for Global Studies Climate Change Symposium Climate Change and the Role of Nuclear Energy By Dr. Robert W.

More information

PBMR design for the future

PBMR design for the future Nuclear Engineering and Design 222 (2003) 231 245 PBMR design for the future A. Koster, H.D. Matzner, D.R. Nicholsi PBMR Pty (Ltd), P.O. Box 9396, Centurion 0046, South Africa Received 2 May 2002; received

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

Evaluation of high temperature gas cooled reactor performance:

Evaluation of high temperature gas cooled reactor performance: IAEA-TECDOC-1382 Evaluation of high temperature gas cooled reactor performance: Benchmark analysis related to initial testing of the HTTR and HTR-10 November 2003 The originating Section of this publication

More information

Assessment of High Temperature Gas-Cooled Reactor (HTGR) Capital and Operating Costs

Assessment of High Temperature Gas-Cooled Reactor (HTGR) Capital and Operating Costs Document ID: TEV-96 Revision ID: 0/09/202 Technical Evaluation Study Project No. 23843 Assessment of High Temperature Gas-Cooled Reactor (HTGR) Capital and Operating Costs 0/09/202 TEV-96 0/09/202 Page:

More information

20 Years of German R&D on Nuclear Heat Applications

20 Years of German R&D on Nuclear Heat Applications Mitglied der Helmholtz-Gemeinschaft 20 Years of German R&D on Nuclear Heat Applications Werner von Lensa, Karl Verfondern Research Centre Jülich, Germany 4th Int. Freiberg Conference on IGCC & XtL Technologies

More information

Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System. Chunyun Wang

Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System. Chunyun Wang Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System By Chunyun Wang B.S.M.E. Tsinghua University, 1991 M.S.N.E. Tsinghua University, 1994 Submitted

More information

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration GIF SCWR System Steering Committee Vienna, Austria Oct. 29, 2009 Outline Why SCWR? SCWR Reference Parameters Conceptual Designs

More information

Severe Accident Countermeasures of SFR (on Monju)

Severe Accident Countermeasures of SFR (on Monju) Severe Accident Countermeasures of SFR (on Monju) Mamoru Konomura FBR Plant Engineering Center Japan Atomic Energy Agency 1. Safety Approach of Monju Safety Approaches in early LMFBR There were several

More information

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018 DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM Yujie DONG INET, Tsinghua University, China January 24, 2018 Meet the Presenter Dr. Dong is a Professor in Nuclear Engineering at the Tsinghua University, Beijing,

More information

SMR: Opportunities and Challenges. Dr. Jaejoo HA Head, Division of Nuclear Development, OECD/NEA

SMR: Opportunities and Challenges. Dr. Jaejoo HA Head, Division of Nuclear Development, OECD/NEA SMR: Opportunities and Challenges Dr. Jaejoo HA Head, Division of Nuclear Development, OECD/NEA jaejoo.ha@oecd.org SMR 2016, London, 8-9 June 2016 Previous OECD/NEA work on SMRs (1991) Small and Medium

More information

2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR

2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR 2012 Deep River Science Academy Summer Lecture GENERATION IV SUPERCRITICAL WATER-COOLED REACTOR M. Yetisir Deep River, 2012 July 12 What is a Gen IV Reactor Contents How does nuclear plant work? What is

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant 8 Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant KOZO TABUCHI *1 MASAYUKI TAKEDA *2 KAZUO TANAKA *2 JUNICHI IMAIZUMI *2 TAKASHI KANAGAWA *3 ATMEA1 TM is a 3-loop 1100

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

Very High Temperature Reactor

Very High Temperature Reactor Very High Temperature Reactor LI Fu GIF VHTR SSC Chair INET, Tsinghua University, China GIF Symposium San Diego November 15-16, 2012 Outline 1. Original VHTR Features 2. Key VHTR Development Targets 3.

More information

Safety design approach for JSFR toward the realization of GEN-IV SFR

Safety design approach for JSFR toward the realization of GEN-IV SFR Safety design approach for JSFR toward the realization of GEN-IV SFR Advanced Fast Reactor Cycle System R&D Center Japan Atomic Energy Agency (JAEA) Shigenobu KUBO Contents 1. Introduction 2. Safety design

More information

Advanced Sodium Fast Reactor Power Unit Concept

Advanced Sodium Fast Reactor Power Unit Concept International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities (FR 09) Advanced Sodium Fast Reactor Power Unit Concept V.M. Poplavsky a, A.M. Tsybulya a, Yu.E. Bagdasarov

More information

SAFETY CONCEPT OF NUCLEAR COGENERATION OF HYDROGEN AND ELECTRICITY

SAFETY CONCEPT OF NUCLEAR COGENERATION OF HYDROGEN AND ELECTRICITY SAFETY CONCEPT OF NUCLEAR COGENERATION OF HYDROGEN AND ELECTRICITY Verfondern, K. 1, Yan, X. 2, Nishihara, T. 3 and Allelein, H.-J. 4,5 1 Research Center Jülich, Jülich, 52425, Germany, k.verfondern@fz-juelich.de

More information

Summary Decision Paper. Reference Modular HTGR Reactor Design Concept and. Plant Configuration for Initial Applications

Summary Decision Paper. Reference Modular HTGR Reactor Design Concept and. Plant Configuration for Initial Applications Summary Decision Paper Reference Modular HTGR Reactor Design Concept and Plant Configuration for Initial Applications This paper summarizes the considerations in the selection of the High Temperature Gas-cooled

More information

The HTR/VHTR Project in Framatome ANP

The HTR/VHTR Project in Framatome ANP The HTR/VHTR Project in Framatome ANP Framatome ANP Dominique HITTNER HTR-VHTR Project R&D manager Framatome ANP Framatome ANP The reference concept of ANTARES programme: a flexible heat source for heat

More information

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE

PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACTOR IN CONCEPTUAL DESIGN STAGE PROBABILISTIC SAFETY ASSESSMENT OF JAPANESE SODIUM- COOLED FAST REACT IN CONCEPTUAL DESIGN STAGE Kurisaka K. 1 1 Japan Atomic Energy Agency, Ibaraki, Japan Abstract Probabilistic safety assessment was

More information

MIT/INEEL Modular Pebble Bed Reactor. Andrew C. Kadak Massachusetts Institute of Technology

MIT/INEEL Modular Pebble Bed Reactor. Andrew C. Kadak Massachusetts Institute of Technology MIT/INEEL Modular Pebble Bed Reactor Andrew C. Kadak Massachusetts Institute of Technology March 22, 2000 Observations No New Construction of Nuclear Plants for Many Years Current Generation of Plants

More information

Recent progress of GFR program

Recent progress of GFR program Recent progress of GFR program JY. Garnier, JY. Malo, F. Bertrand, P. Anzieu Presented by N. Devictor Nuclear Energy Directorate CEA Cadarache, CEA Saclay FRANCE Outlines An alternative Fast reactor to

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Co-ordination and Synthesis of the European Project of Development of HTR Technology (HTR-C) Contract No: FIKI-CT-2000-20269 (Duration: November 2000

More information

High performance blanket for ARIES-AT power plant

High performance blanket for ARIES-AT power plant Fusion Engineering and Design 58 59 (2001) 549 553 www.elsevier.com/locate/fusengdes High performance blanket for ARIES-AT power plant A.R. Raffray a, *, L. El-Guebaly b, S. Gordeev c, S. Malang c, E.

More information

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation

Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation Overview of GEN IV Demonstration Projects in China Jiashu, TIAN, EG Member China National Nuclear Corporation 4th GIF Symposium Presentation UIC, Paris, France October 16-17, 2018 Main Outlines VHTR -

More information

Modular Helium Reactor (MHR) for Oil Sands Extraction

Modular Helium Reactor (MHR) for Oil Sands Extraction Modular Helium Reactor (MHR) for Oil Sands Extraction Alexander Telengator and Arkal Shenoy General Atomics 30th Annual CNS Conference 1 WORLD ENERGY COMPOSITION Fossil fuels provide ~ 85% of World energy

More information

Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid

Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid Comparison of Molten Salt and High-Pressure Helium for the NGNP Intermediate Heat Transfer Fluid Per F. Peterson, H. Zhao, and G. Fukuda U.C. Berkeley Report UCBTH-03-004 December 5, 2003 INTRODUCTION

More information

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria

Module 12 Generation IV Nuclear Power Plants. Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria Module 12 Generation IV Nuclear Power Plants Prof.Dr. H. Böck Atominstitute of the Austrian Universities Stadionallee 2, 1020 Vienna, Austria boeck@ati.ac.at Generation IV Participants Evolution of Nuclear

More information

Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR -

Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR - Helium Chemistry in High-Temperature Gas-Cooled Reactors - Chemical Impurity Behaviour in the Secondary Helium Coolant of the HTTR - Hamamoto S. 1, Sakaba N. 1 1 Japan Atomic Energy Agency, Higashiibaraki,

More information

NUCLEAR PLANT WITH VK-300 BOILING WATER REACTORS FOR POWER AND DISTRICT HEATING GRIDS

NUCLEAR PLANT WITH VK-300 BOILING WATER REACTORS FOR POWER AND DISTRICT HEATING GRIDS 7th International Conference on Nuclear Engineering Tokyo, Japan, April 19-23, 1999 ICONE-7335 NUCLEAR PLANT WITH VK-300 BOILING WATER REACTORS FOR POWER AND DISTRICT HEATING GRIDS Yu.N. Kuznetsov*, F.D.

More information