Green Energy-Multiplier. Subcritical-technology Thermal-spectrum Accelerator-driven Recycling-reactor. (my version of acronym)

Size: px
Start display at page:

Download "Green Energy-Multiplier. Subcritical-technology Thermal-spectrum Accelerator-driven Recycling-reactor. (my version of acronym)"

Transcription

1 GEM STAR 1 Green Energy-Multiplier Subcritical-technology Thermal-spectrum Accelerator-driven Recycling-reactor (my version of acronym) Transforming the Nuclear Landscape Bruce Vogelaar (Virginia Tech) September 27, 2010 ADNA and Virginia GEM*STAR Consortium

2 The Urgency 2 Population Growth: billion billion Energy Availability vs poverty: Sweden 15,000 kwh e /(person-yr) Tanzania 100 kwh e / (person-yr) ½ live in poverty; 1/5 th under nourished Energy Source: 1.6 billion no electricity 2.4 billion traditional biomass Advanced Society Energy Consumption: 0.9 GJ / day / person 10.4 kw /person 32 kg coal / day / person 100 kg CO 2 / day / person

3 Global Warming is happening now STAR M S GEM 3

4 These are shared challenges either directly or indirectly nuclear energy already accounts for 17% of global electricity production 4

5 Nuclear Issues Are (and will remain) Unavoidable At least 40 developing countries have recently approached U.N. officials here to signal interest in starting nuclear power programs At least half a dozen countries are specifically planning to conduct enrichment or reprocessing of nuclear fuel Joby Warrick, Washington Post, May 12,

6 Classic Associations with Nuclear Energy 6 no CO 2 low-cost electricity (current fleet) engineered safety IAEA oversight Incremental improvements will not break all these associations be they real or imagined, each is a proven show stopper weapons enrichment reprocessing waste costly political ramifications truly catastrophic failure scenarios NIMBY

7 Invent the Future Invent Solutions to the Realities of Today 7

8 Can accelerators really make the difference? Enrichment Uranium Ore Fuel Fabrication Light Water Reactor Fuel Separation Transmutation Fuel Fabrication Fission Products and Process Losses Advanced Burner Reactor Transmutation Reprocessing High- Level Waste Repository Strontium, Cesium and Uranium Storage Low- Level Waste Disposal 8 NOT if incremental, or pursued in an unmotivated context.

9 ADNA: re re-frame the question What would an optimized accelerator-based nuclear-energy program look like? 9

10 graphically Enrichment Uranium Ore Recycling Liquid-fuel Subcritical Reactor Accelerator or fusion neutrons Fuel Fabrication Light Water Reactor Fluorination Fuel Separation Transmutation Fuel Fabrication Fission Products and Process Losses reduce and defer waste Advanced Burner Reactor Transmutation Reprocessing High- Level Waste Repository Strontium, Cesium and Uranium Storage Low- Level Waste Disposal 10

11 the advances and understanding di which h make this possible now despite the real challenges of currently being outside traditional programs 11

12 1.00E E+11 Electrostatic tandem with stopping length deuterium target ($ per gram m) Ne eutron cost 1.00E E E E E+06 Electron linac with W target LAMPF with W target GEM*STAR sc. with U SNS with GEM*STAR Hg target mass prod. 1.00E Year 12

13 Accelerators Study of a 10-MW Continuous Spallation Neutron Source (BNL, 2003) Comparison of Super-Conducting Linacs and operation power costs. STAR M S 13GEM

14 14 ADS Technology Readiness Assessment Front End System Performance Reliability Accelerating RF Structure Development System and Performance Linac Cost Optimization Reliability RF Plant Performance Cost Optimization Reliability Beam Delivery Performance Target Systems Performance Reliability Instrumentation Performance and Control Beam Dynamics Emittance/halo growth/beamloss Lattice design Reliability Rapid SCL Fault Recovery System Reliability Engineering Analysis Transmutation GEM*STAR Industrial Scale Power Demonstration Transmutation Generation Green: ready, Yellow: may be ready, but demonstration or further analysis is required, Red: more development is required.

15 Solid Fuel Issues non-uniform fuel consumption fuel repositioning to optimize burn-up up fraction fission-product build-up significant inventory of radioactive gasses difficult and expensive process to qualify new fuels typical fission distribution for driven systems 15

16 Molten Salt Eutectic Fuel 568 o 850 ThF 4 Uranium or Thorium fluorides form eutectic mixture with 7 LiF salt o High boiling point low vapor pressure Proven compatible with modified Hastelloy-N for operation up to 750C. (ORNL MSRE) 565 o o LiF 845 o 490 o LiF : UF 4 UF o 16

17 Liquid fuel enables operation with constant and uniform isotope fractions including fission products consider isotope N 1 present in molten-salt feed: feed absorption overflow dn 1 /dt = F(v/V) - N 1 a1 N 1 (v/v) =0 define neutron fluence: F = (V/v); then in equilibrium N 1 = F / [1 + F a1 ] 1 [ a1] and its n capture and β decay daughters are given by N i = N 1 j=2,i {F c(j-1) /[1 + F aj ]} i 2 j, c(j ) aj do this for all actinides present in molten-salt feed and add together th the results 17 note: feed rate is determined by power extracted

18 extracts many times more fission energy, without additional long-lived lived actinides Feed material: LWR spent fuel 20 GWy Acc 1 40 GWy Acc 2 60 GWy etc 18 major reduction and deferral of waste

19 Thermal Spectrum ev 19 highest tolerance for fission products: neutron s-wave strength low for fission products f ( 239 Pu)/ c (f.p.)~ p) 100 (versus ~ 10 at 50 kev) resonance spacing large compared to width of neutron spectrum 151 Sm (transmuted rapidly to low c nuclei); 135 Xe (continuously removed as a gas) more than compensates for slower fission of heavy actinides

20 New Graphite Results (ADNA) Cross section (barns) 7 6 Diffraction elastic scattering for granular graphite Neutron energy (ev) Duke LANL Measurements of Thermal Neutron Diffraction and Inelastic Scattering in Reactor-Grade Graphite Nuclear Science and Engineering Vol. 159 No. 2 June 2008 Reducing Parasitic Thermal Neutron Absorption in Graphite Reactors by 30% Nuclear Science and Engineering Vol. 161, No. 1, January

21 K room temperature results (HP graphite) x 1000 x g K 600K 400K 296K standard MCNP5 predictions Neutron energy (ev) Discovered and measured a commercial graphite source with: 24% increase in room temperature thermal diffusion length ( HP manufacturing process creates distorted crystals reducing coherent scattering) boron contamination less than 2 parts in 10 7 significant reduction in parasitic neutron absorption 21

22 Invent the Future Typical GEM STAR System ADN NA & Virgin nia Te ech GREEN Power Local Grid p sub-critical REACTOR p two proton beams from accelerators (50% efficient) 44% conversion efficiency Electrical Power Multiplication baseline target: 30 meaning: 8 MW green power gives 240 MW net output 22 GEM STAR

23 Protons -vs- Electrons protons MeV): P P beam input n E ( MV MeV ) fission 1 n 1 k s E( MeV) fissioni P P electric thermal MeV MeV electrons (@50 MeV): MeV MeV n per 1 p 1n per 60 e MeV MeV proton accelerator ~ ¼ capital cost M 27 23

24 STAR M S GEM 24 Functional Components

25 GEM STAR 25 Conceptual Design

26 Unique Target Considerations 26 Existing Oak Ridge SNS Molten Hg target heat removal; diffuse/ multiple beam targets neutron absorption local core reactivity primary n production thermal n escape, fast n fission maintenance spent target disposal Uranium seems ideal

27 ectrical Multip plication El Fuel: Natural Uranium running at peak gives 91% Pu-239 plutonium equiv. to a LWR GEM*STAR Split Design burning 0.5% of natural uranium Traditional Graphite Fluence running at x30 gives 70% Pu-239 plutonium Fluence (n/b) Fissioned Fraction (%) 27

28 80.00 Fuel: un-reprocessed Light-Water-Reactor spent fuel GEM*STAR split design Elec trical Multiplic cation running at x70 gives 45% Pu-239 plutonium Super Critical Regime Traditional Graphite 100 * keff - 50 Fluence feed LWR spent fuel fission product fraction /b) Fluence (n/ Additional Fission Fraction (%) 28

29 Depleted U 600,000 tons Th 14 MWe solar array HEU W-Pu 7 MWe accelerator input power Day 7 MWe Night U GEM*STAR 210 MWe five cycles over 200 yrs Up to 300-year interim underground storage in Hastelloy Naval reactor spent fuel 10,000 tons? Commercial reactor spent fuel 60,000 tons Hydrogen DOE U 60,000 tons 217 MWe day 203 MWe night 100,000 homes Coal Production of transportation fuel for cars, trucks, trains, airplanes Solar output t 6.5 % during daylight 29 Regional geologic storage beginning in 500 years?

30 Next: 60 (120) MW e Demonstration Facility e Santa Fe Hill road Acc. 1 Reactor Acc. 2 LANSCE Los Alamos canyon 30 a potential site at Los Alamos

31 Acc. 1 Reactor Acc a potential site in Virginia

32 GEM STAR System intrinsic safety: no critical mass ever present no high-pressure containment vessel thermal neutrons: better tolerance to fission products exceptional neutron economy: allows deeper burning higher thermal to electric conversion efficiency no enrichment; no reprocessing; can burn multiple fuels including LWR spent fuel 32

33 current prices for electricity (estimated by Black and Veatch, Overland Park, Kansas) cents/kwh t/k Coal without CO 2 capture 7.8 Natural gas at high efficiency 10.6 Old nuclear 3.5 New nuclear 10.8 Wind in stand alone 9.9 Wind with the necessary base line back-up 12.1 Solar source for steam-driven electricity 21.0 Solar voltaic cells; higher than solar steam electricity *NYT, Sunday (3/29/09) by Matthew Wald 33

34 E lectricity production cost (cen ts/kwh) Thorium $50/kg Depleted uranium $30/kg Natural uranium + thorium $75/kg Natural uranium $100/kg Practical limit to accelerator Today's accelerator cost cost reduction? Accelerator cost reduction factor 34

35 cost (cent ts/kwh) El lectricity production Spent fuel + thorium Spent fuel + depleted uranium Spent fuel + natural uranium Spent fuel alone Accelerator cost reduction factor 35

36 Coal-Fired Plant Conversion to Half Nuclear Cap-and-Trade Neutralized 1000 MWe Coal Steam boiler GEM*STAR 250 MWe Electric multiplication by 30 each Steam Generator Natural uranium fuel 24 tons fed per year each Steam 550 C Original turbine/generator recouperator Before 1000 MWe Coal only Production and capital cost $0.060/KWH After 1000 MWe Coal-Nuclear Prod. and capital costs combined $0.050/KWH because existing plant infrastructure reduces GEM*STAR capital 36 Natural UF 4 fuel $5.0 million/year Electricity 7 /KWH $550 million/year CO 2 credits transferred internally

37 Diesel and Gasoline from GEM*STAR CO 2 GEM*STAR 500 MWt Coal Water Electricity and steam 6H 2 O + 3C 3CO 2 + 6H 2 2(-CH 2 -) + 4 H 2 O + CO 2 Modified Fischer-Tropsch Fuel Estimate of Diesel Price at the Pump Steam and electricity from GEM*STAR $ 0.53/gallon Feed $100/ton (twice the current price) 0.37 Conversion facility operations costs 0.19 Construction mortgage payments for conv. facil Liquid fuel production 15 % 0.19 Water (680,000 gallons/d) Wholesale price $ 1.43/gallon + Coal (3000 tons/d Distribution and sales 0.24 Federal excise tax* 0.25 Diesel (680,000 gallons/d State excise tax* CO 2 (1000 tons/d C (1/3 of feed)) Total $2.14/gallon Obviously railroad site required *U. S. Energy Information Administration averages for the U. S. 37

38 GEM STAR will transform the nuclear policy landscape: not a niche, but rather base-line capable (green) energy source no enrichment necessary burns Light-Water-Reactor spent fuel directly (including fission products and actinides) burns multiple-fuels (including Th) low-cost electricity ect c ty for consumer significant international and non-proliferation implications 38

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor R. Bruce Vogelaar Virginia Tech December 12, 2011 ADS & TU Mumbai, India 1 view from a newcomer (who asks and

More information

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor R. Bruce Vogelaar Virginia Tech 1 Recent Developments At least 40 developing countries have recently approached

More information

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor

Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor ADNA & GEM M*STAR Green Energy-Multiplier Sub-critical, Thermal-spectrum, Accelerator-driven, Recycling Reactor R. Bruce Vogelaar Virginia i i Tech November 5, 2010 4:00 PM, Room 204 Physics Building University

More information

LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT

LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT LOS ALAMOS AQUEOUS TARGET/BLANKET SYSTEM DESIGN FOR THE ACCELERATOR TRANSMUTATION OF WASTE CONCEPT M. Cappiello, J. Ireland, J. Sapir, and B. Krohn Reactor Design and Analysis Group Los Alamos National

More information

Aim High! Thorium energy cheaper than from coal. Walk away safe.

Aim High! Thorium energy cheaper than from coal. Walk away safe. Aim High! Thorium energy cheaper than from coal. Walk away safe. robert.hargraves@gmail.com Global environmental problems mount. Prosperity stabilizes population. GDP per capita 82 nations with populations

More information

Nuclear Waste: How much is produced, and what can be used

Nuclear Waste: How much is produced, and what can be used Nuclear Waste: How much is produced, and what can be used Physics of Nuclear Reactors Faculty of Applied Sciences Delft University of Technology Products from fission Material balance in fuel cycle (1

More information

Optimal Performance for a Fusion-Neutron-Driven Commercial Waste Transmutation Facility

Optimal Performance for a Fusion-Neutron-Driven Commercial Waste Transmutation Facility Optimal Performance for a Fusion-Neutron-Driven Commercial Waste Transmutation Facility Charles D. Bowman, ADNA Corporation, Los Alamos, NM 87544 cbowman@cybermesa.com Abstract A thermal-spectrum graphite-moderated

More information

Thorium an alternative nuclear fuel cycle

Thorium an alternative nuclear fuel cycle Thorium an alternative nuclear fuel cycle 5th Smart Grids & Clean Power Conference, Cambridge, 5 June 2013 www.cir-strategy.com/events/cleanpower Kevin Hesketh, Senior Research Fellow Outline General Principles

More information

The Nuclear Fuel Cycle Lecture 5

The Nuclear Fuel Cycle Lecture 5 The Nuclear Fuel Cycle Lecture 5 David J. Hamilton d.hamilton@physics.gla.ac.uk 7th February 2011 1. Overview Limitations of thermal recycling of Pu. Fast critical reactors: core physics; breeders; transmutation.

More information

Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor

Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor Online Reprocessing Simulation for Thorium-Fueled Molten Salt Breeder Reactor Andrei Rykhlevskii, Alexander Lindsay, Kathryn Huff Advanced Reactors and Fuel Cycles Group University of Illinois at Urbana-Champaign

More information

-What is is Thorium Molten-Salt Nuclear Energy Synergetic System: THORIMS-NES?

-What is is Thorium Molten-Salt Nuclear Energy Synergetic System: THORIMS-NES? Thorium Energy Alliance Conference March 29-30, 2010, Mountain View, CA, USA: -What is is Thorium Molten-Salt Nuclear Energy Synergetic System: THORIMS-NES? (Establishing (Establishing SIMPLEST SIMPLEST

More information

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar

Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices Y. Gohar Fusion Power Program Technology Division Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL 60439,

More information

Molten-Salt Reactor FUJI and Related Thorium Cycles

Molten-Salt Reactor FUJI and Related Thorium Cycles Thorium Energy Alliance Spring Conference 2010, March 29-30, 2010, Mountain View, USA 1 Molten-Salt Reactor FUJI and Related Thorium Cycles Ritsuo Yoshioka (Presenter)* K. Furukawa, Y. Kato, K. Mitachi

More information

Neutronic and Fuel Cycle Consideration: from Single Stream to Two Fluid Th-U Molten Salt System. Olga S. Feinberg

Neutronic and Fuel Cycle Consideration: from Single Stream to Two Fluid Th-U Molten Salt System. Olga S. Feinberg Neutronic and Fuel Cycle Consideration: from Single Stream to Two Fluid Th-U Molten Salt System. Olga S. Feinberg RRC-Kurchatov Institute, 123182, Moscow, RF The History of the Problem In the 60 s and

More information

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors

Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Molten Salt Reactor Technology for Thorium- Fueled Small Reactors Dr. Jess C. Gehin Senior Nuclear R&D Manager Reactor and Nuclear Systems Division gehinjc@ornl.gov, 865-576-5093 Advanced SMR Technology

More information

Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor

Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor Molten Salt Reactors: A 2 Fluid Approach to a Practical Closed Cycle Thorium Reactor Oct 25 th 2007 Presentation to the Ottawa Chapter of the Canadian Nuclear Society Dr. David LeBlanc Physics Department

More information

Thorium in de Gesmolten Zout Reactor

Thorium in de Gesmolten Zout Reactor Thorium in de Gesmolten Zout Reactor 30-1-2015 Jan Leen Kloosterman TU-Delft Delft University of Technology Challenge the future Reactor Institute Delft Research on Energy and Health with Radiation 2 1

More information

Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES)

Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES) Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES) Ritsuo Yoshioka (*1), Koshi Mitachi (*1) & Motoyasu Kinoshita(*1,2) (*1) International Thorium Molten-Salt Forum (*2)University of Tokyo

More information

Current options for the nuclear fuel cycle:

Current options for the nuclear fuel cycle: Current options for the nuclear fuel cycle: 1- Spent fuel disposal 2- Spent fuel reprocessing and Pu recovery Spent fuel and radiotoxicity 1/3 Composition of Spent Nuclear Fuel (Standard PWR 33GW/t, 10

More information

Basic dynamics of graphite moderated LEU fueled MSRs

Basic dynamics of graphite moderated LEU fueled MSRs UTK seminar, July 18th 2014 Basic dynamics of graphite moderated LEU fueled MSRs Dr. Ondřej Chvála Seminar overview Historical context and lessons MSR salt & lattice choices Reactor dynamics:

More information

SABR FUEL CYCLE ANALYSIS C. M. Sommer, W. Van Rooijen and W. M. Stacey, Georgia Tech

SABR FUEL CYCLE ANALYSIS C. M. Sommer, W. Van Rooijen and W. M. Stacey, Georgia Tech VI. SABR FUEL CYCLE ANALYSIS C. M. Sommer, W. Van Rooijen and W. M. Stacey, Georgia Tech Abstract Various fuel cycles for a sodium cooled, subcritical, fast reactor, SABR 1, with a fusion neutron source

More information

Science of Nuclear Energy and Radiation

Science of Nuclear Energy and Radiation CNS Science of Nuclear Energy and Radiation Ben Rouben 1998 June page 1 The Nuclear Fuel Cycle Ben Rouben Manager, Reactor Core Physics AECL page 2 Topic of Discussion Nuclear fuel cycle. Will cover various

More information

Generation IV Roadmap: Fuel Cycles

Generation IV Roadmap: Fuel Cycles Generation IV Roadmap: Fuel Cycles Fuel Cycle Crosscut Group (FCCG) Generation IV Roadmap Session ANS Winter Meeting Reno, NV November 13, 2001 1 FCCG Members Arden Bement Purdue University Charles Boardman

More information

Influence of Fuel Design and Reactor Operation on Spent Fuel Management

Influence of Fuel Design and Reactor Operation on Spent Fuel Management Influence of Fuel Design and Reactor Operation on Spent Fuel Management International Conference on The Management of Spent Fuel from Nuclear Power Reactors 18 June 2015 Vienna, Austria Man-Sung Yim Department

More information

Fusion-Fission Hybrid Systems

Fusion-Fission Hybrid Systems Fusion-Fission Hybrid Systems Yousry Gohar Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 Fusion-Fission Hybrids Workshop Gaithersburg, Maryland September 30 - October 2, 2009 Fusion-Fission

More information

Molten Fluorides as Power Reactor Fuels 1

Molten Fluorides as Power Reactor Fuels 1 NUCLEAR SCIENCE AND ENGINEERING: 2, 797-803 (1957) Molten Fluorides as Power Reactor Fuels 1 R. C. BRIANT 2 AND ALVIN M. WEINBERG Oak Ridge National Laboratory, 3 P.O. Box X, Oak Ridge, Tennessee Received

More information

Radiochemistry Webinars

Radiochemistry Webinars National Analytical Management Program (NAMP) U.S. Department of Energy Carlsbad Field Office Radiochemistry Webinars Nuclear Fuel Cycle Series Introduction to the Nuclear Fuel Cycle In Cooperation with

More information

Molten Salt Reactors (MSRs)

Molten Salt Reactors (MSRs) Molten Salt Reactors (MSRs) Dr. Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge TN 37830-6179 Tel: (865) 574-6783 Fax: (865) 574-9512 E-mail: forsbergcw@ornl.gov Manuscript

More information

INAC-ENFIR Recife, November Molten Salt Nuclear Reactors

INAC-ENFIR Recife, November Molten Salt Nuclear Reactors INAC-ENFIR Recife, November 24-29 2013 Molten Salt Nuclear Reactors Dr Cassiano R E de Oliveira Department of Chemical and Nuclear Engineering The University of New Mexico cassiano@unm.edu Outline Motivation

More information

Disposing High-level Transuranic Waste in Subcritical Reactors

Disposing High-level Transuranic Waste in Subcritical Reactors Disposing High-level Transuranic Waste in Subcritical Reactors Yaosong Shen Institute of Applied Physics and Computational Mathematics, 6 Huayuan Road, 100088, Beijing, China We propose a new method of

More information

Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR

Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR Thorium and Uranium s Mutual Symbiosis: The Denatured Molten Salt Reactor DMSR Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011

D3SJ Talk. The Latest on the Thorium Cycle as a Sustainable Energy Source. Philip Bangerter. 4 May 2011 D3SJ Talk The Latest on the Thorium Cycle as a Sustainable Energy Source Philip Bangerter 4 May 2011 About the Speaker Philip Bangerter Process Engineer of 30 years experience Mining industry Sustainability

More information

The Nuclear Fuel Cycle. by B. Rouben Manager, Reactor Core Physics Branch Atomic Energy of Canada, Ltd.

The Nuclear Fuel Cycle. by B. Rouben Manager, Reactor Core Physics Branch Atomic Energy of Canada, Ltd. The Nuclear Fuel Cycle by B. Rouben Manager, Reactor Core Physics Branch Atomic Energy of Canada, Ltd. In this seminar we ll discuss the nuclear fuel cycle: we will cover the various phases in the use

More information

Modular Helium-cooled Reactor

Modular Helium-cooled Reactor Modular Helium-cooled Reactor The role of the GTMHR in GNEP E. Michael Campbell Francesco Venneri General Atomics April 2007 SEMA Conference 1 OUTLINE Motivation High Temperature gas reactors MHR as burner

More information

Critique of The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study (2011)

Critique of The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study (2011) Critique of The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study (2011) Developed by the Science Council for Global Initiative Contact: Tom Blees 1. The Study

More information

Nuclear Energy Economics and Policy Analysis S 04. Classnote. The Economics of the Nuclear Fuel Cycle: (2) MOX Recycle in LWRs

Nuclear Energy Economics and Policy Analysis S 04. Classnote. The Economics of the Nuclear Fuel Cycle: (2) MOX Recycle in LWRs 22.812 Nuclear Energy Economics and Policy Analysis S 04 Classnote The Economics of the Nuclear Fuel Cycle: (2) MOX Recycle in LWRs We can use the same fuel cycle cost model to investigate the economics

More information

Role of Partitioning and Transmutation (P&T) in Nuclear Energy

Role of Partitioning and Transmutation (P&T) in Nuclear Energy Role of Partitioning and Transmutation (P&T) in Nuclear Energy Kazufumi TSUJIMOTO Japan Atomic Energy Agency Nov. 6, 2013, Tokyo, Japan Topical Meeting embedded to INES-4 : International Nuclear Law Symposium

More information

Energy From Thorium Foundation

Energy From Thorium Foundation The Energy From Thorium Foundation Mission To educate and promote the adoption of Nuclear energy based on the use of Thorium in molten salt reactors, as a means to usher in an era of Sustainable Abundance

More information

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015

Abundant and Reliable Energy from Thorium. Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 Abundant and Reliable Energy from Thorium Kirk Sorensen Flibe Energy UT Energy Week February 17, 2015 This is incorrect. Nuclear energy is our greatest hope for the future. Nuclear energy contains over

More information

Energy from nuclear fission

Energy from nuclear fission Energy from nuclear fission M. Ripani INFN Genova, Italy Joint EPS-SIF International School on Energy 2014 Plan Figures about nuclear energy worldwide Safety Reaction products Radioactive waste production

More information

Economics of Plutonium Recycle

Economics of Plutonium Recycle Economics of Plutonium Recycle Thomas B. Cochran, Ph.D. Natural Resources Defense Council, Inc. Policy Review Panel on Nuclear Fuel Recycling Global Energy and Environment Initiative (GEEI) Johns Hopkins

More information

The DMSR: Keeping it Simple

The DMSR: Keeping it Simple The DMSR: Keeping it Simple March 29 th 2010 2 nd Thorium Energy Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com What

More information

A Brief History of Molten Salt Reactors

A Brief History of Molten Salt Reactors A Brief History of Molten Salt Reactors EVOL Workshop IPN-Orsay, France May 21-22, 2012 Dr. David E. Holcomb Reactor and Nuclear Systems Division HolcombDE@ornl.gov First a Couple of Quotes That Point

More information

The Thorium Fuel Cycle

The Thorium Fuel Cycle The Thorium Fuel Cycle ThEC13 Daniel Mathers daniel.p.mathers@nnl.co.uk Outline Content: Background Sustainability, proliferation resistance, economics, radiotoxicity Advantages and disadvantages Fuel

More information

Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES).

Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). Paper for CMSNT (Conference on Molten Salts in Nuclear Technology), Mumbai, 2013 Thorium Molten Salt Nuclear Energy Synergetic System (THORIMS-NES). Ritsuo Yoshioka, Koshi Mitachi International Thorium

More information

MEEM 4200 Energy Conversions Michigan Tech University April 4, 2008 Jeff Katalenich

MEEM 4200 Energy Conversions Michigan Tech University April 4, 2008 Jeff Katalenich MEEM 4200 Energy Conversions Michigan Tech University April 4, 2008 Jeff Katalenich Half-lives and isotope decay N(t) = N 0 e- λ t t 1/2 = ln(2)/λ Fission of U-235 92 U235 + 0 n 1 56 Ba 137 + 36 Kr 97

More information

Comparative Analysis of ENDF, JEF & JENDL Data Libraries by Modeling the Fusion-Fission Hybrid System for Minor Actinide Incineration

Comparative Analysis of ENDF, JEF & JENDL Data Libraries by Modeling the Fusion-Fission Hybrid System for Minor Actinide Incineration Comparative Analysis of ENDF, JEF & JENDL Data Libraries by Modeling the Fusion-Fission Hybrid System for Minor Actinide Incineration D. RIDIKAS 1)*, A. PLUKIS 2), R. PLUKIENE 2) 1) DSM/DAPNIA/SPhN, CEA

More information

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015

FOR A FUTURE WE CAN BELIEVE IN. International Thorium Energy Conference 2015 FOR A FUTURE WE CAN BELIEVE IN International Thorium Energy Conference 2015 ( 10-13 - 2015 ) LFTR: In search of the Ideal Pathway to Thorium Utilization Development Program Update. Current Status Benjamin

More information

NOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THE FUSION-FISSION HYBRID CONCEPT

NOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THE FUSION-FISSION HYBRID CONCEPT NOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THE FUSION-FISSION HYBRID CONCEPT IAP 2010 DON STEINER PROFESSOR EMERITUS,RPI JANUARY 22, 2010 IN 1997 TOYOTA INTRODUCED ITS HYBRID CAR CALLED THE PRIUS

More information

The Tube in Tube Two Fluid Approach

The Tube in Tube Two Fluid Approach The Tube in Tube Two Fluid Approach March 29 th 2010 2 nd Thorium Energy Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

(This paper was taken from Terrestrial Energy s web site June )

(This paper was taken from Terrestrial Energy s web site June ) (This paper was taken from Terrestrial Energy s web site June 18 2016) How it Works Molten Salt Reactors ( MSRs ) are nuclear reactors that use a fluid fuel in the form of a molten fluoride or chloride

More information

DESIGN AND SAFETY- SUPPORT ANALYSES OF AN IN-PILE MOLTEN SALT LOOP IN THE HFR

DESIGN AND SAFETY- SUPPORT ANALYSES OF AN IN-PILE MOLTEN SALT LOOP IN THE HFR DESIGN AND SAFETY- SUPPORT ANALYSES OF AN IN-PILE MOLTEN SALT LOOP IN THE HFR stempniewicz@nrg.eu M.M. Stempniewicz, E.A.R. de Geus, F. Alcaro, P.R. Hania, K. Nagy, N.L. Asquith, J. de Jong, L. Pool, S.

More information

On the Practical Use of Lightbridge Thorium-based Fuels for Nuclear Power Generation

On the Practical Use of Lightbridge Thorium-based Fuels for Nuclear Power Generation On the Practical Use of Lightbridge Thorium-based Fuels for Nuclear Power Generation Revision 1 - July 2010 Lightbridge Corporation 1600 Tysons Blvd. Suite 550 Mclean, VA 22102 USA P +1 571.730.1200 F

More information

The Future of the Nuclear Fuel Cycle

The Future of the Nuclear Fuel Cycle The Future of the Nuclear Fuel Cycle Results* and Personal Observations Charles W. Forsberg Executive Director MIT Nuclear Fuel Cycle Study Department of Nuclear Science and Engineering cforsber@mit.edu

More information

Nuclear Hydrogen Production

Nuclear Hydrogen Production Nuclear Hydrogen Production The View from General Atomics presented at the IPHE 3 rd Steering Committee Meeting 26-28 January 2005 Paris, France by David E. Baldwin Senior V-P, Energy Group San Diego,

More information

Nexus of Safeguards, Security and Safety for Advanced Reactors

Nexus of Safeguards, Security and Safety for Advanced Reactors Nexus of Safeguards, Security and Safety for Advanced Reactors Dr. George Flanagan Oak Ridge National Laboratory, USA Dr. Robert Bari Brookhaven National Laboratory, USA Presentation for the Global Nexus

More information

THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS

THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS THORIUM FUEL OPTIONS FOR SUSTAINED TRANSURANIC BURNING IN PRESSURIZED WATER REACTORS - 12381 Fariz Abdul Rahman*, Fausto Franceschini**, Michael Wenner**, John C. Lee* *University of Michigan, Ann Arbor,

More information

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA. Opportunities for the Multi Recycling of Used MOX Fuel in the US

WM2012 Conference, February 26 March 1, 2012, Phoenix, Arizona, USA. Opportunities for the Multi Recycling of Used MOX Fuel in the US Opportunities for the Multi Recycling of Used MOX Fuel in the US - 12122 P. Murray*, F. Bailly**, E. Bouvier**, T. Gain**, F. Lelièvre**, G.H. Senentz**, and E. Collins*** *AREVA Federal Services LLC,

More information

Fast Molten Salt Reactor with U-Pu Fuel

Fast Molten Salt Reactor with U-Pu Fuel Fast Molten Salt Reactor with U-Pu Fuel L.I. Ponomarev A.A.Bochvar High Technology Research Institute of Inorganic Materials, Moscow Problems of the contemporary nuclear power Preferences of molten salt

More information

COE-INES-1 CORE CONCEPT OF COMPOUND PROCESS FUEL CYCLE

COE-INES-1 CORE CONCEPT OF COMPOUND PROCESS FUEL CYCLE COE-INES-1 CORE CONCEPT OF COMPOUND PROCESS FUEL CYCLE Objectives # Proposal of innovative nuclear fuel cycle system - economic competitiveness - efficient utilization of nuclear fuel resources - reduction

More information

Reactor Technology --- Materials, Fuel and Safety

Reactor Technology --- Materials, Fuel and Safety Reactor Technology --- Materials, Fuel and Safety UCT EEE4101F / EEE4103F April 2015 Emeritus Professor David Aschman Based on lectures by Dr Tony Williams Beznau NPP, Switzerland, 2 x 365 MWe Westinghouse,

More information

Liquid Fluoride Reactors: A Luxury of Choice

Liquid Fluoride Reactors: A Luxury of Choice Liquid Fluoride Reactors: A Luxury of Choice Oct 20 th 2009 Thorium Energy Alliance Conference Dr. David LeBlanc Physics Dept, Carleton University, Ottawa & Ottawa Valley Research Associates Ltd. d_leblanc@rogers.com

More information

Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System Atom Indonesia Vol. 41 No. 2 (2015) 53-60 Atom Indonesia Journal homepage: http://aij.batan.go.id Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System L.P. Rodriguez 1*,

More information

Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála

Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála Nuclear Engineering Seminar 2013 Progress in Molten Salt Reactor (MSR) Modeling Seminar Series Ondřej Chvála Seminar overview Historical and international context of the work. Contemporary

More information

Reactor Technology: Materials, Fuel and Safety 14 th 17 th April 2009 Dr. Tony Williams

Reactor Technology: Materials, Fuel and Safety 14 th 17 th April 2009 Dr. Tony Williams Reactor Technology: Materials, Fuel and Safety 14 th 17 th April 2009 Dr. Tony Williams Leibstadt NPP, 1200MWe BWR, GE, 1984 Course Structure Unit 1: Reactor materials Unit 2. Reactor types Unit 3: Radiation,

More information

A Strategy for the Nuclear Fuel Cycle in the 21st Century

A Strategy for the Nuclear Fuel Cycle in the 21st Century A Strategy for the Nuclear Fuel Cycle in the 21st Century uji. Kazim assachuse s Ins tu of Technolog A lecture for The ANS Chapter in Austria The IAEA, Vienna, Austria May 26, 2009 MIT Center for Advanced

More information

Nuclear Energy. Weston M. Stacey Callaway Regents Professor Nuclear and Radiological Engineering Program Georgia Institute of Technology

Nuclear Energy. Weston M. Stacey Callaway Regents Professor Nuclear and Radiological Engineering Program Georgia Institute of Technology Nuclear Energy Weston M. Stacey Callaway Regents Professor Nuclear and Radiological Engineering Program Georgia Institute of Technology NAE Symposium The Role of Alternative Energy Sources in a Comprehensive

More information

Innovative systems for sustainable nuclear energy generation and waste management

Innovative systems for sustainable nuclear energy generation and waste management Journal of Physics: Conference Series Innovative systems for sustainable nuclear energy generation and waste management To cite this article: Jm Loiseaux and S David 2006 J. Phys.: Conf. Ser. 41 36 View

More information

Going Underground: Safe Disposal of Nuclear Waste

Going Underground: Safe Disposal of Nuclear Waste Going Underground: Safe Disposal of Nuclear Waste Burton Richter Pigott Professor in the Physical Sciences, Emeritus Stanford Energy Seminar January 23, 2012 Nuclear Energy Issues It is too expensive It

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 24 The Nuclear Fuel Cycle Open Fuel Cycle (LWR) Front End Back End Grades of Uranium Depleted uranium (DU) contains < 0.7% U-235 Natural

More information

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at

Workshop on PR&PP Evaluation Methodology for Gen IV Nuclear Energy Systems. Tokyo, Japan 22 February, Presented at PR&PP Collaborative Study with GIF System Steering Committees A Compilation of Design Information and Crosscutting Issues Related to PR&PP Characterization Presented at Workshop on PR&PP Evaluation Methodology

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 20 Nuclear Power Plants II Nuclear Power Plants: Gen IV Reactors Spiritual Thought 2 Typical PWR Specs Reactor Core Fuel Assembly Steam

More information

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA

WM2013 Conference, February 24 28, 2013, Phoenix, Arizona USA The Potential Role of the Thorium Fuel Cycle in Reducing the Radiotoxicity of Long-Lived Waste 13477 Kevin Hesketh and Mike Thomas The UK s National Nuclear Laboratory, Preston Laboratory, Preston, PR4

More information

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy

Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs. IAEA International Conference on Non-Electric Applications of Nuclear Energy Pre-Conceptual Hydrogen Production Modular Helium Reactor Designs Matt Richards, Arkal Shenoy, and Mike Campbell General Atomics IAEA International Conference on Non-Electric Applications of Nuclear Energy

More information

Fast Reactors When? Presented at Erice, Sicily International Seminars on Planetary Emergencies and Associated Meetings 43rd Session August 21, 2010

Fast Reactors When? Presented at Erice, Sicily International Seminars on Planetary Emergencies and Associated Meetings 43rd Session August 21, 2010 Fast Reactors When? IBM Fellow Emeritus IBM Thomas J. Watson Research Center P.O. Box 218, Yorktown Heights, NY 10598 RLG2@us.ibm.com, www.fas.org/rlg/, www.garwin.us Presented at Erice, Sicily International

More information

The role of Thorium for facilitating large scale deployment of nuclear energy

The role of Thorium for facilitating large scale deployment of nuclear energy The role of Thorium for facilitating large scale deployment of nuclear energy R.K. Sinha Chairman, Atomic Energy Commission Government of India IAEA International Ministerial Conference on Nuclear Power

More information

The FutureS of Nuclear Energy

The FutureS of Nuclear Energy The FutureS of Nuclear Energy Adrien Bidaud, Sylvain David, Olivier Méplan Groupe Physique des Réacteurs Laboratoire de Physique Subatomique et Corpusculaire IN2P3/CNRS Ecole Nationale Supérieure de Physique

More information

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management

Fast and High Temperature Reactors for Improved Thermal Efficiency and Radioactive Waste Management What s New in Power Reactor Technologies, Cogeneration and the Fuel Cycle Back End? A Side Event in the 58th General Conference, 24 Sept 2014 Fast and High Temperature Reactors for Improved Thermal Efficiency

More information

New Nuclear Technology to Produce Inexpensive Diesel Fuel from Natural Gas and Renewable Carbon Rolland P. Johnson Muons, Inc.

New Nuclear Technology to Produce Inexpensive Diesel Fuel from Natural Gas and Renewable Carbon Rolland P. Johnson Muons, Inc. New Nuclear Technology to Produce Inexpensive Diesel Fuel from Natural Gas and Renewable Carbon Rolland P. Johnson Muons, Inc., Batavia, IL USA, The long-range goal of this project is to sell intrinsically

More information

Nuclear Power Plants

Nuclear Power Plants NUCLEAR ENERGY 2.0 500 times more energy 1000 times less waste Dr Jan Leen Kloosterman Assoc. Prof Nuclear Reactor Physics Head of Section Physics of Nuclear Reactors Program Director of Sustainable Energy

More information

Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities Siting the Advanced Fuel Cycle Facility

Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities Siting the Advanced Fuel Cycle Facility Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities Siting the Advanced Fuel Cycle Facility Andrew Griffith, John Boger U.S. Department of Energy, 1000

More information

The European nuclear industry and research approach for innovation in nuclear energy. Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003

The European nuclear industry and research approach for innovation in nuclear energy. Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003 The European nuclear industry and research approach for innovation in nuclear energy Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003 Contents The EPS and MIT approach The approach of the European

More information

The Technology of Nuclear Energy and Weapons

The Technology of Nuclear Energy and Weapons The Technology of Nuclear Energy and Weapons I.Theory I.A.1. Nucleons and Atoms Nuclear binding energy = Δmc 2 For the alpha particle Δm= 0.0304 u which gives a binding energy of 28.3 MeV. h"p://hyperphysics.phy-

More information

Plutonium Management in France. Current Policy and Long Term Strategy for the Used Fuel Recycling by LWR and Fast Reactors

Plutonium Management in France. Current Policy and Long Term Strategy for the Used Fuel Recycling by LWR and Fast Reactors 1 Plutonium Management in France Current Policy and Long Term Strategy for the Used Fuel Recycling by LWR and Fast Reactors Christophe XERRI, Nuclear Counsellor 2 3 French Nuclear Fleet 2013 One operator:

More information

Systematic Evaluation of Uranium Utilization in Nuclear Systems

Systematic Evaluation of Uranium Utilization in Nuclear Systems Systematic Evaluation of Uranium Utilization in Nuclear Systems Taek K. Kim and T. A. Taiwo 11 th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation San Francisco,

More information

U.S. DOE currently has a number of initiatives to promote the growth of nuclear energy

U.S. DOE currently has a number of initiatives to promote the growth of nuclear energy U.S. Department of Energy Innovative Generation IV and Advanced Fuel Cycle Initiative Research Programs Buzz Savage AFCI Program Director U.S. DOE 1st COE-INES International Symposium Tokyo, Japan November

More information

TRAVELING WAVE REACTOR

TRAVELING WAVE REACTOR TRAVELING WAVE REACTOR M. Ragheb 3/13/2013 INTRODUCTION In the 2012 USA budget, $853 million is allocated for nuclear research, including small reactors. A 30-person Company, TerraPower LLC, at Bellevue,

More information

Aim High! 1. Limits to growth 2. Thorium 3. History 4. Aim High 5. Energy cheaper than from coal

Aim High! 1. Limits to growth 2. Thorium 3. History 4. Aim High 5. Energy cheaper than from coal Aim High! 1. Limits to growth 2. Thorium 3. History 4. Aim High 5. Energy cheaper than from coal robert.hargraves@gmail.com Global environmental problems mount. Dennis Meadows Limits to Growth showed effects

More information

May 25,

May 25, Presentation to the Blue Ribbon Commission on America s Nuclear Future Arjun Makhijani, Ph.D. President, Institute For Energy and Environmental Research Washington, DC D.C. May 25, 2010 www.ieer.org Overview

More information

Accelerator Driven Systems. Dirk Vandeplassche, Luis Medeiros Romão

Accelerator Driven Systems. Dirk Vandeplassche, Luis Medeiros Romão Accelerator Driven Systems Dirk Vandeplassche, Luis Medeiros Romão IPAC'12, New Orleans (Louisiana) May 21, 2012 1 Overview 1. Introduction 2. The accelerator for ADS 3. Projects 4. Concluding remarks

More information

The Legacy of U.S. Energy Leadership

The Legacy of U.S. Energy Leadership Future Nuclear Energy Systems: Generation IV Kevan D. Weaver, Ph.D. U.S. System Integration Manager, Gas-Cooled Fast Reactor 50th Annual Meeting of the Health Physics Society 11 July 2005 - Spokane, Washington,

More information

Molten Salt Reactor system

Molten Salt Reactor system Molten Salt Reactor system 2009-2012 Status J. Serp & H. Boussier* Chair of the Molten Salt Reactor System Steering Committee * Former Chairman Slides prepared in collaboration with CNRS (France) and JRC

More information

FRENCH WASTE MANAGEMENT STRATEGY FOR A SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY

FRENCH WASTE MANAGEMENT STRATEGY FOR A SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY FRENCH WASTE MANAGEMENT STRATEGY FOR A SUSTAINABLE DEVELOPMENT OF NUCLEAR ENERGY Charles Courtois and Franck Carré Waste Management Research Direction CEA/Saclay, Gif-sur-Yvette, Cedex, France Abstract

More information

Nuclear Power Reactors. Kaleem Ahmad

Nuclear Power Reactors. Kaleem Ahmad Nuclear Power Reactors Kaleem Ahmad Outline Significance of Nuclear Energy Nuclear Fission Nuclear Fuel Cycle Nuclear Power Reactors Conclusions Kaleem Ahmad, Sustainable Energy Technologies Center Key

More information

Small-sized reactors of different types: Regulatory framework to be re-thought?

Small-sized reactors of different types: Regulatory framework to be re-thought? Small-sized reactors of different types: Regulatory framework to be re-thought? TM on Challenges in the Application of Design Safety Requirements for NPPs to SMRs, IAEA, Vienna, 4-8 Sept. 2017 06.09.2017

More information

Current Situation of MSR Development in Japan. Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan

Current Situation of MSR Development in Japan. Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan Current Situation of MSR Development in Japan Yoichiro SHIMAZU Graduate School of Engineering Hokkaido University, Japan 1 Related Organizations International Thorium Molten-Salt Forum (ITHMSF ) President:

More information

Table S-2. Roadmapping Neutron Sources. Table S-2. Roadmapping Neutron Sources (continued)

Table S-2. Roadmapping Neutron Sources. Table S-2. Roadmapping Neutron Sources (continued) Advanced Test Reactor (ATR) Annular Core Research Reactor (ACRR) High Flux Isotope Reactor (HFIR) ANL-W NRAD SPR II and III at SN BMRR > 10 15 high flux (Ir 192, Co 60, Gd 153, Ni 63 ) Short-lived High

More information

The Nuclear Fuel Cycle Simplified

The Nuclear Fuel Cycle Simplified The Nuclear Fuel Cycle Simplified Nuclear Power Committee August 27, 2009 Albert Machiels Senior Technical Executive Topics The Nuclear Fuel Cycle Simplified Light-Water Reactor (LWR) Power Block Used

More information

Sustainability of Nuclear Power

Sustainability of Nuclear Power Sustainability of Nuclear Power Dave Torgerson Senior Technical Advisor (emeritus) AECL Carleton Sustainable Energy Research Centre Seminar Series 2011 March 28 UNRESTRICTED / ILLIMITÉ 1 The drivers for

More information