a) Why is cogeneration 1 more efficient than conventional power generation methods? [3 points]

Size: px
Start display at page:

Download "a) Why is cogeneration 1 more efficient than conventional power generation methods? [3 points]"

Transcription

1 To facilitate returning graded problems more efficiently, please write on your submitted problem sets: Name (as on bcourse), Student ID, Course # (ER100 etc), Discussion Section ( ) Combined-Cycle Power Plant 1. UC Berkeley s campus features a combined heat and power (CHP) energy system. This power (electricity) station is a combined-cycle: a MW natural gas turbine (Brayton cycle) and a 5.0 MW steampowered, bottoming-cycle generator (Rankine cycle). Waste heat from this system feeds into a steam loop that serves to heat central campus and several peripheral buildings; at peak output, the plant generates 84.0 tons of steam each hour. It has been claimed that the overall efficiency of this facility is 76%. [16 points total] a) Why is cogeneration 1 more efficient than conventional power generation methods? [3 points] b) How much energy does it take to raise 1.00 kg of water from 20.0 C to C? Assume the specific heat of water is kj/kg. 0 C, and the specific heat of steam at 1 bar is kj/kg. 0 C (Don t forget the heat of vaporization of water: 2258 kj/kg). If the steam produced by the power station has been heated over this range of temperatures, at what rate does this CHP system consume fuel (assume the energy content of natural gas is 39MJ/m 3 )? Give your answer in units of m 3 /s with two significant digits. [5 points] c) Assume the steam produced at UC Berkeley s physical plant (2000 Carleton St) is then transported via 2 inch uninsulated pipe to Berkeley campus. Assume all the steam is transported to a central location on Berkeley campus such as Valley Life Sciences Building, which is about 1.1 mile away, and it s a cold winter morning in Berkeley (40 F). According to the table below, how much power is lost in the process (answer in MW)? What percentage loss is this in comparison to the power of the original steam produced? Note: the h in btu/h per ft is hour. [4 points] 1 Another term for CHP Page 1 of 6

2 d) In 2013, campus used roughly 200. GWh of electricity. What would the capacity factor of the CHP have to be in order to generate that much electricity? [4 points] Thermodynamics of Energy Systems 2. Dynegy s Moss Landing Power Plant (Monterey), a natural gas fired plant, is California s largest electric generator with a total installed capacity of approximately 2,330 MWe. Out of this, two newly built generators (1,040 MWe total) are combined cycle (Brayton and Rankine cycles), whereas the older two generators (1,290 MWe total) run on gas turbines only (the Brayton cycle). When operating at full capacity, the rate of energy added to both older generators together during the combustion of fuel (not taking into account cycle efficiency) is 11,080 million Btu/hr. The power plant s capacity factor (percentage of plant s capacity used over time) is about 64%. [40 points total] a) Draw the schematic of the major components (not the thermal cycle diagrams) showing the ideal Brayton Cycle and the ideal Combined Cycle, respectively. Label all components, the associated work input/output or the heat input/output, the temperature of the working fluid before/after each component. In thermodynamic terms, explain briefly the function of each component, such as the changes in pressure, temperature, work, and heat. [10 points] b) Calculate the Carnot efficiency of a system operating at the following temperatures. [4 points] T1 = temp at exit of the exhaust heat exchanger and inlet of the compressor = 32.0ºC T2 = temp at exit of the compressor and inlet of the combustor = 360.0ºC T3 = temp at the exit of the combustor and the inlet of the turbine = 873ºC T4 = temp at the exit of the turbine and the inlet of the exhaust heat exchanger = 395.0ºC c) Calculate the 1st law efficiency of the older generators that use the Brayton cycle. [4 points] d) What is the second law efficiency of the generators that use the Brayton cycle? (Use the Carnot efficiency calculated in part b).) [4 points] e) Consider the combined-cycle generators. Assume that the performance of the gas turbines in these generators is the same as the older generators which use only the Brayton cycle. If the thermal efficiency for the steam turbine system (the Rankine cycle) is 28.0%, calculate the overall efficiency for the combined cycle. [4 points] f) What is the total power (electricity) output from the Moss Landing Power Plant in a typical year (in TWh)? [4 points] g) For the 1,290 MWe Brayton cycle described above, estimate the volumetric flow rate (in m 3 /sec) of cooling water for 2.0 ºC of temperature rise while the power plant is at full power. Assume that water has a specific heat capacity of kj/(kg ºC) and a density of 1.0 g/cm 3 and that there is no external heat lost from the system comprising the power plant and the water. [10 points] Page 2 of 6

3 History of the U.S. Electric Power Sector 3. Drawing on Richard Hirsh s Power Loss and the content presented in lecture, respond to the following prompts. [20 points total] a) What were the political, technological, and economic factors that played into the emergence of the utility consensus in the first decades of the 20 th century and that persisted until the 1970s? [10 points] b) Explain the major trends and significant events that contributed to the erosion of the utility consensus in the 1970s and presaged the passage of PURPA in [10 points] Estimating US Petroleum Reserves 4. In 1956 M. K. Hubbert of Shell oil predicted that US oil production would peak around 1970 and that US oil production would follow a Gaussian or normal curve over time. [13 points total ER 100/PP 184; 17 total points ER 200/PP 284] a) BP cites 1970 as the year of peak US oil production (BP, Statistical Review of World Energy 2014 ) 2. Combining BP data with USGS data, we find that cumulative US oil production until 1970 was approximately 90 gigabarrels (Gbbl). If Hubbert was correct, what would we expect to be the total amount of oil recoverable in the US over all time? [2 points] b) Access the production data in BP s Statistical Review of World Energy Given our data from part a) (that 90 Gbbl was produced before the end of 1970), what is the cumulative production for the US through 2013? How does this compare with your results from part a)? [4 points] Parts c, d, and e are on the next page! 2 You can access the report here: 3 A spreadsheet can be found here: /BP-Statistical_Review_of_world_energy_2014_workbook.xlsx Page 3 of 6

4 c) In words, describe how to find the total stock (i.e., the size of the entire resource) using this graph. [3 points] d) How would a Hubbert s Curve for conventional oil change if we were to add oil sands to the graph? Redraw the curve to include oil sands. [4 points] e) [ER 200/PP 284 only] Draw a cost curve based on Hubbert s Curve to describe the cost of oil extraction. Put time (year) on the x-axis and cost/barrel on the y-axis. [4 points] Page 4 of 6

5 Economic Analysis 5. [ER 100/PP 184 Students Only] Elon Musk s mission is to make the electric vehicle an object of desire and he has had some initial success as sales for both Tesla vehicles as well as electric vehicles in general are growing rapidly. In this question, you ll compare the costs of owning a standard non-hybrid vehicle versus a hybrid vehicle versus an electric vehicle with the information given below. Neglect the effect of inflation. [20 points total] Vehicle Option Toyota Camry Toyota Prius C Nissan Leaf S Purchase price $22,235 $19,080 $29,010 Fuel consumption 30. mi/gal 50. mi/gal 34. kwh/100 miles Fuel cost $4.22/gal $4.22/gal $0.15/kWh Insurance $1000./year $1000./year $1000./year License and fees $65/yr $65/yr $65/yr Maintenance/repairs $375/yr $500./yr $300./yr Resale value (in six years) $6,000. $5,000. $8,000. EV range per charge n/a n/a 100. miles (according to Nissan) Interest rate 3.00% 3.00% 3.00% a) Consider someone who plans to use their vehicle to commute to work. They live 35 miles from work. Which car has the most favorable net present value (cost) if this person will be commuting 4 days per week, 48 weeks per year, for six years? Assume that the purchased vehicle will be sold at the end of six years. Show the calculations for all three cars. [12 points] b) Search online to see if there are any US federal tax credits for the Nissan Leaf and how much it is worth. Write a short note (along with a simple calculation) on how this could change the purchase decision (maximum 2 sentences)? Why does the government offer tax credits for electric vehicles? [8 points] Page 5 of 6

6 The Environmental Impacts of the Oil Transition 6. [For ER 200/PP 284 Students Only] We will now look quantitatively at the CO 2 implications of a transition to oil substitutes. We will use stylized equations to estimate roughly the impacts of this transition. (Hint: You should build models that are easily reconfigurable for different input values, as they are in, for example, Excel.) [27 points] a) Generate and plot two curves projecting future conventional oil production (Curves A and B). Curve A assumes less oil. It follows predictions of K. Deffeyes of Princeton, who states that the peak in conventional production already passed in late 2005 or early Curve B assumes the peak is postponed until Use a Gaussian curve in both cases, and plot over the years 2000 to [8 points] Curve A: Peak year = 2005, Maximum prod = 30. Gbbl, = 25 years Curve B: Peak year = 2015, Maximum prod = 33. Gbbl, = 25 years b) Assume in both cases that demand for liquid hydrocarbons increases at 2.0% per year from the level seen in the year of peak oil production. Plot the resulting gap between conventional oil production and demand for liquid hydrocarbons for both cases (A and B) until [5 points] c) Let s work with case B. Assume that in 2025 the gap in case B is filled with 30.% biofuels as characterized in Farrell et al (2006); 4 and 40.% tar sands, 5.0% gas-to-liquids synfuels, and 25.% oil shale as characterized in Farrell and Brandt (2006) fig 1. 5 How much larger (in gigatons) are carbon emissions in this case than in a case where conventional oil production can meet all demand (in gigatonnes C)? Assume each bbl of crude or crude substitute has an energy content of 5.6 x10 9 J (Harte, 1988), and the average carbon emission factor for each fuel can be found in the reference. Comment on the magnitude of these emissions in comparison to global anthropogenic carbon emissions (See WRI CAIT for current statistics ). [6 points] d) Now let s be more optimistic. Assume that instead of GTL synfuels, 5% of the gap in the year 2025 is met by increasing light-duty vehicle efficiency. Also, assume that instead of oil shale, biofuels with a carbon intensity of 30 gc/mj are used (keep the other biofuels too). (Simply plug new carbon intensities into your calculation from above!) What are the carbon implications in this case? [3 points] e) Calculate the number of hybrids that would be required to fill 15% of the gap in Assume hybrid cars with real-world mileage of 70. miles per gallon (hopefully an attainable goal for 2025) replace cars that get 35 miles per gallon. Assume all cars travel 10,000. miles per year. Although only 46% of the oil can be refined to gasoline, assume demand for 42 gallons of gasoline is equivalent to 1.00 barrel of oil in this question. How does this figure compare to the current number of global automobiles? (A recent report by Ward s Auto 6 estimated a global vehicle population in 2010 of about one billion.) And is this optimistic case too optimistic? [5 points] 4 Farrell et al. 2006, Ethanol Can Contribute to Energy and Environmental Goals. Science 311(5760). Use ethanol today number from Figure 1. 5 Farrell and Brandt. 2006, Risks of the oil transition. Environmental Research Letters Use the average of high and low values of carbon intensity for each fuel from this paper fig. 1. E.g. if the range of carbon intensities for a fuel run from 30 to 70 g C/MJ, use a value of 50 g/mj to compute emissions from that fuel. 6 Page 6 of 6

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9.

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9. NAME KEY Allowed: Writing utensil, calculator and the provided formula sheet. Books, notes and collaboration (friends) are not allowed! Clearly indicate your answer and show your work. I do give partial

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

Zero emission Energy Recycling Oxidation System. June 2012

Zero emission Energy Recycling Oxidation System. June 2012 ZER S Zero emission Energy Recycling Oxidation System June 2012 Patented Gasification / Oxidation Method & System A brilliant integration of established technologies: Rotary Kiln Technology Gasification

More information

Efficiency improvement of steam power plants in Kuwait

Efficiency improvement of steam power plants in Kuwait Energy and Sustainability V 173 Efficiency improvement of steam power plants in Kuwait H. Hussain, M. Sebzali & B. Ameer Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait

More information

Computer Models Using Spreadsheets to Study Heat Engine Thermodynamics

Computer Models Using Spreadsheets to Study Heat Engine Thermodynamics Session 2478 Computer Models Using Spreadsheets to Study Heat Engine Thermodynamics Kenneth L. Tuttle U.S. Naval Academy ABSTRACT Marine Power Systems is the second term of a two term course in thermodynamics

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

Administrative Building Cooling Tower. University of Tennessee Chattanooga

Administrative Building Cooling Tower. University of Tennessee Chattanooga Administrative Building Cooling Tower University of Tennessee Chattanooga Ben Dalton Lab Partner: Murat Ozkaya ENCH 435 Dr. Jim Henry December 2, 2008 Abstract Experimental data was taken at the air inlet

More information

Solar Grand Plan. Ken Zweibel PrimeStar Solar February 2008

Solar Grand Plan. Ken Zweibel PrimeStar Solar February 2008 Solar Grand Plan Ken Zweibel PrimeStar Solar February 2008 1 The Solar Century? A Proper Skepticism, but 120,000 terawatts of power The only big number out there (Lewis and Smalley) Solution to CO 2 build

More information

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra CONTROL VOLUME ANALYSIS USING ENERGY 1 By Ertanto Vetra Outlines Mass Balance Energy Balance Steady State and Transient Analysis Applications 2 Conservation of mass Conservation of mass is one of the most

More information

Combined Mass and Energy Transients

Combined Mass and Energy Transients Lecture T3 Combined Mass and Energy Transients We now consider processes in which the amounts of both mass and energy are changing in the system. In these cases, the material and energy balances are both

More information

4. If the Earth is to continue to use oil its current rate, what must happen for us to sustain this rate?

4. If the Earth is to continue to use oil its current rate, what must happen for us to sustain this rate? CHAPTER 15 Nonrenewable Energy Core Case Study: How Long Will Supplies of Conventional Oil Last? Oil supplies about of the world s energy. When do geologist predict that oil reserves will be 80% depleted?

More information

Towards a Policy Framework for Transportation s Energy Transition

Towards a Policy Framework for Transportation s Energy Transition Towards a Policy Framework for Transportation s Energy Transition David L. Greene Oak Ridge National Laboratory Howard M. Baker, Jr. Center for Public Policy, University of Tennessee Zhenhong Lin Oak Ridge

More information

TransPacific Energy Advantage: Case Studies

TransPacific Energy Advantage: Case Studies TransPacific Energy Advantage: Case Studies Typical Power Plant TPE-ORC 0.60 KWh ORC 2.3 KWh LP steam 0.35 KWh 30% (maximum) 2.05 KWh CHP Typical Power Generated 1.1 KWh Typical Power Wasted 2.31 KWh Typical

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS

ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS 131 ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS K. Z.Iqbal, L. W. Fish, and K. E. Starling School of Chemical Engineering and Materials Science, The University of Oklahoma, Norman, Oklahoma

More information

Dr. L. Axelsson, Chief Engineer, Development

Dr. L. Axelsson, Chief Engineer, Development Operational experience of the OP16 gas turbine in small scale CHP installations in Europe Lars-Uno Axelsson, Ruud van Groenewoud and Mark Stulp, OPRA Turbines Dr. L. Axelsson, Chief Engineer, Development

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319

Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319 Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? DOE/NETL-2008/1319 May 2, 2008 1 Water Vapor from Thermoelectric Power Plants, Does it Impact Climate? It is difficult to experimentally

More information

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS PRINCIPLES: THERMODYNAMICS & ENERGY BALANCES 1 Copyright 2018. All rights reserved. How to use this book The exam specifications in effect

More information

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen:

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Annual Energy Outlook 2010 Reference Case

Annual Energy Outlook 2010 Reference Case Annual Energy Outlook 21 Reference Case The Paul H. Nitze School of Advanced International Studies December 14, 29 Washington, DC Richard Newell, Administrator Richard Newell, SAIS, December 14, 29 1 How

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares.

HYSYS WORKBOOK By: Eng. Ahmed Deyab Fares. HYSYS WORKBOOK 2013 By: Eng. Ahmed Deyab Fares eng.a.deab@gmail.com adeyab@adeyab.com Mobile: 002-01227549943 - Email: adeyab@adeyab.com 1 Flash Separation We have a stream containing 15% ethane, 20% propane,

More information

Shades of Energy Independence

Shades of Energy Independence Shades of Energy Independence Dr. Nansen G. Saleri President & CEO Quantum Reservoir Impact, LLC November 16, 2012 Energy Forum, Massachusetts Institute of Technology NASA s NanoSail-D Source: sciencenews.org

More information

Electricity Generation

Electricity Generation Electricity Generation Page 1 Outline Combustion Generation Based on - Thermodynamic Cycles, Chapter 4 of Energy Resources and Systems by T.K. Ghosh and M.A. Prelas, Springer 2009. - Structure Operation

More information

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels Synergistic Energy Conversion Processes Using Energy and Fossil Fuels Masao Hori Systems Association, Japan Email: mhori@mxb.mesh.ne.jp ABSTRACT This paper reviews the methods of producing energy carriers,

More information

Heat recovery from diesel engines and gas turbines

Heat recovery from diesel engines and gas turbines Environmentally friendly Rugged Efficient For high temperature applications, AQYLON s organic working fluids have a very low Global Warming Potential (GWP 320). AQYLON s ORC modules are designed for durability

More information

In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps

In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps 13 1 In this lecture... Solve problems related to First law of thermodynamics for closed and open systems Heat engines Refrigerators and heat pumps 2 Problem 1 A 50 kg iron block at 80 C is dropped into

More information

I think there is a world market for maybe 5 computers (Thomas Watson, IBM chairman, 1943) plateau (Irving Fischer, prof of economics, Yale U.

I think there is a world market for maybe 5 computers (Thomas Watson, IBM chairman, 1943) plateau (Irving Fischer, prof of economics, Yale U. The Oil Peak syndrom: Facts and Myths Alain Labastie, 2011 President Society of Petroleum Engineers 1 Forecasts by experts or gurus are often unreliable I think there is a world market for maybe 5 computers

More information

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on Chapter 10, Problem 8C. Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on Pump work input: Turbine work output: Heat supplied:

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Chapter 2.7: Cogeneration

Chapter 2.7: Cogeneration Chapter 2.7: Cogeneration Part-I: Objective type questions and answers 1. In cogeneration, the system efficiencies can go up to ------ a) 70% b) 80% c) 90% d) 60% 2. Cogeneration is the simultaneous generation

More information

Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project. Production of Ethanol

Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project. Production of Ethanol Fluid Mechanics, Heat Transfer, Fluid Mechanics Design Project Production of Ethanol Your assignment is to continue evaluating the details of a process to produce 30,000 tonne/y of ethanol from ethylene.

More information

Thermodynamic Data. CO (g, 0 C, 1 atm) CO (g,100 C, 1 atm):

Thermodynamic Data. CO (g, 0 C, 1 atm) CO (g,100 C, 1 atm): Thermodynamic Data It is not possible to know the absolute value of Uˆ or Ĥ for a pure substance, but you can determine the change in U ˆ ( U ˆ ) or H ˆ ( Hˆ ) corresponding to a specified change of state

More information

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene

Fluid Mechanics, Heat Transfer, Thermodynamics Design Project. Production of Ethylbenzene Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ethylbenzene We continue to investigate the feasibility of constructing a new, grass-roots, 80,000 tonne/y, ethylbenzene facility.

More information

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on - performance IV International Seminar on ORC Power Systems September 13-15, 2017 Suk Young Yoon,

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Absorption Chillers in Commerce

Absorption Chillers in Commerce Absorption Chillers in Commerce Today, absorption chillers are sold for a wide variety of applications. Here s why Changing Electrical Prices The absorption chiller is remarkably flexible, using steam,

More information

Brayton Cycle. Introduction. Definitions. Reading Problems , 9-105, 9-131

Brayton Cycle. Introduction. Definitions. Reading Problems , 9-105, 9-131 Brayton Cycle Reading Problems 9-8 9-10 9-100, 9-105, 9-131 Introduction The gas turbine cycle is referred to as the Brayton Cycle or sometimes the Joule Cycle. The actual gas turbine cycle is an open

More information

FT-GTL UNLOCKS VALUE FROM NATURAL GAS

FT-GTL UNLOCKS VALUE FROM NATURAL GAS FT-GTL UNLOCKS VALUE FROM NATURAL GAS Doug Miller Michael Goff Black & Veatch Corporation Ken Agee Emerging Fuels Technology April 2017 Introduction An estimated 147 billion cubic meters of gas was flared

More information

Guidance page for practical work 15: modeling of the secondary circuit of a PWR

Guidance page for practical work 15: modeling of the secondary circuit of a PWR Guidance page for practical work 15: modeling of the secondary circuit of a PWR 1) Objectives of the practical work The aim is to investigate the potential of Thermoptim in modeling and calculation of

More information

Cool Producing Systems Based on Burning and Gasification of Biomass

Cool Producing Systems Based on Burning and Gasification of Biomass Cool Producing Systems Based on Burning and Gasification of Biomass J. POSPISIL, J. FIEDLER, Z. SKALA Energy Institute Faculty of Mechanical Engineering Brno University of Technology Technicka 2, Brno

More information

The Outlook for Energy: A View to 2040

The Outlook for Energy: A View to 2040 The Outlook for Energy: A View to 2040 Todd Onderdonk United States Association for Energy Economics February 2013 This presentation includes forward-looking statements. Actual future conditions (including

More information

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle

LECTURE-15. Ideal Reverse Brayton Cycle. Figure (6) Schematic of a closed reverse Brayton cycle Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-15 Ideal Reverse Brayton

More information

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Muammer Alus, Milan V. Petrovic - Faculty of Mechanical Engineering Laboratory of Thermal Turbomachinery

More information

Botkin & Keller: Environmental Science: Earth as a Living Planet 8th Edition Guided Reading Assignment: Energy Unit- Chapters

Botkin & Keller: Environmental Science: Earth as a Living Planet 8th Edition Guided Reading Assignment: Energy Unit- Chapters Botkin & Keller: Environmental Science: Earth as a Living Planet 8th Edition Guided Reading Assignment: Energy Unit- Chapters 14-15 Name: Chapter #14- Energy: Some Basics 1: How does the energy crisis

More information

Lipow Oil Associates, LLC. January 3, Energy Independence: Can We Really Do It?

Lipow Oil Associates, LLC. January 3, Energy Independence: Can We Really Do It? January 3, 2008 Energy Independence: Can We Really Do It? On December 19, 2007, President Bush signed into law the Energy Independence and Security Act of 2007. The act legislated changes in three major

More information

Compact, Deployable Reactors for Power and Fuel in Remote Regions

Compact, Deployable Reactors for Power and Fuel in Remote Regions Compact, Deployable Reactors for Power and Fuel in Remote Regions James R. Powell and J. Paul Farrell Radix Corporation, Long Island, New York Presented by Jerry M. Cuttler Dunedin Energy Systems, LLC

More information

Decline Curve Analysis for Production Forecast and Optimization of Liquid-Dominated Geothermal Reservoir

Decline Curve Analysis for Production Forecast and Optimization of Liquid-Dominated Geothermal Reservoir IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Decline Curve Analysis for Production Forecast and Optimization of Liquid-Dominated Geothermal Reservoir Related content - Theoretical

More information

Biofuels, Energy Security, and Global Warming Policy Interactions

Biofuels, Energy Security, and Global Warming Policy Interactions Biofuels, Energy Security, and Global Warming Policy Interactions by Wallace E. Tyner Purdue University Paper presented at the National Agricultural Biotechnology Council conference, South Dakota State

More information

Tier 3 Vehicle and Fuel Standards: Final Rule. March 2014

Tier 3 Vehicle and Fuel Standards: Final Rule. March 2014 Tier 3 Vehicle and Fuel Standards: Final Rule March 2014 1 Overview What is Tier 3? Why Tier 3? Overview of the Program Benefits and Costs 2 What is Tier 3? Systems approach to reducing motor vehicle pollution:

More information

Performance Benefits for Organic Rankine Cycles with Flooded Expansion

Performance Benefits for Organic Rankine Cycles with Flooded Expansion Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 6-2-2010 Performance Benefits for Organic Rankine Cycles with Flooded Expansion Brandon

More information

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 7-9 December, 008, Dhaka, Bangladesh COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan,

More information

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia

Fluid Mechanics, Heat Transfer, Thermodynamics. Design Project. Production of Ammonia Fluid Mechanics, Heat Transfer, Thermodynamics Design Project Production of Ammonia Your assignment is to continue evaluating the details of a process to produce 50,000 tonne/y of ammonia from a syngas

More information

The Outlook for Energy

The Outlook for Energy The Outlook for Energy a view to 23 Rob Gardner International Energy Forum 15 May 21 This presentation includes forward-looking statements. Actual future conditions (including economic conditions, energy

More information

Available online at ScienceDirect. Energy Procedia 49 (2014 ) SolarPACES 2013

Available online at  ScienceDirect. Energy Procedia 49 (2014 ) SolarPACES 2013 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 49 (2014 ) 993 1002 SolarPACES 2013 Thermal storage concept for solar thermal power plants with direct steam generation M. Seitz

More information

How to Prevent Higher CO 2 Concentrations

How to Prevent Higher CO 2 Concentrations How to Prevent Higher CO 2 Concentrations! Higher CO2 levels mean higher temperatures eventually: how to avoid? Emissions are increasing rapidly Is flattening out emissions enough? Is Stabilizing Emissions

More information

Performance of a Gas Turbine Power Plant

Performance of a Gas Turbine Power Plant International Journal of Mechanical Engineering and Applications 2017; 5(1): 60-69 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20170501.18 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

ME 343 Exam 2 November 24, 2014

ME 343 Exam 2 November 24, 2014 Name Time of lecture (circle) 11:00 am or 1:00 pm ME 343 Exam 2 November 24, 2014 1) /50 pts 2) /50 pts Total /100 Please! Be neat, write out equations before inserting numbers, and circle your answers.

More information

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT0 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 0 Pointe Aux Piments, Mauritius

More information

Depletion: A determination for the world's petroleum reserve

Depletion: A determination for the world's petroleum reserve A reserve status report Report# HC3-433 December 1, 2013 Depletion: A determination for the world's petroleum reserve An exergy analysis employing the E TP model Abstract: Petroleum is a primary energy

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

Nuclear Energy for Transportation: Electricity, Hydrogen, and Liquid Fuels

Nuclear Energy for Transportation: Electricity, Hydrogen, and Liquid Fuels for Transportation:,, and Liquid Fuels by Masao Hori Masao Hori, based in Tokyo, has served in the nuclear industry for many years and has worked to promote nuclear development internationally. He was

More information

Climate Change and Creative Destruction of Inefficient Generation

Climate Change and Creative Destruction of Inefficient Generation Climate Change and Creative Destruction of Inefficient Generation Energy in California Tenth Annual Conference Thomas R. Casten, Chair Recycled Energy Development, LLC September 23, 2008 Presentation Synopsis

More information

AP* Environmental Science Mastering the Math

AP* Environmental Science Mastering the Math AP* Environmental Science Mastering the Math Part I: Dimensional Analysis (aka Factor-Label or Unit Cancellation Method) Sample Problem 1 A large, coal-fired electric power plant produces 12 million kilowatt-hours

More information

BUILDING FOR THE FUTURE

BUILDING FOR THE FUTURE BUILDING FOR THE FUTURE The following article was published in ASHRAE Journal, September 4. Copyright 4 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented

More information

J. Daniel Arthur, P.E., ALL Consulting. Author. Ground Water Protection Council January 2009 San Antonio, Texas. Presented at

J. Daniel Arthur, P.E., ALL Consulting. Author. Ground Water Protection Council January 2009 San Antonio, Texas. Presented at Prudent and Sustainable Water Management and Disposal Alternatives Applicable to Shale Gas Development Author J. Daniel Arthur, P.E., ALL Consulting Presented at Ground Water Protection Council January

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY

DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY , Volume 4, Number 1, p.14-23, 2003 DESIGN ANALYSIS OF A REFRIGERATED WAREHOUSE USING LNG COLD ENERGY K.H. Yang and S.C. Wu Mechanical Engineering Department, National Sun Yat-Sen University, Kaohsiung,

More information

ORegen TM Waste Heat Recovery: Development and Applications. Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013

ORegen TM Waste Heat Recovery: Development and Applications. Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013 ORegen TM Waste Heat Recovery: Development and Applications Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013 ORegen TM ORegen TM is GE Organic Rankine Cycle System designed to recover waste heat

More information

Alexander Rattner MEAM-402 HW 2

Alexander Rattner MEAM-402 HW 2 Preface This document provides a brief analysis of the University of Pennsylvania s steam usage in its campus buildings. The thermodynamic material properties employed in these calculations were computed

More information

Understanding the Scale of the Problem: US Energy Sources and CO2 Emissions

Understanding the Scale of the Problem: US Energy Sources and CO2 Emissions Understanding the Scale of the Problem: US Energy Sources and CO2 Emissions Pete Wilcoxen Departments of Economics and Public Administration The Maxwell School, Syracuse University BUA/ECS 650/EST 696

More information

1. INTRODUCTION. Corresponding author. Received December 18, 2008 Accepted for Publication April 9, 2009

1. INTRODUCTION. Corresponding author.   Received December 18, 2008 Accepted for Publication April 9, 2009 DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE SEUNG-HWAN SEONG *, TAE-HO LEE and SEONG-O KIM

More information

Solar Energy and Personal Behaviors

Solar Energy and Personal Behaviors Solar Energy and Personal Behaviors Emissions reductions need to be rapid and large - 80% reduction by 2050 to avoid worst scenarios Urgent need for alternate energy sources solar wind 1 Algae as a source

More information

Rankine (steam) Cycle Cooling Options

Rankine (steam) Cycle Cooling Options Rankine (steam) Cycle Cooling Options Babul Patel Nexant, Inc. San Francisco, CA Energy Solutions October 23, 2009 1 ankine Cycle Cooling Considerations Steam turbine output and Rankine cycle efficiency

More information

Annual Energy Outlook 2018

Annual Energy Outlook 2018 Annual Energy Outlook 218 Columbia University, Center on Global Energy Policy February 13, 218 New York, NY John J. Conti, Deputy Administrator U.S. Energy Information Administration U.S. Energy Information

More information

Overview of cogeneration technology and application

Overview of cogeneration technology and application Overview of cogeneration technology and application Cogeneration Week Hanoi, 6 April 2004 Melia Hotel, Hanoi Leif Mortensen, Coal Expert Cogeneration or Combined Heat and Power (CHP) Sequential generation

More information

Notes: Slide 1 of 20. Long Term World Oil Supply

Notes: Slide 1 of 20. Long Term World Oil Supply Long Term World Oil Supply Slide 1 of 20 The following pages summarize a recent EIA presentation on estimates of the world conventional oil resource base and the year when production from it will peak

More information

BP Energy Outlook 2017 edition

BP Energy Outlook 2017 edition BP Energy Outlook 2017 edition Bob Dudley Group chief executive bp.com/energyoutlook #BPstats BP Energy Outlook 2017 edition Spencer Dale Group chief economist bp.com/energyoutlook #BPstats Economic backdrop

More information

Future Biofuels Policy Alternatives

Future Biofuels Policy Alternatives Future Biofuels Policy Alternatives by Wallace E. Tyner Farzad Taheripour Purdue University Paper presented at a conference on Biofuels, Food, and Feed Tradeoffs St. Louis, MO April 12-13, 2007 1 Future

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle 11/18/2010 1 st Renewable Energy Technologies, LP 8147 Clear Shade Drive, Windber, PA 15963 Phone: (814) 467-0431 Fax: (814) 467-8675 Email: Sales@1stRET.com Web: www.1stret.com Organic Rankine Cycle The

More information

Chapter 18 Renewable Energy

Chapter 18 Renewable Energy Chapter 18 Renewable Energy MULTIPLE CHOICE 1. Habitat loss, soil erosion, and air pollution are disadvantages of which renewable energy source? a. solar c. biomass fuel b. wind d. moving water C DIF:

More information

8. Confusion About Renewable Energy. Gail Tverberg Energy Economics and Analysis Modeling

8. Confusion About Renewable Energy. Gail Tverberg Energy Economics and Analysis Modeling 8. Confusion About Renewable Energy Gail Tverberg Energy Economics and Analysis Modeling We get free energy from the sun! Physicists describe the situation as a thermodynamically open system! Humans, animals,

More information

THE WORLD FACES two energy challenges.

THE WORLD FACES two energy challenges. Hybrid baseload nuclear power for variable electricity and fuels BY CHARLES FORSBERG THE WORLD FACES two energy challenges. The first is the release of carbon dioxide to the atmosphere from the burning

More information

Table Energy Consumption in California by Sector, 2000 and 2004

Table Energy Consumption in California by Sector, 2000 and 2004 3.8 ENERGY Introduction This section describes the environmental setting and effects of the proposed project with regard to energy. Specifically, this section discusses existing energy conditions within

More information

THE U.S. AUTOGAS MARKET

THE U.S. AUTOGAS MARKET THE U.S. AUTOGAS MARKET Table of Contents About Autogas For America... U.S. vs. Worldwide Autogas Vehicles... Propane Autogas Supply & Demand Analysis... Benefits of Autogas... Appendix I... Appendix II...

More information

Analysis of carbon dioxide emission of gas fuelled cogeneration plant

Analysis of carbon dioxide emission of gas fuelled cogeneration plant IOP Conference Series: Materials Science and Engineering OPEN ACCESS Analysis of carbon dioxide emission of gas fuelled cogeneration plant To cite this article: Adzuieen Nordin et al 2013 IOP Conf. Ser.:

More information

FCEV Development at GM: Status and Focus

FCEV Development at GM: Status and Focus FCEV Development at GM: Status and Focus George P. Hansen Director, Communications General Motors Japan Innovation for Cool Earth Forum October 7&8, 2015 1 Overview GM Advanced Propulsion Strategy Role

More information

Application of an Integrally Geared Compander to an sco 2 Recompression Brayton Cycle

Application of an Integrally Geared Compander to an sco 2 Recompression Brayton Cycle Application of an Integrally Geared Compander to an sco 2 Recompression Brayton Cycle Dr. Jason Wilkes Dr. Tim Allison Jeffrey Bennett Joshua Schmitt Dr. Karl Wygant Rob Pelton Werner Bosen An integrally

More information

Kendall Cogeneration Station

Kendall Cogeneration Station Kendall Cogeneration Station Green Steam lowers carbon footprint in Boston and Cambridge ENERGY K E N DA LL CO G E N E R ATI O N STATI O N Veolia in Boston & Cambridge Full Green Steam ahead in Boston

More information

Urban Environmental Excursions

Urban Environmental Excursions Wayne State University Environmental Science Program Urban Environmental Excursions Fall 2007: Energy and Air Quality Where does our GASOLINE come from? How is our ELECTRICITY made? What ultimately happens

More information

The Promise and Challenge of Hydrogen Energy

The Promise and Challenge of Hydrogen Energy The Promise and Challenge of Hydrogen Energy Mujid S. Kazimi Director, Center for Advanced Nuclear Energy Systems (CANES) Massachusetts Institute of Technology 14th Pacific Basin Nuclear Conference March

More information

Art caption: Natural resources such as rocks are mined in rock quarries (KWOR-eez) like this one. DRAFT

Art caption: Natural resources such as rocks are mined in rock quarries (KWOR-eez) like this one. DRAFT 1 OBSERVING EARTH S RESOURCES INVESTIGATION Humans use a lot of materials found naturally on Earth. There are many materials, including metals such as copper and woods such as pine. Materials that are

More information

Large University Central Chiller Plant Design Considerations

Large University Central Chiller Plant Design Considerations Carrier Engineering Newsletter Volume 5, Issue 3 Large University Central Chiller Plant Design Considerations Large campus chilled water plants have unique constraints and need careful evaluation for successful

More information

Heat Engines and Refrigerators

Heat Engines and Refrigerators Heat Engines and Refrigerators In this chapter, we combine and apply all that we have learned in chapters 18, 19, & 20 to analyze some practical devices that can only be understood through Thermodynamics.

More information