CTB3365x Introduction to Water Treatment

Size: px
Start display at page:

Download "CTB3365x Introduction to Water Treatment"

Transcription

1 CTB3365x Introduction to Water Treatment W5a2 Nitrogen removal Merle de Kreuk If you already watched the movie about the nitrogen cycle, you understand that with introduction of the Haber-Bosch process, the natural Nitrogen cycle has been disturbed. This has caused nitrate accumulation in drinking water resources, eutrophication and acidification. Therefore, nitrogen removal has been introduced to sewage treatment processes. Today you will learn several configurations for nitrogen removal. Furthermore, you will be able to understand how the sludge load is coupled to the nitrogen removal efficiency and finally, a little bit more is explained about Anammox, the shortcut of the Nitrogen cycle. So, we will focus on the anoxic and aerobic tank of the sewage treatment plant. The first mechanism by which nitrogen is removed in wastewater treatment is bacterial growth. Nitrogen is incorporated in cell material, as it is part of proteins, aminoacids, DNA, certain lipids etc. You might recognize that nitrogen is part of the overall molecular formula of biomass generally expressed by this equation: C5 H7 O2 N. The bacteria can take this nitrogen needed for growth from ammonium in the wastewater. Calculating with the mole mass shows that 14 grams of nitrogen is needed for the growth of 113 grams of biomass. If you know this value, you can calculate whether or not biomass growth alone is enough to remove the nitrogen from your influent. 1

2 Let s consider the average BOD and ammonium concentration in Dutch influent and a sludge growth Yield of 0.6 kg VSS/kg BOD converted. It can be calculated that per liter influent 108 mg VSS is produced, containing about 13 mg N. Would this be enough to get to the effluent demands of 10 mg total N/L, coming from 40 mg/l in the influent? Exactly, no it wouldn t, and that is why other processes are needed: namely nitrification followed by denitrification. We will start with nitrification, the aerobic conversion from ammonia to nitrate. Nitrification is a two-step oxidation process performed by two different species: the ammonium oxidation to nitrite is done by Nitrosomonas species, while the oxidation of nitrite into nitrateis performed by Nitrobacter species. These organisms are Chemo-Litho-autotrophic organisms, so can you tell what their carbon source is? And their electron donor? Indeed, CO2 is the Carbon source, ammonium or nitrite the electron donor and since the organisms are fully aerobic, oxygen serves as electron acceptor. From the overall equation, you can see that for every ammonium oxidized 2 oxygen are needed. This means that each gram of ammonium-n converted, uses 4.57 g of oxygen. Since the catabolism generates energy for the anabolism, part of the ammonium is not oxidized but incorporated in cell mass. This leads to the net value of 4.2 grams of oxygen needed per gram ammonium N removed. In this overview you see the differences between the heterotrophic and autotrophic organisms used in sewage plants. In particular, the different growth rates of the two organisms and their oxygen demands determine their competition in treatment plants. A high sludge loading rate (Bx), means that the food to mass ratio of the system is high and thus a lot of biomass can be produced. This will lead to a low sludge retention time as more sludge must be wasted to keep the concentration in the aeration basin constant. This is a good situation for heterotrophic organisms, since with high maximum growth rates and high affinity for oxygen, heterotrophic organisms can survive at relatively short sludge ages, high loading rates (Bx), and low oxygen concentrations. On the other hand, the autotrophic nitrifiers are slow growing organisms. This means that to achieve nitrification, the solid retention time, or sludge age should be long enough to keep them in the system. A general rule is that the sludge age needs to be at least longer than 2.5 days to guarantee nitrification. This is obtained at sludge loading rates below 0.15 kgbod/kg 2

3 biomass/day. Also the oxygen concentration needs to be relatively high during nitrification as maximum nitrification rates have been observed at DO concentration of 3 to 4 mg/l. With nitrate formation, we are only half way through the nitrogen removal process. In the past some treatment plants were limited only on ammonia concentration in the effluent so nitrification was the only goal. New limits focus on limiting the total nitrogen in the plant effluent, thus the nitrate must also be removed through denitrification where nitrate is converted to di-nitrogen gas. Denitrification is performed by heterotrophic organisms, which are able to use nitrite or nitrate as electron acceptor in the absence of oxygen. It is important to remember that these heterotrophic organisms need an organic carbon source, which can be the BOD from the sewage, but also other organic compounds, such as methanol. The equations show the conversion of these organics with nitrate as electron acceptor. You should notice that this reaction produces hydroxides, which is useful since it compensates the proton production during nitrification, limiting the ph change in the buffered sewage. There are two main configurations in which nitrification and denitrification can take place: pre- and post denitrification. First I will show you the post-denitrification. In this configuration the sewage is first fed to an aeration tank, in which the aerobic biological processes occur. We know that if the sludge retention time is long enough nitrification will occur and ammonium will be oxidized to nitrate. Next, the sludge water mixture will flow to an unaerated tank. The water contains nitrate, so this is an anoxic tank and denitrification could take place. Only, one ingredient for the denitrification is missing. Since the BOD already has been (partly) oxidized in the first step, denitrification will not happen anymore. An additional C-source and electron donor is needed in this reactor for the denitrifying bacteria. This could be solved by diverting some influent to the anoxic tank. However, as the influent also contains ammonium, bypassing the aerobic tank will lead to ammonium being discharged with the effluent. 3

4 An alternative option to avoid this is the dosage of an external C-source in the anoxic tank, such as methanol, but this adds operational complexity and is expensive. A solution to avoid these drawbacks is to put the anoxic tank before the aeration tank in a setup known as pre denitrification. In this configuration the BOD containing sewage goes directly to the anoxic tank to act as the C source and electron donor for the denitrifying bacteria. However, as you might have noticed, the difficulty with this setup is that the influent sewage contains ammonium that needs to first be aerated for nitrification before, it can be denitrified. Part of the nitrate from the aeration tank will therefore be recycled to the anoxic tank with the return sludge from the final clarifier. However, this flow is typically far too small to significantly reduce the nitrate concentration in the effluent. As a solution, we introduce an additional recycle from the aeration tank to the anoxic tank. Now it is possible to denitrify in the anoxic tank, since both BOD from the influent and nitrate from the recycle are present. In the aerobic tank, remaining BOD will be further oxidized by oxygen and influent ammonium that passed the anoxic tank will be nitrified to nitrate. Because not all the water can be recycled, some nitrate will always make its way to the effluent in a pre-denitrification setup which limits the ultimate nitrogen removal capacity of this configuration. Can you make a quick and dirty estimation of the ratio influent/return flow if the influent contains 40 mg ammonium/l and effluent nitrate demands are below 10 mg/l? Indeed, the recycle needs to be around 3 times the influent flow. Of course, we are ignoring some parameters in this estimation: Some nitrate is also returned with the return sludge flow, so this can be subtracted from the internal nitrate return flow. There will also be some nitrogen removal by growth that is not incorporated in this balance. An internal recycle ratio of 3 to 4 is typical for activated sludge systems. Lower ratios can be used if influent total nitrogen concentrations are low. Higher recycle ratios are generally avoided, since the additional effect on the nitrate concentration in the effluent is minimal and too much oxygen from the aeration tank will be introduced in the anoxic tank. 4

5 A special case of nitrification/denitrification can be found in the ultra-low loaded Carrousel system developed in the Netherlands. This system is based on general oxidation ditch technology and is designed as a race track, with quite high water flows. Influent can pass a separate anoxic zone first, but can also be introduced in the aerated zone of a circuit system. By measuring the actual oxygen concentration at different points in the reactor, the aeration can be precisely controlled. In that way aerated and anoxic zones can be alternated, leading to a good nitrogen removal by nitrification and denitrification in the different zones of the track. The recycle rate in such system is very high, since only a small part leaves the reactor every lap and thus hydraulic residence times are relatively long. Effluent total nitrogen concentrations well below 10 mg/l are reached with these systems. So, conventional N-removal needs lots of oxygen in the first phase and an electron donor in its second phase. In the late 90 s, a shortcut in the nitrogen cycle was discovered: Anammox (ANaerobic AMMonium OXidation). The Anammox bacteria can use ammonium and nitrite to produce di-nitrogen gas directly. Main advantages of this process are that only half of the ammonium has to be converted to nitrite. Therefore, it only consumes 38% of the oxygen compared to full nitrification. This leads to large energy savings. Furthermore, no carbon source is needed as in conventional denitrification, because these organisms are autotrophs. Since they have their optimum growth rate at elevated temperatures, the Anammox process is very suitable for the nitrogen removal from rejection water of sludge digestion. Anammox bacteria have a very low growth rate, with a doubling time ranging from 9 days to two weeks and therefore sludge retention in Anammox systems is very important. This can be done in a two-step or one step Anammox reactor. In a two-step reactor the water is first partially nitrified in a Sharon reactor into a mixture of nitrite and ammonium, after which it is fed to the anoxic Anammox reactor. One step Anammox reactors come in many configurations with names, as Demon, Oland and Anammox. All make use of the growth of Nitrosomonas species in combination with Anammox. Preferably they both grow in a granule or biofilm, in which the outer layer of oxygen consuming nitrosomonas shield the Anammox that are inhibited by oxygen. 5

6 The first application of Anammox was built in 2002 at a sludge treatment plant in Rotterdam, The Netherlands. This plant was already equipped with partial nitritation, to treat the rejection water from the sludge digester. A one to one mixture of ammonium and nitrite is fed to the reactor and converted by the Anammox bacteria. With an influent concentration of 1 g nitrogen/l, a conversion rate of 5 kg N per cubic meter reactor per day is reached. A new development that is being studied is the application of Anammox in the main stream of a wastewater treatment plant at colder temperatures, but more about that in the Master-track Watermanagment, which can be followed on campus as well as online. 6

General Information on Nitrogen

General Information on Nitrogen General Information on Nitrogen What is nitrogen? Nitrogen was discovered in 1772 by Daniel Rutherford in Scotland Nitrogen gas makes up nearly 80% of the air we breathe Nitrogen gas is not toxic Nitrogen

More information

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis

ENHANCING THE PERFORMANCE OF OXIDATION DITCHES. Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ENHANCING THE PERFORMANCE OF OXIDATION DITCHES Larry W. Moore, Ph.D., P.E., DEE Professor of Environmental Engineering The University of Memphis ABSTRACT Oxidation ditches are very popular wastewater treatment

More information

Shortcut Biological Nitrogen Removal for sustainable wastewater treatment and achieving energy neutrality

Shortcut Biological Nitrogen Removal for sustainable wastewater treatment and achieving energy neutrality METROPOLITAN WATER RECLAMATION DISTRICT OF GREATER CHICAGO Shortcut Biological Nitrogen Removal for sustainable wastewater treatment and achieving energy neutrality Fenghua Yang, P.E., BCEE Outline Nitrogen

More information

Removal of High C and N Contents in Synthetic Wastewater Using Internal Circulation of Anaerobic and Anoxic/Oxic Activated Sludge Processes

Removal of High C and N Contents in Synthetic Wastewater Using Internal Circulation of Anaerobic and Anoxic/Oxic Activated Sludge Processes Removal of High C and N Contents in Synthetic Wastewater Using Internal Circulation of Anaerobic and Anoxic/Oxic Activated Sludge Processes Nittaya Boontian School of Environmental Engineering, Institute

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment W3b Trickling filters Jules van Lier Bacteria and other microorganisms have the ability to form biofilms on inert support media. Can we use these biofilm systems

More information

Aeration University Advanced Concepts in Energy Efficiency

Aeration University Advanced Concepts in Energy Efficiency Aeration University Advanced Concepts in Energy Efficiency Wisconsin Wastewater Operators Association 47 th Annual Conference October 23, 2013 Presented by Phil Korth Aeration and Energy Wastewater Treatment

More information

Short-Cut Nitrogen Removal: A State of the Art Review

Short-Cut Nitrogen Removal: A State of the Art Review Short-Cut Nitrogen Removal: A State of the Art Review Jose Jimenez, Ph.D., P.E. Brown and Caldwell Outline Introduction Overview of nitrogen (N) removal in wastewater Conventional N removal Nitritation-Denitritation/

More information

NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT

NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT NEW BIOLOGICAL PHOSPHORUS REMOVAL CONCEPT SUCCESSFULLY APPLIED IN A T-DITCH PROCESS WASTEWATER TREATMENT PLANT ABSTRACT C. Yang*, L. Zhou**, W. Luo***, and L. Johnson**** *Corstar International Corp. 111

More information

A Roadmap for Smarter Nutrient Management in a Carbon and Energy Constrained World. Samuel Jeyanayagam, PhD, PE, BCEE

A Roadmap for Smarter Nutrient Management in a Carbon and Energy Constrained World. Samuel Jeyanayagam, PhD, PE, BCEE A Roadmap for Smarter Nutrient Management in a Carbon and Energy Constrained World Samuel Jeyanayagam, PhD, PE, BCEE 91 st Annual Conference 21 June 2016 The Importance of Carbon Without carbon, life as

More information

Designing Single-Sludge Bionutrient Removal Systems

Designing Single-Sludge Bionutrient Removal Systems Designing Single-Sludge Bionutrient Removal Systems Richard O. Mines, Jr., Ph.D., P.E. Environmental Engineering Mercer University 2001 World Water & Environmental Resources Conference Orlando, FL Activated

More information

AquaPASS. Aqua MixAir System. Phase Separator. System Features and Advantages. Anaerobic. Staged Aeration. Pre-Anoxic.

AquaPASS. Aqua MixAir System. Phase Separator. System Features and Advantages. Anaerobic. Staged Aeration. Pre-Anoxic. PHASED ACTIVATED SLUDGE SYSTEM PHASED ACTIVATED SLUDGE SYSTEM Aqua-Aerobic Systems has led the industry in time-managed, biological technology since 1984. In 2004, Aqua-Aerobic applied its expertise in

More information

ENVE 302 Environmental Engineering Unit Processes DENITRIFICATION

ENVE 302 Environmental Engineering Unit Processes DENITRIFICATION ENVE 302 Environmental Engineering Unit Processes CHAPTER: 9 DENITRIFICATION Assist. Prof. Bilge Alpaslan Kocamemi Marmara University Department of Environmental Engineering Istanbul, Turkey 1 BIOLOGICAL

More information

AquaNereda Aerobic Granular Sludge Technology

AquaNereda Aerobic Granular Sludge Technology Aerobic Granular Sludge AquaNereda Aerobic Granular Sludge Technology The AquaNereda Aerobic Granular Sludge (AGS) Technology is an innovative biological wastewater treatment technology that provides advanced

More information

JTAC Presentation May 18, Nutrient Removal Process Fundamentals and Operation

JTAC Presentation May 18, Nutrient Removal Process Fundamentals and Operation JTAC Presentation May 18, 2017 Nutrient Removal 101 - Process Fundamentals and Operation Steve Polson, P.E. Presentation Goals Develop understanding of: Why to remove nutrients How to remove nutrients

More information

General Operational Considerations in Nutrient and Wet Weather Flow Management for Wastewater Treatment Facilities Part II

General Operational Considerations in Nutrient and Wet Weather Flow Management for Wastewater Treatment Facilities Part II General Operational Considerations in Nutrient and Wet Weather Flow Management for Wastewater Treatment Facilities Part II Samuel Jeyanayagam, PhD, PE, BCEE Julian Sandino, PhD, PE, BCEE Ohio WEA Plant

More information

Overview of Supplemental Carbon Sources for Denitrification and Enhanced Biological Phosphorus Removal

Overview of Supplemental Carbon Sources for Denitrification and Enhanced Biological Phosphorus Removal JANUARY 19, 2017 Overview of Supplemental Carbon Sources for Denitrification and Enhanced Biological Phosphorus Removal Maahedi Savvy & Brad Hice, EOSi, Massachusetts Speakers Brad Hice, P.E., Business

More information

Effect of the start-up length on the biological nutrient removal process

Effect of the start-up length on the biological nutrient removal process Water Pollution IX 521 Effect of the start-up length on the biological nutrient removal process F. J. Fernández 1, J. Villaseñor 1 & L. Rodríguez 2 1 Department of Chemical Engineering, ITQUIMA, University

More information

NITROGEN REMOVAL USING TERTIARY FILTRATION. Suzie Hatch & Colum Kearney. Sydney Water Corporation

NITROGEN REMOVAL USING TERTIARY FILTRATION. Suzie Hatch & Colum Kearney. Sydney Water Corporation Winner of Actizyme Prize for Best Paper at the NSW Operators Conference held in September 2004 NITROGEN REMOVAL USING TERTIARY FILTRATION Paper Presented by : Suzie Hatch & Colum Kearney Authors: Suzie

More information

BIOLOGICAL PHOSPHOROUS REMOVAL AN OPERATOR S GUIDE

BIOLOGICAL PHOSPHOROUS REMOVAL AN OPERATOR S GUIDE BIOLOGICAL PHOSPHOROUS REMOVAL AN OPERATOR S GUIDE ABSTRACT If you have ever faced a rising effluent phosphorous concentration and you are relying on biological phosphorous removal, the information offered

More information

DEWATERING LIQUOR TREATMENT AND RESOURCE RECOVERY TREATMENT OF HIGH-STRENGTH AMMONIA LIQUORS USING THE AMTREAT PROCESS AT ASHFORD STC, SOUTHERN WATER

DEWATERING LIQUOR TREATMENT AND RESOURCE RECOVERY TREATMENT OF HIGH-STRENGTH AMMONIA LIQUORS USING THE AMTREAT PROCESS AT ASHFORD STC, SOUTHERN WATER SESSION: DEWATERING LIQUOR TREATMENT AND RESOURCE RECOVERY TREATMENT OF HIGH-STRENGTH AMMONIA LIQUORS USING THE AMTREAT PROCESS AT ASHFORD STC, SOUTHERN WATER ABSTRACT S. Bungay Technical Director, Helix

More information

WASTEWATER TREATMENT

WASTEWATER TREATMENT WASTEWATER TREATMENT Every community produces both liquid and solid wastes. The liquid portion-wastewater-is essentially the water supply of the community after it has been fouled by a variety of uses.

More information

SUSTAINABLE EMISSION REDUCTION OF AMMONIUM FROM A LANDFILL BODY USING THE ANAMMOX-PROCESS AT THE VLAGHEIDE LANDFILL IN SCHIJNDEL (NL)

SUSTAINABLE EMISSION REDUCTION OF AMMONIUM FROM A LANDFILL BODY USING THE ANAMMOX-PROCESS AT THE VLAGHEIDE LANDFILL IN SCHIJNDEL (NL) SUSTAINABLE EMISSION REDUCTION OF AMMONIUM FROM A LANDFILL BODY USING THE ANAMMOX-PROCESS AT THE VLAGHEIDE LANDFILL IN SCHIJNDEL (NL) W.J. van Vossen*, A. de Vos**, Theo Folmer*** * Royal Haskoning, P.O.

More information

TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT

TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT TWO YEARS OF BIOLOGICAL PHOSPHORUS REMOVAL WITH AN ADVANCED MSBR SYSTEM AT THE SHENZHEN YANTIAN WASTEWATER TREATMENT PLANT Chester Yang, Ph.D., Gaowei Gu, Baowei Li, Hongyuan Li, Wanshen Lu, Lloyd Johnson,

More information

Wastewater Pollutants & Treatment Processes. Dr. Deniz AKGÜL Marmara University Department of Environmental Engineering

Wastewater Pollutants & Treatment Processes. Dr. Deniz AKGÜL Marmara University Department of Environmental Engineering Wastewater Pollutants & Treatment Processes Dr. Deniz AKGÜL Marmara University Department of Environmental Engineering Wastewater combination of the liquid or water carried wastes removed from residences,

More information

MAINSTREAM DEAMMONIFICATION

MAINSTREAM DEAMMONIFICATION MAINSTREAM DEAMMONIFICATION Mark W. Miller 2015 VWEA Education Seminar April 30 th, 2015 Charles Bott HRSD, Sudhir Murthy DC Water, Bernhard Wett ARA Consult GmbH Outline Conventional BNR to Mainstream

More information

NUTRIENT OPTIMIZATION FOR PULP & PAPER WASTEWATER TREATMENT PLANTS AN OPPORTUNITY FOR MAJOR COST SAVINGS

NUTRIENT OPTIMIZATION FOR PULP & PAPER WASTEWATER TREATMENT PLANTS AN OPPORTUNITY FOR MAJOR COST SAVINGS NUTRIENT OPTIMIZATION FOR PULP & PAPER WASTEWATER TREATMENT PLANTS AN OPPORTUNITY FOR MAJOR COST SAVINGS Ray Kenny Ray Kenny Environmental Consulting Inc. North Bay, ON. ABSTRACT Pulp & paper wastewater

More information

WASTEWATER TREATMENT SYSTEM

WASTEWATER TREATMENT SYSTEM WASTEWATER TREATMENT SYSTEM PrintStudioOne.com Nelson Environmental Inc. The Nelson Environmental OPTAER system is an efficient pond-based wastewater treatment solution utilized in a broad spectrum of

More information

ISAM INTEGRATED SURGE ANOXIC MIX

ISAM INTEGRATED SURGE ANOXIC MIX ISAM INTEGRATED SURGE ANOXIC MIX P r o v e n T e c h n o l o g y FLUIDYNE S ISAM IS A TOTAL TREATMENT SYSTEM incorporating BOD, TSS and nitrogen removal along with sludge reduction in an integrated system.

More information

MBBR Wastewater Treatment Processes

MBBR Wastewater Treatment Processes MBBR Wastewater Treatment Processes by Harlan H. Bengtson, PhD, P.E. 1. Introduction The Moving Bed Biofilm Reactor (MBBR) wastewater treatment process is a relatively recent addition in the wastewater

More information

Innovations in Nitrogen and Phosphorus Removal

Innovations in Nitrogen and Phosphorus Removal 1 st Annual Innovative Wastewater Technologies Seminar Innovations in Nitrogen and Phosphorus Removal Jose A. Jimenez, Ph.D., P.E. Director of Technology and Innovation Brown and Caldwell July 15 th, 2015

More information

Triplepoint Environmental

Triplepoint Environmental Agenda 1. Brief Introduction 2. Overview of the Lagoon Ammonia Problem Causes and Effects of Ammonia Pollution Basics of Ammonia Removal 3. Review Conventional Wisdom 4. Compare Ammonal Treatment Options

More information

BioWin 3. New Developments in BioWin. Created by process engineers.. for process engineers

BioWin 3. New Developments in BioWin. Created by process engineers.. for process engineers BioWin 3 Created by process engineers.. for process engineers New Developments in BioWin The latest version of BioWin provides a host of additions and improvements to enhance your wastewater treatment

More information

Investigation of Nitrification and Nitrogen Removal from Centrate in a Submerged Attached-Growth Bioreactor

Investigation of Nitrification and Nitrogen Removal from Centrate in a Submerged Attached-Growth Bioreactor Investigation of Nitrification and Nitrogen Removal from Centrate in a Submerged Attached-Growth Bioreactor P. B. Pedros 1,2 *, A. Onnis-Hayden 2, Charles Tyler 3 ABSTRACT: The purpose of this study was

More information

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing

- 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants. by Glenn Thesing - 1 - Retrofitting IFAS Systems In Existing Activated Sludge Plants by Glenn Thesing Through retrofitting IFAS systems, communities can upgrade and expand wastewater treatment without the expense and complication

More information

Activated Sludge Process Control: Nitrification

Activated Sludge Process Control: Nitrification Activated Sludge Process Control: Nitrification 60 th Annual KWWOA Conference, Session 1: April 11, 2017 Dan Miklos, Senior Associate, Midwest Region, Hazen and Sawyer Agenda Overview of the Utopia Plant

More information

MARPAK modular biomedia WASTEWATER TREATMENT

MARPAK modular biomedia WASTEWATER TREATMENT MARPAK modular biomedia WASTEWATER TREATMENT The Marley MARPAK Difference SPX Cooling Technologies is a world leader in the design, manufacturing and construction of evaporative cooling products. The design

More information

Supplemental Information for

Supplemental Information for Supplemental Information for A Combined Activated Sludge Anaerobic Digestion Model CASADM to Understand the Role of Anaerobic Sludge Recycling in Wastewater Treatment Plant Performance Michelle N. Young,

More information

USING NUMERICAL SIMULATION SOFTWARE FOR IMPROVING WASTEWATER TREATMENT EFFICIENCY

USING NUMERICAL SIMULATION SOFTWARE FOR IMPROVING WASTEWATER TREATMENT EFFICIENCY USING NUMERICAL SIMULATION SOFTWARE FOR IMPROVING WASTEWATER TREATMENT EFFICIENCY Catalina Raluca Mocanu, Lacramioara Diana Robescu University Politehnica of Bucharest, Spl. Independentei, nr. 313, sector

More information

Modelling of Wastewater Treatment Plants

Modelling of Wastewater Treatment Plants Modelling of Wastewater Treatment Plants Nevenka Martinello nevemar@gmail.com Why do we need WWTP models? to build a WWTP model CASE STUDY - WWTP model in Sweden Why do we need WWTP models? Rise awareness

More information

ADVANCED CONTROL SYSTEM OF ACTIVATED SLUDGE PROCESSES USING IN- SITU AMMONIUM AND NITRATE PROBES

ADVANCED CONTROL SYSTEM OF ACTIVATED SLUDGE PROCESSES USING IN- SITU AMMONIUM AND NITRATE PROBES Proceedings of the 4 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 205 ADVANCED CONTROL SYSTEM OF ACTIVATED SLUDGE PROCESSES USING IN- SITU AMMONIUM

More information

Ammonia Removal and ph Adjustment in Aerated Lagoons

Ammonia Removal and ph Adjustment in Aerated Lagoons Ammonia Removal and ph Adjustment in Aerated Lagoons WWOA 45 th Annual Conference Thursday, October 6 th, 2011, 8:50 AM Presented by: Jeremiah Wendt, PE SEH Overview Ammonia Background Chemistry Toxicity

More information

NUTRIENT REMOVAL FROM ANAEROBIC DIGESTER SIDE-STREAM AT THE BLUE PLAINS AWTP Overlook Ave., SW, Washington, DC 20032

NUTRIENT REMOVAL FROM ANAEROBIC DIGESTER SIDE-STREAM AT THE BLUE PLAINS AWTP Overlook Ave., SW, Washington, DC 20032 NUTRIENT REMOVAL FROM ANAEROBIC DIGESTER SIDE-STREAM AT THE BLUE PLAINS AWTP Dimitrios Katehis *, Sudhir Murthy **. Bernhard Wett ***, Edward Locke * and Walter Bailey ** * Metcalf and Eddy, Inc. 5000

More information

Biological Nutrient Removal vs. Chemical Nutrient Removal

Biological Nutrient Removal vs. Chemical Nutrient Removal Biological Nutrient Removal vs. Chemical Nutrient Removal Many municipalities are being forced to remove nutrients, specifically nitrogen as well as phosphorus. Phosphorus regulations currently are tighter

More information

AMMONIA REMOVAL USING MLE PROCESS EXPERIENCES AT BALLARAT NORTH. David Reyne. Central Highlands Water Authority

AMMONIA REMOVAL USING MLE PROCESS EXPERIENCES AT BALLARAT NORTH. David Reyne. Central Highlands Water Authority AMMONIA REMOVAL USING MLE PROCESS EXPERIENCES AT BALLARAT NORTH Paper Presented by : David Reyne Author: David Reyne, Plant Operator Wastewater Treatment, Central Highlands Water Authority 65 th Annual

More information

Case Study. BiOWiSH Aqua. Biological Help for the Human Race. Municipal Wastewater Bathurst Waste Water Treatment Works Australia.

Case Study. BiOWiSH Aqua. Biological Help for the Human Race. Municipal Wastewater Bathurst Waste Water Treatment Works Australia. Case Study BiOWiSH Aqua Municipal Wastewater Bathurst Waste Water Treatment Works Australia BiOWiSH Aqua Executive Summary The main objective of the validation was to quantify cost savings in using BiOWiSH.

More information

Preparing for Nutrient Removal at Your Treatment Plant

Preparing for Nutrient Removal at Your Treatment Plant Summer Seminar Emerging Issues in the Water/Wastewater Industry Preparing for Nutrient Removal at Your Treatment Plant Rajendra P. Bhattarai, P.E., BCEE Austin Water Utility Ana J. Peña-Tijerina, Ph.D.,

More information

Nutrient Removal Processes MARK GEHRING TECHNICAL SALES MGR., BIOLOGICAL TREATMENT

Nutrient Removal Processes MARK GEHRING TECHNICAL SALES MGR., BIOLOGICAL TREATMENT Nutrient Removal Processes MARK GEHRING TECHNICAL SALES MGR., BIOLOGICAL TREATMENT Presentation Outline 1. Nutrient removal, treatment fundamentals 2. Treatment strategies Treatment methods: CAS, SBR,

More information

NUTRIENT REMOVAL PROCESSES IN WASTEWATER TREATMENT. We re Glad You re Here!

NUTRIENT REMOVAL PROCESSES IN WASTEWATER TREATMENT. We re Glad You re Here! NUTRIENT REMOVAL PROCESSES IN WASTEWATER TREATMENT We re Glad You re Here! Please, put your cell phones on vibrate during sessions and, take calls to the hallway NUTRIENT REMOVAL PROCESSES IN WASTEWATER

More information

Carbon Redirection and its Role in Energy Optimization at Water Resource Recovery Facilities

Carbon Redirection and its Role in Energy Optimization at Water Resource Recovery Facilities Carbon Redirection and its Role in Energy Optimization at Water Resource Recovery Facilities Samuel Jeyanayagam, PhD, PE, BCEE, WEF Fellow Joint Energy Conference NYSAWWA & NYWEA Albany, NY 16 November

More information

Advances in Nitrogen and Phosphorus Removal at Low DO Conditions

Advances in Nitrogen and Phosphorus Removal at Low DO Conditions Advances in Nitrogen and Phosphorus Removal at Low DO Conditions Pusker Regmi Vail Operator Training Seminar 13 October, 2016 Wastewater Treatment and Energy The water quality industry is currently facing

More information

Aqua MSBR MODIFIED SEQUENCING BATCH REACTOR

Aqua MSBR MODIFIED SEQUENCING BATCH REACTOR MODIFIED SEQUENCING BATCH REACTOR MODIFIED SEQUENCING BATCH REACTOR For over three decades, Aqua-Aerobic Systems has led the industry in sequencing batch reactor technology with performance proven and

More information

Streamlined Ammonia Removal from Wastewater Using Biological Deammonification Process

Streamlined Ammonia Removal from Wastewater Using Biological Deammonification Process Streamlined Ammonia Removal from Wastewater Using Biological Deammonification Process Abstract Matias Vanotti 1 *, José Martinez 2, Albert Magrí 3, Ariel Szögi 1, Takao Fujii 4 1 USDA-ARS, 2611 W. Lucas

More information

Biological Nitrogen and COD Removal of Nutrient-Rich Wastewater Using Aerobic and Anaerobic Reactors

Biological Nitrogen and COD Removal of Nutrient-Rich Wastewater Using Aerobic and Anaerobic Reactors J. Water Resource and Protection, 29, 1, 376-38 doi:1.4236/jwarp.29.1545 Published Online November 29 (http://www.scirp.org/journal/jwarp) Biological Nitrogen and COD Removal of Nutrient-Rich Wastewater

More information

Microbial Population Database for Evaluating Biological Nutrient Removal Process in Kwa- Zulu Natal

Microbial Population Database for Evaluating Biological Nutrient Removal Process in Kwa- Zulu Natal Microbial Population Database for Evaluating Biological Nutrient Removal Process in Kwa- Zulu Natal Sheena Kumari, Deepnarain N, Pillay K and Bux F Institute for Water and Wastewater Technology, Durban

More information

Managing the Risk of Embracing Disruptive Technology

Managing the Risk of Embracing Disruptive Technology Managing the Risk of Embracing Disruptive Technology Julian Sandino PhD, PE, BCEE, IWA & WEF Fellow May 2016 Wastewater management evolution through time < 1900 1950 2000 Basic Sanitation Pollution Control

More information

Figure Trickling Filter

Figure Trickling Filter 19.2 Trickling Filter A trickling filter is a fixed film attached growth aerobic process for treatment of organic matter from the wastewater. The surface of the bed is covered with the biofilm and as the

More information

Nitrogen removal from wastewater in an anoxic aerobic biofilm reactor

Nitrogen removal from wastewater in an anoxic aerobic biofilm reactor 165 IWA Publishing 2012 Journal of Water Reuse and Desalination 02.3 2012 Nitrogen removal from wastewater in an anoxic aerobic biofilm reactor M. F. Hamoda and R. A. Bin-Fahad ABSTRACT A pilot plant,

More information

Outline. Municipal Wastewater Engineering. Advanced wastewater treatment. Advanced wastewater treatment. Advanced wastewater treatment

Outline. Municipal Wastewater Engineering. Advanced wastewater treatment. Advanced wastewater treatment. Advanced wastewater treatment epartment of Chemical and Environmental Engineering Municipal Wastewater Engineering (4) Prof. Ján erco, Sc. Faculty of Chemical and Food Technology, SUT, SK http://kchbi.chtf.stuba.sk/ http://www.chtf.stuba.sk/kei/

More information

Advances in Wastewater Treatment Technology

Advances in Wastewater Treatment Technology MWEA Annual Conference June 20, 2017 Advances in Wastewater Treatment Technology Nathan Cassity, Donohue Presentation Agenda History of Activated Sludge Process Advancement & Current Status Future Challenges

More information

Nutrient Optimization for Pulp and Paper Wastewater Treatment Plants An Opportunity for Major Cost Savings

Nutrient Optimization for Pulp and Paper Wastewater Treatment Plants An Opportunity for Major Cost Savings T17 wastewater Nutrient Optimization for Pulp and Paper Wastewater Treatment Plants An Opportunity for Major Cost Savings WINNER OF THE DOUGLAS JONES ENVIRONMENT AWARD By R. Kenny Abstract: Pulp and paper

More information

Technical Memorandum-Low Cost Retrofits for Nitrogen Removal at Wastewater Treatment Plants in the Upper Long Island Sound Watershed

Technical Memorandum-Low Cost Retrofits for Nitrogen Removal at Wastewater Treatment Plants in the Upper Long Island Sound Watershed Technical Memorandum-Low Cost Retrofits for Nitrogen Removal at Wastewater Treatment Plants in the Upper Long Island Sound Watershed Prepared by JJ Environmental, LLC Prepared for NEIWPCC First Draft:

More information

Inlet Process air and wash cycle scour air. Air grid Floor Nozzle

Inlet Process air and wash cycle scour air. Air grid Floor Nozzle BIOSTYR Wastewater BIOSTYR Mastering advanced technology Veolia Water Solutions & Technologies has more than 20 years experience of supplying and operation BAFF (Biological Activated Flooded Filter) processes

More information

IWA Publishing 2012 Water Practice & Technology Vol 7 No 3 doi: /wpt

IWA Publishing 2012 Water Practice & Technology Vol 7 No 3 doi: /wpt IWA Publishing 2012 Water Practice & Technology Vol 7 No 3 Comparison of denitrification-nitrification and step-feed activated sludge processes with dynamic simulation K. Sahlstedt a, H. Haimi b and J.

More information

Innovative Use of Dissolved Air Flotation with Biosorption as Primary Treatment to Approach Energy Neutrality in WWTPs

Innovative Use of Dissolved Air Flotation with Biosorption as Primary Treatment to Approach Energy Neutrality in WWTPs Innovative Use of Dissolved Air Flotation with Biosorption as Primary Treatment to Approach Energy Neutrality in WWTPs H.-B. Ding *, M. Doyle **, A. Erdogan **, R. Wikramanayake ***, and P. Gallagher ***

More information

Review of WEFTEC 2016 Challenge & Overview of 2017 Event. Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng

Review of WEFTEC 2016 Challenge & Overview of 2017 Event. Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng Review of WEFTEC 2016 Challenge & Overview of 2017 Event Malcolm Fabiyi, PhD, MBA Spencer Snowling, PhD. P.Eng Agenda Review 2016 Challenge Provide overview of updates to 2017 event Frequency WEFTEC Scores

More information

Nutrient Removal Enhancement Using Process Automation at Holly Hill

Nutrient Removal Enhancement Using Process Automation at Holly Hill F W R J Nutrient Removal Enhancement Using Process Automation at Holly Hill Brad T. Blais, Kevin A. Lee, John E. Olson, and David W. Dubey The City of Holly Hill, located on the Atlantic Coast just north

More information

Onsite Nitrogen Removal

Onsite Nitrogen Removal Onsite Nitrogen Removal Stewart Oakley Department of Civil Engineering California State University, Chico University Curriculum Development for Decentralized Wastewater Management NDWRCDP Disclaimer This

More information

Lysis and Autooxidation. Organic Nitrogen (net growth) Figure by MIT OCW.

Lysis and Autooxidation. Organic Nitrogen (net growth) Figure by MIT OCW. Bacterial Decomposition any hydrolysis Nitrification Organic Nitrogen (proteins; urea) O Ammonia Nitrogen 2 Nitrate (NO - O 2 ) 2 Nitrate (NO- 3 ) Assimilation Organic Nitrogen (bacterial cells) Lysis

More information

Short-term and long-term studies of the co-treatment of landfill leachate and municipal wastewater

Short-term and long-term studies of the co-treatment of landfill leachate and municipal wastewater This paper is part of the Proceedings of the 8 International Conference th on Waste Management and The Environment (WM 2016) www.witconferences.com Short-term and long-term studies of the co-treatment

More information

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER Industrial Water Pollution Control 19. AEROBIC SECONDARY TREATMENT OF WASTEWATER 19.1 Activated Sludge Process Conventional biological treatment of wastewater under aerobic conditions includes activated

More information

8.8 Calculation of oxygen requirements Peder Maribo

8.8 Calculation of oxygen requirements Peder Maribo 8.8 Calculation of oxygen requirements Peder Maribo 10.08.2009 The oxygen requirement in an activated sludge plant can be divided into four main groups according to the associated microbiological processes:

More information

Sustainable Approaches to Sidestream Nutrient Removal and Recovery

Sustainable Approaches to Sidestream Nutrient Removal and Recovery Sustainable Approaches to Sidestream Nutrient Removal and Recovery 2012 MWEA Wastewater Administrators Conference Frankenmuth, Michigan Lucy Pugh, PE, BCEE and Beverley Stinson, Ph.D., PE, AECOM January

More information

MICROBES IN ECOLOGY INTRODUCTION

MICROBES IN ECOLOGY INTRODUCTION MICROBES IN ECOLOGY INTRODUCTION - Microbes usually live in communities and rarely as individuals They are Present in every known ecosystem Over 99% of microbes contribute to the quality of human life

More information

The Fate of Ammonia in Facultative Lagoon Sludge Treatment Processes: An Investigation of Methods for Reducing Ammonia in Recycle Streams:

The Fate of Ammonia in Facultative Lagoon Sludge Treatment Processes: An Investigation of Methods for Reducing Ammonia in Recycle Streams: The Fate of Ammonia in Facultative Lagoon Sludge Treatment Processes: An Investigation of Methods for Reducing Ammonia in Recycle Streams: a Literature Review Prepared For: Sacramento Regional County Sanitation

More information

Choices to Address Filamentous Growth

Choices to Address Filamentous Growth Michigan Water Environment Association Process Seminar November 12, 2015 Choices to Address Filamentous Growth Richard Beardslee City of Battle Creek Nathan Cassity Donohue & Associates Outline Battle

More information

Basic concepts of managing the water within an aquaponics system

Basic concepts of managing the water within an aquaponics system Water Quality Station Basic concepts of managing the water within an aquaponics system Water is the life-blood of an aquaponics system. It is the medium through which all essential macro- and micronutrients

More information

Treatment of coke plant wastewater by SND fixed biofilm hybrid system

Treatment of coke plant wastewater by SND fixed biofilm hybrid system Journal of Environmental Sciences 19(2007) 153 159 Treatment of coke plant wastewater by SND fixed biofilm hybrid system QI Rong, YANG Kun, YU Zhao-xiang Department of Chemistry, Tongji University, Shanghai

More information

EFFECTS OF TRICLOSAN EXPOSURE ON NITRIFICATION IN ACTIVATED SLUDGE, BIOFILMS, AND PURE CULTURES OF NITRIFYING BACTERIA. Kylie Brigitta Bodle

EFFECTS OF TRICLOSAN EXPOSURE ON NITRIFICATION IN ACTIVATED SLUDGE, BIOFILMS, AND PURE CULTURES OF NITRIFYING BACTERIA. Kylie Brigitta Bodle EFFECTS OF TRICLOSAN EXPOSURE ON NITRIFICATION IN ACTIVATED SLUDGE, BIOFILMS, AND PURE CULTURES OF NITRIFYING BACTERIA by Kylie Brigitta Bodle A thesis submitted in partial fulfillment of the requirements

More information

Chapter 2: Conventional Wastewater Treatment (continue)

Chapter 2: Conventional Wastewater Treatment (continue) ENGI 9605 Advanced Wastewater Treatment Chapter 2: Conventional Wastewater Treatment (continue) Winter 2011 Faculty of Engineering & Applied Science 1 2.3 Biological treatment processes 1. Fundamentals

More information

Biological Nutrient Removal Processes

Biological Nutrient Removal Processes Chapter 22 Biological Nutrient Removal Processes Overview of Biological Nutrient Removal 22-3 Biological Selectors 22-6 Growth Zones 22-6 Selector Size and Equipment 22-10 Yardsticks for Measuring Biological

More information

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 24 : Aerobic Secondary Treatment Of Wastewater

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 24 : Aerobic Secondary Treatment Of Wastewater 1 P age Module 19 : Aerobic Secondary Treatment Of Wastewater Lecture 24 : Aerobic Secondary Treatment Of Wastewater 2 P age 19.1 Activated Sludge Process Conventional biological treatment of wastewater

More information

In 2010, municipal wastewater treatment facilities

In 2010, municipal wastewater treatment facilities FWRJ Separate or Combined Sidestream Treatment: That is the Question Rod Reardon In 2010, municipal wastewater treatment facilities consumed about 25 bil kwh of electricity. Individual facilities use anywhere

More information

SKI RESORT MBR WWTP: CHALLENGES OF YEAR-ROUND OPERATION WITH VERY HIGH FLOW AND LOAD VARIATIONS BETWEEN SEASONS

SKI RESORT MBR WWTP: CHALLENGES OF YEAR-ROUND OPERATION WITH VERY HIGH FLOW AND LOAD VARIATIONS BETWEEN SEASONS SKI RESORT MBR WWTP: CHALLENGES OF YEAR-ROUND OPERATION WITH VERY HIGH FLOW AND LOAD VARIATIONS BETWEEN SEASONS Marie-Laure Pellegrin, Ph.D.,* Lawrence Riegert, P.E.,** Steve Brewer, Class III Operator,***

More information

Closed Loop Reactor (CLR) Process. Innovative Technology, Flexible Orientation and Energy Saving Designs

Closed Loop Reactor (CLR) Process. Innovative Technology, Flexible Orientation and Energy Saving Designs Closed Loop Reactor (CLR) Process Innovative Technology, Flexible Orientation and Energy Saving Designs Lakeside Biological Treatment Processes Lakeside s oxidation ditch experience since 1963 has led

More information

Application of the AGF (Anoxic Gas Flotation) Process

Application of the AGF (Anoxic Gas Flotation) Process Application of the AGF (Anoxic Gas Flotation) Process Dennis A. Burke Environmental Energy Company, 6007 Hill Road NE, Olympia, WA 98516 USA (E-mail: dennis@makingenergy.com http//www.makingenergy.com)

More information

Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility

Energy and chemical efficient nitrogen removal at a full-scale MBR water reuse facility Manuscript submitted to: Volume 2, Issue 1, 42-55. AIMS Environmental Science DOI: 10.3934/environsci.2015.1.42 Received date 10 December 2014, Accepted date 12 February 2015, Published date 14 February

More information

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER

19. AEROBIC SECONDARY TREATMENT OF WASTEWATER 19. AEROBIC SECONDARY TREATMENT OF WASTEWATER 19.1 Activated Sludge Process Conventional biological treatment of wastewater under aerobic conditions includes activated sludge process (ASP) and Trickling

More information

Troubleshooting Activated Sludge Processes. PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E.

Troubleshooting Activated Sludge Processes. PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E. Troubleshooting Activated Sludge Processes PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E. Outline Process Types & Kinetics Influent Monitoring Process Monitoring

More information

Biological Short-Cut Nitrogen Removal from Anaerobic Digestate in a Demonstration Sequencing Batch Reactor

Biological Short-Cut Nitrogen Removal from Anaerobic Digestate in a Demonstration Sequencing Batch Reactor Biological Short-Cut Nitrogen Removal from Anaerobic Digestate in a Demonstration Sequencing Batch Reactor Francesco Fatone 1, Mario Dante 2, Elisa Nota 1, Silvia Di Fabio 1, Nicola Frison 1, Paolo Pavan

More information

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W

W O C H H O L Z R E G I O N A L W A T E R R E C L A M A T I O N F A C I L I T Y O V E R V I E W Facility Overview The recently upgraded and expanded Henry N. Wochholz Regional Water Reclamation Facility (WRWRF) treats domestic wastewater generated from the Yucaipa-Calimesa service area. The WRWRF

More information

WASTEWATER TREATMENT. Nelson Environmental Inc. Nelson Environmental Inc.

WASTEWATER TREATMENT. Nelson Environmental Inc. Nelson Environmental Inc. The OPTAER system provides reliable nutrient removal in pond based wastewater treatment plants combining cost-effective technologies and low maintenance requirements. WASTEWATER TREATMENT PrintStudioOne.com

More information

Lagoons Operation and Management in New Brunswick

Lagoons Operation and Management in New Brunswick Lagoons Operation and Management in New Brunswick Lagoons Provide secondary treatment to domestic wastewater by the action of bacteria stabilizing the organic matter in the wastewater. Benefits of lagoons:

More information

Photo-Activated Sludge System (PAS): A novel algal-bacterial biotreatment for nutrient rich wastewater

Photo-Activated Sludge System (PAS): A novel algal-bacterial biotreatment for nutrient rich wastewater Photo-Activated Sludge System (PAS): A novel algal-bacterial biotreatment for nutrient rich wastewater PhD candidate: Angélica María Rada, MSc. Delft, April 215 OUTLINE Background and problem statement

More information

Renovation of secondary treatment facility into the Step-feed Biological Nitrogen Removal Process by the effective use of the existing structure

Renovation of secondary treatment facility into the Step-feed Biological Nitrogen Removal Process by the effective use of the existing structure Renovation of secondary treatment facility into the Step-feed Biological Nitrogen Removal Process by the effective use of the existing structure Kiyohiko Hayashi Director, Toba Wastewater Treatment Plant,

More information

Environmental Dynamics International

Environmental Dynamics International Corporate Profile Capabilities (EDI) specializes in the research, development, and application of advanced technology aeration and biological treatment solutions for municipal and industrial wastewater

More information

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Attached Growth Aerobic Process: Trickling Filters and Rotating Biological contactors

More information

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 A STUDY ON DENITRIFICATION IN A FLUIDIZED

More information

International Journal of Science, Environment and Technology, Vol. 6, No 3, 2017,

International Journal of Science, Environment and Technology, Vol. 6, No 3, 2017, International Journal of Science, Environment and Technology, Vol. 6, No 3, 2017, 1865 1869 ISSN 2278-3687 (O) 2277-663X (P) EFFECT OF C/N RATIO ON WATER QUALITY USING DISTILLERY SPENTWASH AS A CARBON

More information

MEMBRANE AERATED BIOFILM REACTORS OXYGENATED FUN WITH LESS CARBON COST KELLY MARTIN AND SANDEEP SATHYAMOORTHY

MEMBRANE AERATED BIOFILM REACTORS OXYGENATED FUN WITH LESS CARBON COST KELLY MARTIN AND SANDEEP SATHYAMOORTHY MEMBRANE AERATED BIOFILM REACTORS OXYGENATED FUN WITH LESS CARBON COST KELLY MARTIN AND SANDEEP SATHYAMOORTHY AGENDA Background Commercialized Technology Concept Evaluation 2 BACKGROUND 3 THE MABR PROVIDES

More information

THEORETICAL ASPECTS OF ADVANCED METHODS OF WASTEWATER TREATMENT IN ORDER TO ELIMINATE POLLUTANTS FROM SURFACE WATERS

THEORETICAL ASPECTS OF ADVANCED METHODS OF WASTEWATER TREATMENT IN ORDER TO ELIMINATE POLLUTANTS FROM SURFACE WATERS THEORETICAL ASPECTS OF ADVANCED METHODS OF WASTEWATER TREATMENT IN ORDER TO ELIMINATE POLLUTANTS FROM SURFACE WATERS Cristina Elena IURCIUC 1, Daniela Roca 1 e-mail: iurciuc.cristina.elena@gmail.com Abstract

More information