UK ABWR - NEW NPP DESIGN FOR UK

Size: px
Start display at page:

Download "UK ABWR - NEW NPP DESIGN FOR UK"

Transcription

1 IAEA PLiM2017 [IAEA-CN ] UK ABWR - NEW NPP DESIGN FOR UK 25-October-2017 Kazuhiro YOSHIKAWA Masaaki HAYASHI Yasuhiro MABUCHI Daisuke TANIGUCHI Hitachi-GE Nuclear Energy, Ltd.

2 Contents 1. Introduction of UK ABWR 2. Basic Strategy for Safety Measures 3. Overview of Safety Enhancement 4. Structural Integrity of the UK ABWR 5. Summary 2

3 1.1 Overview of UK ABWR The UK ABWR is a nuclear reactor design proposed for development and construction in the UK. Large scale, highly efficient plant. Highly economical reactor core Reactor coolant recirculation system driven by internal pumps Advanced control rod drive mechanism Overall digital control and instrumentation Reinforced concrete containment vessel These features constitute a highly-functional, enhancedsafety nuclear reactor system, with a compact, easy-tooperate, and efficient turbine of excellent performance. 3

4 1.1 Overview of UK ABWR (cont.) Thermal / Plant Output Reactor rated pressure Reactor Core Fuel Assemblies / Control Rods Recirculation System Primary Containment Vessel (PCV) ECCS / PCV cooling System 3,926MWt / 1,350 MWe class 7.07MPa 872 bundles / 205 rods Internal pump system Reinforced concrete with built-in liner 3 divisions 4

5 1.2 Generic Design Assessment (GDA) For new nuclear build in the UK, the first stage is a rigorous assessment of the reactor design by UK regulators, known as GDA. Hitachi-GE applied GDA in GDA assessment process for the UK ABWR is now in Step4andDesign Acceptance Confirmation (DAC) is expectedbyendof2017. Next step is site-specific assessment. 5

6 Contents 1. Introduction of UK ABWR 2. Basic Strategy for Safety Measures 3. Overview of Safety Enhancement 4. Structural Integrity of the UK ABWR 5. Summary 6

7 2. Basic Strategy for Safety Measures It is very important to enhance safety feature of ABWR design with consideration of lessons learnt from the accident at Fukushima Daiichi NPS. They indicate the need to consider the potential for sitewide damage caused by Beyond Design Basis (BDB) external hazards and event management under a severe plant condition. Hitachi summarized seven lessons learnt from the Fukushima accident. 7

8 2.1. Lesson 1 Lesson 1: Arrangement, and backup and recovery of important equipment The BDB tsunami flooded the first floor of the Reactor Building(R/B) through air inlets, outlets and through doors broken by the impact force of water. Emergency AC, DC power supply system, and switchboard lost their function Rearrangementof important equipment and facilities on a higher place and/or waterproofing are effective. Backup provisions and recovery of important equipment are also effective Following Backup provisions outside of the R/B on elevated location or a waterproof backup building power supply trucks, switchboards, fire trucks Emergency connection for the mobile equipment on the R/B Heavy machinery available for establishing access routes. 8

9 2.2. Lesson 2 Lesson 2: Configuration and deployment of isolation valves The Isolation Condenser (IC) works during isolated condition of the RPV. For a loss of its function, high pressure coolant injection systems and/or low pressure coolant injection systems with RPV depressurization are installed. In unit 1 of Fukushima Daiichi NPS, isolation valves of the IC seems to be closed due to loss of instrumentation DC power, because DC power for the instrumentation is lost prior to AC power, which is the power source of closing valves, in large tsunami. Measures for opening closed isolation valves, which can be operated outside the containment or remotely, should be added to similar system in ABWR design. 9

10 2.3. Lesson 3 Lesson 3: Provision of backup DC power supply Loss of DC power caused a following situation during the Fukushima accident: Difficulties to understand the plant status due to loss of all instrumentation functions, which caused misunderstanding of the plant status and failure of appropriate recovery actions, Loss of RPV depressurization function with SRV, which needs to open valves of accumulator with DC power, and Loss of control signal for reactor coolant injection system. it is important to provide portable DC power and DC power backup suppliesfor these important functions 10

11 2.4. Lesson 4 Lesson 4: Instrument reliability and credibility Instrumentations of the reactor water level, pressure and temperature, which are important for accident management, had a problem in reliability and credibility with a progression of the accident. Credibility of the instrumentations lost due to exceeding range of design condition. Reliability of instrumentations during a severe accident is important. These instrumentations should have a measure of confirming credibility by others. Accident management procedures and practices for loss of all instrumentation should be prepared. For SFP, temperature and level indication should be added, considering above (i.e. severe accident condition). 11

12 2.5. Lesson 5 Lesson 5: Provision of a flexible coolant injection For a BDB flooding, not only protection measures such as waterproofing and rearrangement of important equipment but also provisions for flexible coolant injection into RPV and containment are vital. Water sources should also be flexible. Considering an ultimate situation in which the loss of all permanentlyinstalled coolant injection systems occurs, the coolant injection system should be diversified by mobile equipment. Flexible and simple event management procedures with these mobile equipment and practices are vital. 12

13 2.5. Lesson 6 Lesson 6: Accessibility, operability and assurance of effectiveness To resolve the problems of accessibility, operability and assurance of effectiveness of accident management equipment, the following countermeasures are important: a heavy machinery for development of clear area a remote manual valve to reduce radiation exposure, a separate installation of several connections on the R/B for alternative coolant injection systems with mobile equipment, an isolation valve to prepare appropriate line and to avoid bypass, an alternative coolant injection line into SFP, and a bypass line of the rupture disk or removal of it. 13

14 2.7. Lesson 7 Lesson 7: Provision of alternative means for protecting the Containment Vessel A major reason of a land contamination by the Fukushima accident is assumed to be leakage from the containment gasket, because of the over temperature of containment following a delay of core debris cooling. Therefore, countermeasure for over temperature of containment is important. The most important approach for the BDB external hazards is to provide diversified measures of coolant injection into RPV because the BWR uses direct-cycle operation at low pressure, and it is easy to inject water directly into the reactor. 14

15 2.7. Lesson 7 (continued) The following basic strategy for safety measures should be applied: 1. Important safety equipment to be protected from design loads caused by external events. (e.g. embankments, waterproof door, and relocation of equipment etc.) 2. Portable equipment to be used in the event of failure regarding protection for safety equipment, and the preparation of flexible responses. 3. Accident management procedures to be as simple as possible to ensure coordination to proceed smoothly in the event of an external event leading to wide damage across the entire site and a need for off-site assistance. 15

16 Contents 1. Introduction of UK ABWR 2. Basic Strategy for Safety Measures 3. Overview of Safety Enhancement 4. Structural Integrity of the UK ABWR 5. Summary 16

17 3. Overview of Safety Enhancement Overview of the countermeasures of UK ABWR design: A) Accident management should be simple. That is, direct coolant injection into the RPV can be achieved with mobile equipment. This simple strategy shall also be an effective way of cooperating with off-site support during times of confusion. B) Connections into R/B should be provided. Connection points should be diversified. C) Alternative ways to achieve coolant injection into the containment and containment head should be provided. D) A backup building with an alternative power supply and coolant injection function should be installed. This facility is located separately from the R/B, which is kept sealed off during normal operation. It should be useful for functions such as providing a frontline base during emergencies or a storage facility for mobile equipment. 17

18 3.1 Safety Enhancement A) B) SFP Cooling (Example) Alternative coolant injection into SFP Power Supply (Example) Portable DC power and DC power backup supplies for initial response Alternative AC power supply Containment Cooling (Example) Alternative coolant injection into the containment Coolant injection into the reactor well C) A) C) Core Cooling (includes long term heat removal) (Example) Alternative coolant injection into RPV Alternative long-tem heat removal Alternative RCW D) (Example) Backup Building Protection against specific hazards Coolant injection, power supplies, and mobile equipment 18

19 3.2 Backup Building Design Concept Reactor building Backup building DC power supply for SRV Alternative AC power supply (Air-cooled DG) 高台 Mobile equipment Connections for mobile equipment SFP Core cooling Coolant injection into SFP Containment head cooling PCV Containment cooling RPV W/W Alternative Coolant injection system S/P Water source :Countermeasures 19

20 Contents 1. Introduction of UK ABWR 2. Basic Strategy for Safety Measures 3. Overview of Safety Enhancement 4. Structural Integrity of the UK ABWR 5. Summary 20

21 4.1 Structural Integrity Classification Structural Integrity Classification : It is required for the metal components and structures required high levels structural reliability that it sets higher classification than the ordinary classification, which sub-divided Class 1 into two further classes (VHI and HI); Structural Integrity Classes Failure Modes and Effects Criticality Analysis (FMECA): To identify the higher classification, general factors were considered to record in the FMECA. 1) Component Identification, Weld Location / Region FMECA (Sample) 2) Postulated Failure Mode 3) Direct Consequences of Failure 4) Protection 5) Indirect Consequences of Failure 6) Component Classification Class VHI (Very High Integrity) HI (High Integrity) SC 1 (Standard Class 1) SC 2 & 3 (Standard Class 2 & 3) Consequences of failure Severe core damage and large off-site release of radiation. Severe core damage. Containment protects against large off-site release. Limited release of radioactive material. Localised damage to fuel. Minor off-site release. Significant release within nuclear island. No core damage. Fault within capability of protective systems. Contamination within nuclear island. 21

22 4.2 Structural Integrity Classification Structural Integrity Classification of UK ABWR FMECA identified SI classification for each UK standard class 1 components being involved in the function of either radioactive containment or core support. Where necessary, classification was established on a region by region basis. Reactor Pressure Vessel Core Support Structures Main Steam Line Component Weld Location / Region Classification RPV Major Boundary Small diameter Nozzles and Penetrations, Support Skirt, Stabilizers, Brackets Top Guide / Core Plate / Shroud Support / Core Shroud / CR Guide Tube / Fuel Support Connecting welds inside containment vessel including Inboard MSIVs and MS RCCV Penetrations Connecting welds outside containment vessel including Outboard MSIVs Very High Integrity Standard Class 1 Standard Class 1 Very High Integrity Standard Class 1 Steam Relief Valve Bonnet bolt Standard Class 1 Feed Water Line Stand by Liquid Control System High Pressure Core Flooder System Residual Heat Removal System Reactor Core Isolation Cooling Reactor Water Clean-up System UK ABWR Structural Integrity Classification Each connecting weld / Valves / RCCV Penetrations Standard Class 1 Each connecting weld / Valves / RCCV Penetrations Head Vent and Spray Nozzle (boundary portion) Standard Class 1 FMCRD (boundary portion) Spool Piece Standard Class 1 22

23 4.3 Avoidance of Fracture Defect Tolerance Assessment Objectives Defect Tolerance Assessment The demonstration of defect tolerance provides an important contribution to any claim of high structural reliability. Defect tolerance can be mostly, ensured by qualified inspection supported by the defect tolerance assessment (DTA). R6 Procedure In UK ABWR, DTA was conducted to apply R6 procedure which is the elastic plastic fracture mechanics assessment based on two parameters method. Elastic Plastic Fracture Mechanics HGNE Assessment COMMERCIAL based on 2 Parameters Method 23

24 4.4 Avoidance of Fracture DTA Procedure and Qualified NDE DTA Procedure There are some processes to determine Qualified Examination Defect Size (QEDS) which the criteria are used for Qualified NDE. - DTA Stage to develop SLLDS - QEDS Stage to discuss QEDS for the inspection qualification. - Reconsideration process before QEDS will be finally determined. Qualified NDE Qualified Non-Destructive Examination was Reconsideration of conservativeness considered to assure high level integrity of highly classified component. - End-of-manufacture NDE (Ultrasonic Testing) - European Network for Inspection & Qualification (ENIQ) Methodology - Applied for Highest classified component (VHI) DTA Stage QEDS Stage Yes Design Conditions Stress Calculation R6 Calculation SLLDS Choice of Applicable Inspection Method Internal Discussion or Expert Panel Re-calculation required? No Final QEDS Inspection Qualification General DTA Procedure 24

25 4.5 UK ABWR RPV Design RPV Design of UK ABWR has been developed: - UK regulatory requirement and therefore - Designed and Manufactured in accordance with ASME - Additional beyond Code basis requirement such as: Qualified End of Manufacturing Inspection (UT) DTA to support the criteria of UT Additional Fracture Toughness Testing to support DTA calculation using R6 Code Environmental Fatigue Assessment, which the additional analysis is non-mandatory requirement of ASME Archive materials Hydrogen control and additional chemical analysis points for the VHI large parent forging material as the measure for OPEXs (Both Hydrogen Flaking and Carbon Segregation). No any design changes were additionally raised from the original Japanese design which was design and manufactured in accordance with Japanese code (JSME). 25

26 5. Summary UK ABWR design, which is proposed for development and construction in the UK, has enhanced safety feature considering lessons learnt by Fukushima Daiichi NPS accident. UK ABWR design also has structural integrity feature for 60 years plant life time which includes design of important component, of which replacement will be difficult during the plant life time. General Design Assessment of UK ABWR design is expected to complete by end of The site licensing of WylfaNewydd nuclear power station will follow based on the accepted UK ABWR design. 26

27 UK ABWR -NEW NPP DESIGN FOR UK Kazuhiro YOSHIKAWA Masaaki HAYASHI Yasuhiro MABUCHI Daisuke TANIGUCHI Hitachi-GE Nuclear Energy, Ltd. 27

Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements

Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements Hitachi Review Vol. 62 (2013), No. 1 75 Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements Masayoshi Matsuura Kohei Hisamochi Shinichiro Sato Kumiaki

More information

UK ABWR Generic Design Assessment Generic PCSR Chapter 8 : Structural Integrity

UK ABWR Generic Design Assessment Generic PCSR Chapter 8 : Structural Integrity Form10/00 Document ID Document Number Revision Number : : : GA91-9101-0101-08000 RE-GD-2043 C Generic Design Assessment Generic PCSR Chapter 8 : Structural Integrity Hitachi-GE Nuclear Energy, Ltd. Form01/03

More information

The Fukushima Daiichi Nuclear Power Station Accident

The Fukushima Daiichi Nuclear Power Station Accident The Fukushima Daiichi Nuclear Power Station Accident Tomomi Matsunaga Kansai Electric Power Company Cooperation with JEPIC (Japan an Electric Power Information Center) Nuclear Power Plants in Japan 2 1

More information

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 Follow up prepared at 4pm of March 23, revised 1pm of March 31 Yoshiaki Oka Waseda university Recovery action is in progress.

More information

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 Follow up prepared at 4pm of March 23 in Japan Yoshiaki Oka Waseda university Recovery action is in progress. The presentation

More information

Safety Enhancement of Nuclear Power Plant Post Fukushima. Kumiaki Moriya

Safety Enhancement of Nuclear Power Plant Post Fukushima. Kumiaki Moriya International Conference on Nuclear Governance Post-Fukushima Marina Bay Sands, Singapore, 31 October 2013 Safety Enhancement of Nuclear Power Plant Post Fukushima October 31,2013 Kumiaki Moriya Hitachi-GE

More information

Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment

Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment 136 Development of Medium-size ABWR Aiming at Diversification and Amount Control of Plant Investment Shoichiro

More information

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S)

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S) Loss of Ultimate Heat Sink ANS AESJ AESJ Fukushima Symposium, March h4, 2012 Hisashi Ninokata, Tokyo Institute of Technology Available ultimate heat sinks at 1F1~3 1F1 (Fukushima Dai ichi Unit 1) Sea water

More information

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie

FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie FUKUSHIMA DAIICHI BWR REACTOR SPRAY AND FEED WATER SYSTEMS EVALUATION FOR EARLY FAILURE Dean Wilkie The BWR reactor vessel spray(core spray) and feed water spray systems are designed to inject water into

More information

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011

TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 TEPCO s Nuclear Power Plants suffered from big earthquake of March 11,2011 Follow up prepared at 4pm of March 23, revised April 13 Yoshiaki Oka Waseda university Recovery action is in progress. The presentation

More information

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs October 27, 2014 H. Hoshi, R. Kojo, A. Hotta, M. Hirano Regulatory Standard and Research Department, Secretariat of Nuclear

More information

Fukushima Event PCTRAN Analysis. Dr. LI-Chi Cliff Po. Dr. LI-Chi Cliff Po. March 25, 2011

Fukushima Event PCTRAN Analysis. Dr. LI-Chi Cliff Po. Dr. LI-Chi Cliff Po. March 25, 2011 Fukushima Event PCTRAN Analysis Dr. LI-Chi Cliff Po Fukushima Event PCTRAN Analysis Dr. LI-Chi Cliff Po 1. Description of Event March 25, 2011 The earthquake caused instant loss of offsite power. The scale-9

More information

Overview of Fukushima accident. Nov. 9, 2011 Orland, Florida

Overview of Fukushima accident. Nov. 9, 2011 Orland, Florida Overview of Fukushima accident Nov. 9, 2011 Orland, Florida Nuclear Power Plants in Japan Japan Nuclear Japan Energy Nuclear Energy Safety Safety Organization Japan Atomic Industrial Forum, Inc. -Tohoku

More information

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development A. Introduction The IAEA Report on Reactor and Spent Fuel Safety in the Light of

More information

Development of SAMG Verification and Validation for Kashiwazaki-Kariwa(KK) Nuclear Power Station

Development of SAMG Verification and Validation for Kashiwazaki-Kariwa(KK) Nuclear Power Station Development of SAMG Verification and Validation for Kashiwazaki-Kariwa(KK) Nuclear Power Station December 12-14, 2016 Toshinobu KITA TEPCO Holdings, Inc. Japan BWRs SAMG Development History 1 Original

More information

Lessons Learned from Fukushima-Daiichi Accident (Safety Measures and PSA Utilization)

Lessons Learned from Fukushima-Daiichi Accident (Safety Measures and PSA Utilization) PSAM12 2013 Tokyo Lessons Learned from Fukushima-Daiichi Accident (Safety Measures and PSA Utilization) April 15, 2013 Akio Komori (Takafumi Anegewa) Tokyo Electric Power Company All Rights Reserved 2013The

More information

Comprehensive Safety Assessment for Kashiwazaki Kariwa NPS

Comprehensive Safety Assessment for Kashiwazaki Kariwa NPS Comprehensive Safety Assessment for Kashiwazaki Kariwa NPS International Experts Meeting on Reactor and Spent Fuel Safety in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant IAEA,

More information

The 4th Progress Report

The 4th Progress Report The 4th Progress Report on the Investigation and Examination of Unconfirmed and Unresolved Issues on the Development Mechanism of the Fukushima Daiichi Nuclear Accident December 17, 2015 Tokyo Electric

More information

Plant Layout. Chapter Plant Layout and Arrangement 8-1

Plant Layout. Chapter Plant Layout and Arrangement 8-1 8 Chapter Plant Layout and Arrangement Plant Layout The ABWR Plant includes all buildings which are dedicated to housing systems and the equipment related to the nuclear system or controls access to this

More information

Fukushima Accident Summary(3) 2011-July-17, Ritsuo Yoshioka (Text in blue are Yoshioka s comments) 1) Earthquake and Tsunami

Fukushima Accident Summary(3) 2011-July-17, Ritsuo Yoshioka (Text in blue are Yoshioka s comments) 1) Earthquake and Tsunami Fukushima Accident Summary(3) 2011-July-17, Ritsuo Yoshioka (Text in blue are Yoshioka s comments) 1) Earthquake and Tsunami 14:46 March 11th 2011 (Please see Summary-1 report for detail.) Tohoku Pacific

More information

AP1000 The PWR Revisited

AP1000 The PWR Revisited IAEA-CN-164-3S05 AP1000 The PWR Revisited Paolo Gaio Westinghouse Electric Company gaiop@westinghouse.com Abstract. For nearly two decades, Westinghouse has pursued an improved pressurized water reactor

More information

Fukushima Daiichi NPP Accident

Fukushima Daiichi NPP Accident Fukushima Daiichi NPP Accident Plant Design and Preliminary Observations K. Moriya and K. Sato Hitachi GE Nuclear Energy, Ltd. May 3, 2011 [Note] 1. The view expressed herein are not the official view

More information

Fukushima Dai-ichi. Short overview of 11 March 2011 accidents and considerations. 3 rd EMUG Meeting ENEA Bologna April 2011

Fukushima Dai-ichi. Short overview of 11 March 2011 accidents and considerations. 3 rd EMUG Meeting ENEA Bologna April 2011 Fukushima Dai-ichi Short overview of 11 March 2011 accidents and considerations Marco Sangiorgi - ENEA 3 rd EMUG Meeting ENEA Bologna 11-12 April 2011 NPPs affected by Earthquake NPPs affected by Earthquake

More information

Compilation of recommendations and suggestions

Compilation of recommendations and suggestions Post- Fukushima accident Compilation of recommendations and suggestions Peer review of stress tests performed on European nuclear power plants 26/07/2012 Compilation of Recommendations and Suggestions

More information

New Safety Standards (SA) Outline (Draft) For Public Comment

New Safety Standards (SA) Outline (Draft) For Public Comment Provisional Translation (Feb.7,2013 Rev.0) February 6, 2013 New Safety Standards (SA) Outline (Draft) For Public Comment 0 February 6, 2013 New Safety Standards (SA) Outline (Draft) Table of Contents Foreword

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

Efforts for the restoration at Fukushima Daiichi Nuclear Power Plants

Efforts for the restoration at Fukushima Daiichi Nuclear Power Plants PF3-2013-000001 PSN-2013-0069 Efforts for the restoration at Fukushima Daiichi Nuclear Power Plants January 31, 2013 Executive Officer, Corporate Senior Vice president Chief Technology Executive, Power

More information

Radiation Control in the Core Shroud Replacement Project of Fukushima-Daiichi NPS Unit #2

Radiation Control in the Core Shroud Replacement Project of Fukushima-Daiichi NPS Unit #2 General Radiation Control in the Core Shroud Replacement Project of Fukushima-Daiichi NPS Unit #2 Yasunori Kokubun, Kazuyuki Haraguchi, Yuji Yoshizawa, Yasuo Yamada Tokyo Electric Power Co, 22 Kitahara

More information

Safety Implication for Gen-IV SFR based on the Lesson Learned from the Fukushima Dai-ichi NPPs Accident. Ryodai NAKAI Japan Atomic Energy Agency

Safety Implication for Gen-IV SFR based on the Lesson Learned from the Fukushima Dai-ichi NPPs Accident. Ryodai NAKAI Japan Atomic Energy Agency Safety Implication for Gen-IV SFR based on the Lesson Learned from the Fukushima Dai-ichi NPPs Accident Ryodai NAKAI Japan Atomic Energy Agency Contents Introduction Japanese Government Report to the IAEA

More information

Regulatory Actions and Follow up Measures against Fukushima Accident in Korea

Regulatory Actions and Follow up Measures against Fukushima Accident in Korea Int Conference on Effective Nuclear Regulatory Systems, April 9, 2013, Canada Regulatory Actions and Follow up Measures against Fukushima Accident in Korea Seon Ho SONG* Korea Institute of Nuclear Safety

More information

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15 19, 2015, Phoenix, Arizona, USA Fukushima Inspection Manipulator 15485 Matt Cole, Kurion Takashi Mitsui, Yuji Morigaki * 1, Toshinori Dekura* 2, * 3 *1: IHI Corporation, Yokohama, Kanagawa, Japan *2: International Research Institute

More information

OVER VIEW OF ACCIDENT OF FUKUSHIMA DAI-ICHI NPSs AND FUTURE PLANNING TOWARD D&D

OVER VIEW OF ACCIDENT OF FUKUSHIMA DAI-ICHI NPSs AND FUTURE PLANNING TOWARD D&D OVER VIEW OF ACCIDENT OF FUKUSHIMA DAI-ICHI NPSs AND FUTURE PLANNING TOWARD D&D 16 NOVEMBER, 2011 Hiroshi RINDO JAPAN ATOMIC ENERGY AGENCY Table of Contents 1. What s happened at Fukushima Dai-Ichi NPSs

More information

Pressurized Water Reactor Materials Reliability Program (QA)

Pressurized Water Reactor Materials Reliability Program (QA) Pressurized Water Reactor Materials Reliability Program (QA) Program Description Program Overview Stress corrosion cracking and general environmental corrosion of reactor coolant system components have

More information

Progress Status Classified by Countermeasures

Progress Status Classified by Countermeasures Progress Status Classified by :Progressed (Legend color changed) Legend Implemented Under construction Field work started, but construction not started Appendix 2 Field work not started yet Areas Issues

More information

UK ABWR Generic Design Assessment Generic PCSR Chapter 9 : General Description of the Unit (Facility)

UK ABWR Generic Design Assessment Generic PCSR Chapter 9 : General Description of the Unit (Facility) Form10/00 Document ID Document Number Revision Number : : : GA91-9101-0101-09000 SE-GD-0136 C Generic Design Assessment Generic PCSR Chapter 9 : General Description of the Unit (Facility) Hitachi-GE Nuclear

More information

BWR3 Mark I. Dr. John H. Bickel

BWR3 Mark I. Dr. John H. Bickel Beyond the Design Bases BWR3 Mark I Dr. John H. Bickel BWR3, Mark I DBA Features: Electric di driven Mi Main Feedwater, Condensate Pumps 2 Diesels supply: 4kV power, 480V, 250VDC, 125VDC 2 Trains Electric

More information

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015

Joint ICTP-IAEA Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety. Trieste,12-23 October 2015 Joint ICTP- Essential Knowledge Workshop on Deterministic Safety Analysis and Engineering Aspects Important to Safety Trieste,12-23 October 2015 Safety classification of structures, systems and components

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

Side Event of IAEA General Conference. Severe Accident Analyses of Fukushima-Daiich Units 1 to 3. Harutaka Hoshi and Masashi Hirano

Side Event of IAEA General Conference. Severe Accident Analyses of Fukushima-Daiich Units 1 to 3. Harutaka Hoshi and Masashi Hirano Side Event of IAEA General Conference Severe Accident Analyses of Fukushima-Daiich Units 1 to 3 Harutaka Hoshi and Masashi Hirano Japan Nuclear Energy Safety Organization (JNES) September 17, 2012 Side

More information

IAEA-J4-TM TM for Evaluation of Design Safety

IAEA-J4-TM TM for Evaluation of Design Safety Canadian Nuclear Utility Principles for Beyond Design Basis Accidents IAEA-J4-TM-46463 TM for Evaluation of Design Safety Mark R Knutson P Eng. Director of Fukushima Projects Ontario Power Generation Overview

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

An overview of what happened at Fukushima NPPs

An overview of what happened at Fukushima NPPs An overview of what happened at Fukushima NPPs Per F. Peterson Professor and Chair Department of Nuclear Engineering University of California, Berkeley 2011 PEER Annual Meeting Hotel Shattuck Berkeley

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

GE Hitachi's ABWR and ESBWR: safer, simpler, smarter

GE Hitachi's ABWR and ESBWR: safer, simpler, smarter GE Hitachi's ABWR and ESBWR: safer, simpler, smarter OECD/NEA Workshop on innovations in water-cooled reactor technologies Issy-les-Moulineaux, Paris 11-12 February, 2015 David Powell Vice President Nuclear

More information

Tsunami Countermeasures at Hamaoka Nuclear Power Station

Tsunami Countermeasures at Hamaoka Nuclear Power Station Tsunami Countermeasures at Hamaoka Nuclear Power Station Reference Reactor No. 5 Reactor No. 4 Reactor No. 3 Reactor No. 2 Reactor No. 1 March 16, 2012 2011 Chubu Electric Power Co., Inc. All rights reserved.

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant

Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant 8 Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant KOZO TABUCHI *1 MASAYUKI TAKEDA *2 KAZUO TANAKA *2 JUNICHI IMAIZUMI *2 TAKASHI KANAGAWA *3 ATMEA1 TM is a 3-loop 1100

More information

Findings from the latest analyses using MAAP5

Findings from the latest analyses using MAAP5 Attachment 3 Findings from the latest analyses using MAAP5 1. Latest analysis of Unit-1 by MAAP5.01 1.1. Plant conditions and event chronology Table 1-1 summarizes key plant conditions, while Table 1-2

More information

Lecture 7 Heat Removal &

Lecture 7 Heat Removal & Containment Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University Containment R4 vgs 1 Where We Are (still) Deterministic Requirements Experience Chapter 3 Chapter 1 Safety Goals Chapter 6 Probabilistic

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

ACR Safety Systems Safety Support Systems Safety Assessment

ACR Safety Systems Safety Support Systems Safety Assessment ACR Safety Systems Safety Support Systems Safety Assessment By Massimo Bonechi, Safety & Licensing Manager ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor

More information

Application of Selected Safety Requirements from IAEA SSR-2/1 in the EC6 Reactor Design

Application of Selected Safety Requirements from IAEA SSR-2/1 in the EC6 Reactor Design Application of Selected Safety Requirements from IAEA SSR-2/1 in the EC6 Reactor Design Technical Meeting on Safety Challenges for New NPPs 22-25 June 2015, Vienna, Austria - Copyright - A world leader

More information

Status report 98 - Advanced Boiling Water Reactor II (ABWR-II)

Status report 98 - Advanced Boiling Water Reactor II (ABWR-II) Status report 98 - Advanced Boiling Water Reactor II (ABWR-II) Overview Full name Acronym Reactor type Coolant Moderator Neutron spectrum Thermal capacity Gross Electrical capacity Design status Designers

More information

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations March 31, 2011 Tokyo Electric Power Company Tohoku Pacific Ocean Earthquake Time: 2:46 pm on Fri, March 11, 2011. Place:

More information

IV. Occurrence and Development of the Accident at the Fukushima Nuclear Power Stations

IV. Occurrence and Development of the Accident at the Fukushima Nuclear Power Stations IV. Occurrence and Development of the Accident at the Fukushima Nuclear Power Stations 1. Outline of Fukushima Nuclear Power Stations (1) Fukushima Daiichi Nuclear Power Station Fukushima Daiichi Nuclear

More information

ABWR Construction Experience in Japan

ABWR Construction Experience in Japan ABWR Construction Experience in Japan Junichi Kawahata 1, Jun Miura 1*, Fuyuki Saito 2 and Hiroya Mori 2 1 Hitachi Ltd., Hitachi, Ibaraki, 317-8511, Japan 2 Toshiba Corporation, Yokohama, 235-8523, Japan

More information

Summary of the ABWR Key Features. Chapter2 Plant Overview 2-1. Safety Enhancement

Summary of the ABWR Key Features. Chapter2 Plant Overview 2-1. Safety Enhancement Chapter2 Plant Overview The key design objectives for the ABWR were established during the development program. The key goals, all of which were achieved, are as follows: Design life of 60 years. Plant

More information

Boiling Water Reactor Vessel and Internals

Boiling Water Reactor Vessel and Internals Boiling Water Reactor Vessel and Internals Program Description Program Overview As boiling water reactors have aged, various forms of operation-limiting stress corrosion cracking have appeared, first in

More information

F, 3 Toyokaiji Building, Nishi-Shimbashi, Minato-ku, Tokyo , Japan Published: March 2016

F, 3 Toyokaiji Building, Nishi-Shimbashi, Minato-ku, Tokyo , Japan Published: March 2016 Ever since its establishment in August 2013, the International Research Institute for Nuclear Decommissioning (IRID) has been fully committed to an urgent challenge research and development of technologies

More information

Severe Accident Progression Without Operator Action

Severe Accident Progression Without Operator Action DAA Technical Assessment Review of the Moderator Subcooling Requirements Model Severe Accident Progression Without Operator Action Facility: Darlington Classification: October 2015 Executive summary After

More information

SMART Standard Design Approval inspection result July. 4 th

SMART Standard Design Approval inspection result July. 4 th SMART Standard Design Approval inspection result 2012. July. 4 th Content Ⅰ. Inspection outline. 1 Ⅱ. Inspection proceedings 2 Ⅲ. SMART Standard Design features. 3 Ⅳ. Standard Design inspection result

More information

Attachment XI-1. I. Emergency Safety Measures, etc.

Attachment XI-1. I. Emergency Safety Measures, etc. Specific Countermeasures in Japan Based on the Lessons Learnt from the Accident at Fukushima Dai-ichi Nuclear Power Station of Tokyo Electric Power Co. Inc. I. Emergency Safety Measures, etc. 1. Emergency

More information

THE FUKUSHIMA ACCIDENT: IMPLICATIONS FOR NUCLEAR SAFETY. Edwin Lyman Union of Concerned Scientists May 26, 2011

THE FUKUSHIMA ACCIDENT: IMPLICATIONS FOR NUCLEAR SAFETY. Edwin Lyman Union of Concerned Scientists May 26, 2011 THE FUKUSHIMA ACCIDENT: IMPLICATIONS FOR NUCLEAR SAFETY Edwin Lyman Union of Concerned Scientists May 26, 2011 The accident: many unknowns Many of the details of the Fukushima Daiichi accident are still

More information

An Overview of the ACR Design

An Overview of the ACR Design An Overview of the ACR Design By Stephen Yu, Director, ACR Development Project Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 25, 2002 ACR Design The evolutionary

More information

Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned

Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned Jun Sugimoto Abstract The nuclear accident that occurred at the Fukushima Daiichi Nuclear

More information

The Spanish Involvement

The Spanish Involvement The OECD-BSAF Project: The Spanish Involvement Luis E. Herranz Unit of Nuclear Safety Research Division of Nuclear Fission Department of Energy CIEMAT BACKGROUND CIEMAT and CSN closely collaborate on severe

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

APR1400 Safe, Reliable Technology

APR1400 Safe, Reliable Technology APR1400 Safe, Reliable Technology OECD/NEA Workshop on Innovations in Water-cooled Reactor Technology Paris, Feb 11 12, 2015 Presented by Shin Whan Kim Contents 1. Introduction 2. Major Safety Design Characteristics

More information

Information on Status of Nuclear Power Plants in Fukushima

Information on Status of Nuclear Power Plants in Fukushima Information on Status of Nuclear Power Plants in Fukushima Japan Atomic Industrial Forum, Inc. Policy on information and compilation This JAIF-compiled information chart represents the situation, phenomena,

More information

Lessons Learned from the Fukushima Daiichi Nuclear Power Plant Accident

Lessons Learned from the Fukushima Daiichi Nuclear Power Plant Accident Lessons Learned from the Fukushima Daiichi Nuclear Power Plant Accident Nuclear Energy Safety Symposium Academy of Science of South Africa October 13, 2011 Hideki Nariai Professor Emeritus of the University

More information

Hitachi Procurement Policy for Horizon s New Nuclear Power Plant Projects

Hitachi Procurement Policy for Horizon s New Nuclear Power Plant Projects Hitachi Procurement Policy for Horizon s New Nuclear Power Plant Projects Suppliers Events (May 21 & 23, 2013) Katsunori Mizukami Deputy General Manager Purchasing & Sourcing Division, Power Systems Company,

More information

UK ABWR Generic Design Assessment Generic PCSR Chapter 5 : General Design Aspects

UK ABWR Generic Design Assessment Generic PCSR Chapter 5 : General Design Aspects Form10/00 Document ID : GA91-9101-0101-05000 Document Number : XE-GD-0645 Revision Number : C Generic Design Assessment Generic PCSR Chapter 5 : General Design Aspects Hitachi-GE Nuclear Energy, Ltd. Form01/03

More information

X. Future Efforts to Settle the Situation regarding the Accident

X. Future Efforts to Settle the Situation regarding the Accident X. Future Efforts to Settle the Situation regarding the Accident 1.The current status of reactors etc. of Fukushima Dai-ichi NPS In reactors of Fukushima Dai-ichi NPS in Units 1, 2 and 3, fresh water has

More information

Source Terms Issues and Implications on the Nuclear Reactor Safety

Source Terms Issues and Implications on the Nuclear Reactor Safety Source Terms Issues and Implications on the Nuclear Reactor Safety Jin Ho Song Korea Atomic Energy Research Institute t Technical Meeting on Source Term Evaluation for Severe Accidents, Vienna International

More information

The Fukushima Daiichi Incident

The Fukushima Daiichi Incident The data and information contained herein are provided solely for informational purposes. None of the information or data is intended by AREVA to be a representation or a warranty of any kind, expressed

More information

Safety Aspects of SMRs: A PRA Perspective

Safety Aspects of SMRs: A PRA Perspective Safety Aspects of SMRs: A PRA Perspective Mohammad Modarres Minta Martin Professor of Engineering Director, Reliability Engineering Program Department of Mechanical Engineering University of Maryland,

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

UKEPR Issue 05

UKEPR Issue 05 Title: PCER Sub-chapter 1.3 Comparison with reactors of similar design Total number of pages: 12 Page No.: I / II Chapter Pilot: P. KRUSE Name/Initials Date 10-10-2012 Approved for EDF by: A. MARECHAL

More information

The ESBWR an advanced Passive LWR

The ESBWR an advanced Passive LWR 1 IAEA PC-Based Simulators Workshop Politecnico di Milano, 3-14 October 2011 The ES an advanced Passive LWR Prof. George Yadigaroglu, em. ETH-Zurich and ASCOMP yadi@ethz.ch 2 Removal of decay heat from

More information

Oregon State University s Small Modular Nuclear Reactor Experimental Program

Oregon State University s Small Modular Nuclear Reactor Experimental Program Oregon State University s Small Modular Nuclear Reactor Experimental Program IEEE Conference on Technologies for Sustainability August 1, 2013 Portland, Oregon Brian Woods Oregon State University brian.woods@oregonstate.edu,

More information

Advanced Design of Mitsubishi PWR Plant for Nuclear Renaissance

Advanced Design of Mitsubishi PWR Plant for Nuclear Renaissance Advanced Design of Mitsubishi PWR Plant for Nuclear Renaissance October 28, 2009 Etsuro SAJI General Manager, Reactor Core Engineering Department Mitsubishi Heavy Industries, Ltd. GEN-HSW-9102-0 Contents

More information

Fukushima Daiichi Disaster. Facts and lessons learned. July Takashi Shoji Programme Director of WANO

Fukushima Daiichi Disaster. Facts and lessons learned. July Takashi Shoji Programme Director of WANO Fukushima Daiichi Disaster Facts and lessons learned July 13 2011 Takashi Shoji Programme Director of WANO 7/12/2011 1 Earthquake occurrence and automatic shut-down of nuclear reactors The Tohoku Pacific

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

CNSC Staff Briefing CMD 11-M15 March 30, 2011

CNSC Staff Briefing CMD 11-M15 March 30, 2011 CNSC Staff Briefing CMD 11-M15 March 30, 2011 CNSC Response CNSC took action immediately to: Activate Emergency Operations Centre on 3 rd floor Slater (11-March) Staff Nuclear Emergency Organization in

More information

Design of the ESBWR reactor

Design of the ESBWR reactor Design of the ESBWR reactor Chris Maslak, Marketing Leader, New Units, GE Energy-Nuclear Anders Carlson, Sales Manager, Nordic Accounts, GE Energy-Nuclear Jaime Segarra, Global Sales Manager, Europe, GE

More information

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region IAEA Technical Meeting on Technology Assessment of Small Modular Reactors for Near Term Deployment 2 5

More information

ESSENCE AND CHARACTERISTICS OF THE ATMEA TECHNOLOGY: THE ATMEA1 REACTOR

ESSENCE AND CHARACTERISTICS OF THE ATMEA TECHNOLOGY: THE ATMEA1 REACTOR ESSENCE AND CHARACTERISTICS OF THE ATMEA TECHNOLOGY: THE ATMEA1 REACTOR Antoine VERDIER Business Development Manager BULATOM Varna / June 4 th, 2014 An AREVA and MHI Company Introduction ATMEA Company

More information

IAEA OSART review-results-list Recommendations

IAEA OSART review-results-list Recommendations Assessment Field Item 1 2 Leadership and for safety Education and training Power station group structure and functions Employee certification training 3 Operation Groups and functions 4 Maintenance and

More information

European level recommendations Sect. in NAcP 2 Generic recommendation for WENRA, Finland participates and follows the work.

European level recommendations Sect. in NAcP 2 Generic recommendation for WENRA, Finland participates and follows the work. Cross reference table of ENSREG and Extraordinary CNS recommendations and national actions 1(16) 2.1 European guidance on assessment of natural hazards and margins The peer review Board recommends that

More information

Chemical Engineering 693R

Chemical Engineering 693R Chemical Engineering 693R Reactor Design and Analysis Lecture 11 Nuclear Safety Spiritual Thought 2 2 Kings 6:16 And he answered, Fear not: for they that be with us are more than they that be with them.

More information

EPR Safety in the post-fukushima context

EPR Safety in the post-fukushima context EPR Safety in the post-fukushima context October 19 th 2011 Jürgen Wirkner, Peter Volkholz EPR safety approach An accident is a complex series of events: NEED THE MEANS TO REMAIN IN CONTROL OF THE SITUATION,

More information

Application for Permission to Extend the Operating Period and Application for Approval of Construction Plans of Unit 3 at Mihama Nuclear Power Station

Application for Permission to Extend the Operating Period and Application for Approval of Construction Plans of Unit 3 at Mihama Nuclear Power Station November 26, 2015 The Kansai Electric Power Co., Inc. Application for Permission to Extend the Operating Period and Application for Approval of Construction Plans of Unit 3 at Mihama Nuclear Power Station

More information

Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions

Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions Instrumentation and Control to Prevent and Mitigate Severe Accident Conditions SAMG-D Toolkit, Module 3, Chapter 3 Martin Gajdoš Nuclear Engineering, Slovenské elektrárne IAEA Workshop on the Development

More information

Structural Integrity and NDE Reliability II

Structural Integrity and NDE Reliability II Structural Integrity and NDE Reliability II NDE Experience and Lessons Learnt from Recent EU Projects Focused on Assistance to the Armenian NPP L. Horacek, Nuclear Research Institute, Czech Republic ABSTRACT

More information

Step 2 Assessment of the Internal Hazards of Hitachi GE s UK Advanced Boiling Water Reactor (UK ABWR)

Step 2 Assessment of the Internal Hazards of Hitachi GE s UK Advanced Boiling Water Reactor (UK ABWR) Generic Design Assessment (GDA) of Hitachi General Electric Nuclear Energy Ltd s (Hitachi-GE) UK Advanced Boiling Water Reactor (UK ABWR) Civil Nuclear Reactor Build - Generic Design Assessment Step 2

More information

Regulatory Review Aspects of Post-Fukushima Safety Enhancements in Indian NPPs

Regulatory Review Aspects of Post-Fukushima Safety Enhancements in Indian NPPs Regulatory Review Aspects of Post-Fukushima Safety Enhancements in Indian NPPs RAHUL PORWAL Atomic Energy Regulatory Board Mumbai, INDIA Outline Introduction AERB Safety Review Methodology Safety Observations

More information

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND Risto Sairanen Radiation and Nuclear Safety Authority (STUK) Nuclear Reactor Regulation P.O.Box 14, FI-00881

More information