and Fuel Cells and Solid State Chemistry Division

Size: px
Start display at page:

Download "and Fuel Cells and Solid State Chemistry Division"

Transcription

1 Solid Oxide Fuel Cells and Gas Separation Membranes A.Hagen, P.V. Hendriksen, M. Søgaard Fuel Cells and Solid State Chemistry Division Risø DTU

2 Outline Background Motivation Combination of Energy Conversion Technologies Solid Oxide Fuel Cells Gas Separation Membranes Summary and Outlook 2 Risø DTU

3 Water Sun Wind Biomass Energy supply How can we satisfy our needs for energy in the right forms and at the right times with what nature offers? Energy need Heat 3 Risø DTU Fuel Electricity

4 Background Biomass Gasification Fuel Cells Membranes Heat Electricity 4 Risø DTU

5 Biomass: Gasification Gasification of biomass to CO and H 2 High temperature process Use of waste (wood chips, organic waste) Efficiency i of wood for electricity exceeds 25% Potential for increase of electrical l efficiency i by use of fuel cells and oxygen enriched gasification! Carbon capture! SOFC OTM Viking gasifier at Risoe DTU 5 Risø DTU

6 Combination: Gasification SOFC- Membrane Increase of total efficiency: SOFC convert fuel to electricity with higher efficiency than conventional technologies Oxygen rich gasification gives a gas with lower nitrogen content (less diluted fuel) New option: Carbon capture Challenges: Changing composition according to used biomass Load fluctuations Impurities, minor components in gasification gas: Sulphur containing, ammonia, higher hydrocarbons, etc. 6 Risø DTU

7 Solid Oxide Fuel Cells: SOFCs Fuel derived from conventional and sustainable sources Electrical power and high value (e.g., methane, natural gas, heat hydrogen) Solid oxide fuel cells (SOFCs) Higher efficiency than conventional power generation systems Reduction of emissions and pollution (NO x, CO 2, noise) 7Modular Risø DTU concept (from kw to MW)

8 SOFC Working Principle and Main Components CATHODE Catalytic activity for oxygen reduction Gas transport (porosity) Electron- (ion-) conducting O 2 ELECTROLYTE Gas tight O 2 + 4e - 2O 2- (Oxygen) ion O 2- conducting 2H 2 + 2O 2-2H 2 O + 4e - Electronic isolator e - H 2 ANODE Catalytic activity for fuel oxidation Gas transport (porosity) Electron- (ion-) conducting GENERAL Chemical inertness Thermal compatibility Mechanical strength and flexibility Gasification gas 8 Risø DTU

9 SOFCs at Risoe DTU: Generation G2 Risoe DTU has developed several SOFC generations based on ceramic materials, which are tailored for different operating conditions A pre-pilot manufacture line was established using scale-able and economically competitive processes 9 Risø DTU

10 Durability of SOFCs Generation G2 Good initial performance Good durability over thousands of hours in different fuels: Hydrogen, synthesis gas (CO + H 2 ), methane + steam m 2 ity in W/cm Po ower densi Durability tests on 2G, synthesis gas, 75% fuel utilization 750 o C 850 o C Risø DTU Time under current in h

11 Durability of SOFCs Generation G2: H 2 S Impurities 800 cell B CH 4 /H 2 O/H 2 O 700 H 2 /H 2 O tage in mv 600 CH 4 /H 2 O/H 2 O H 2 S H 2 S 1 A/cm 2 Cell vol 500 cell A 2G cell 850 o C, 1A/cm H 2 S Time under current in h Tolerance of 2G SOFCs towards H 2 S impurities in a fuel mainly containing hydrogen and also hydrocarbons (methane) and steam not sufficient 11 Risø DTU

12 SOFC: Improvement of Anode of 2G Cell Impedance analysis, 750 o C, 20% H 2 O 2 ] -Z'' [Ω cm -Z'' [Ω cm 2 ] Cell A (2G) 10,000 Hz 56,000 Hz 790 Hz 110 Hz 19 Hz Fit Cat I Ano I Cat II Diffusion Conversion Cell #A Z' [Ω cm 2 ] Cell B ,500 Hz 43,000 Hz 680 Hz 56 Hz 18 Hz 0.05 Fit Cat I Ano I Cat II Diffusion Conversion Cell #B Z' [Ω cm 2 ] Smaller resistance from anode and smaller electrolyte resistance = Better performing cell 12 Risø DTU Convs. Diff. Electro- Anode lyte Cathode Convs. Electro- Diff. lyte Anode Cathode

13 Durability of SOFCs Generation G2.X with Improved Anode: H 2 S Impurities 800 cell B CH 4 /H 2 O/H 2 O 700 H 2 /H 2 O tage in mv 600 CH 4 /H 2 O/H 2 O H 2 S H 2 S 1 A/cm 2 Cell vol 500 cell A 2G cell 850 o C, 1A/cm H 2 S Time under current in h Tolerance Significantly of improved 2G SOFCs tolerance towards H of 2 S improved impurities 2G in SOFCs a fuel mainly towards containing H 2 S hydrogen impurities and in the also fuel hydrocarbons (methane) and steam not sufficient 13 Risø DTU

14 From Solid Oxide Fuel Cells Oxygen Transfer Membranes O 2 CATHODE Catalytic activity for oxygen reduction Gas transport (porosity) Electron- (ion-) conducting ELECTROLYTE Gas tight O 2 + 4e - 2O 2- (Oxygen) ion O 2- conducting 2H 2 + 2O 2-2H 2 O + 4e - Electronic isolator e - H 2 ANODE Catalytic activity for fuel oxidation Gas transport (porosity) Electron- (ion-) conducting GENERAL Chemical inertness Thermal compatibility Mechanical strength and flexibility 14 Risø DTU

15 Oxygen Transfer Membranes (OTMs) Oxygen is separated from air, transported through a membrane and supplied to partial oxidation of methane Cross section SEM picture of a ceria based membrane 15 Risø DTU

16 OTMs: Performance (Flux) Measurements Economical feasibility Calculations 10 2 Flux [ ml O cm -2 2 min -1 ] V f / [ Flux T = 600C T = 700C T = 800C T = 900C T = 1000C l Ely / [ μm ] Membrane thickness Hydrogen Air 30 µm thick CGO 0.02 atm O 2 CGO 10 atm air 16 Risø DTU

17 Summary Outlook Combination of biomass gasification and SOFC: Potential electric efficiency of +50% through use of a SOFC By using intelligent heat management, high total efficiencies ~ 90% possible Well performing and durable SOFCs developed and demonstrated for several fuels, even in presence of H 2 S impurities Challenge: Tolerance towards other impurities Combination of biomass gasification and OTM: Increase of overall efficiency due to gasification gas with higher energy density (less diluted) Know-how developed for SOFCs can be utilized Promising results regarding performance (flux) and economic feasibility Challenge: Increase of flux and durability 17 Risø DTU

18 Acknowledgements We gratefully acknowledge support from our sponsors: Topsoe Fuel Cell A/S Danish Energy Authority Energinet.dk EU Framework Programmes Danish National Advanced Technology Foundation Danish Research Councils DONG Energy Areva 18 Risø DTU

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

Investigation on performance of SOFC in hydrocarbon fuel

Investigation on performance of SOFC in hydrocarbon fuel Investigation on performance of SOFC in hydrocarbon fuel S. Senthil Kumar, Sharad Chauhan, B. Shriprakash, S. T. Aruna CSIR National Aerospace Laboratories Bangalore-560017 Presentation at COMSOL 2016,

More information

Electrochemical Impedance Studies of SOFC Cathodes

Electrochemical Impedance Studies of SOFC Cathodes Downloaded from orbit.dtu.dk on: Jul 02, 2018 Electrochemical Impedance Studies of SOFC Cathodes Hjelm, Johan; Søgaard, Martin; Wandel, Marie; Mogensen, Mogens Bjerg; Menon, Mohan; Hagen, Anke Published

More information

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage Fuel Cell & Hydrogen Technologies JP SP2: Catalyst and Electrodes Borovetz, Bulgaria June 2 nd and 3 rd 2014 The need for localized electrochemical measurements and the promise of Controlled Atmosphere

More information

Fremtidens (Bio)brændstoffer

Fremtidens (Bio)brændstoffer Fremtidens (Bio)brændstoffer John Bøgild Hansen 1 Haldor Topsøe A/S We have been committed to catalytic process technology for more than 78 years Founded in 1940 by Dr. Haldor Topsøe Revenue: 700 million

More information

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Downloaded from orbit.dtu.dk on: Sep 18, 2018 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Christiansen, Niels; Hansen, J B.; Larsen, H H.; Linderoth, Søren; Larsen,

More information

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition

Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Anodes for Direct Hydrocarbon Solid Oxide Fuel Cells (SOFC s) Challenges in materials selection and deposition Venkatesan V. Krishnan Department of Chemical Engineering IIT Delhi Barriers to the hydrogen

More information

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of Energy Conversion and Storage, Technical University of

More information

Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013

Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013 Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013 - Source - Distribution - CO poisoning - Emissions (true zero, CO

More information

Electrochemical characterization and performance evaluation

Electrochemical characterization and performance evaluation Electrochemical characterization and performance evaluation Mogens Mogensen Fuel Cells and Solid State Chemistry Risø National Laboratory Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS ECN-RX--05-083 SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS Søren Koch, Peter Vang Hendriksen and Mogens Mogensen (Risø National Laboratory, Denmark), Nico Dekker and Bert Rietveld

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS Can Ozgur Colpan cocolpan@connect.carleton.ca Ibrahim Dincer, PhD Ibrahim.Dincer@uoit.ca Feridun Hamdullahpur, PhD Feridun_Hamdullahpur@carleton.ca

More information

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009)

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Florence LEFEBVRE-JOUD CEA LITEN/Program Manager 1 RelHy Partnership & Budget 4 years collaboration project:

More information

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Downloaded from orbit.dtu.dk on: Jul 01, 2018 Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Hagen, Anke; Chen, Ming; Neufeld, Kai; Liu, Yi-Lin Published in: E C S Transactions

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information

INTEGRATION OF SOLID OXIDE FUEL CELLS WITH BIOMASS GASIFIERS

INTEGRATION OF SOLID OXIDE FUEL CELLS WITH BIOMASS GASIFIERS ECN-RX--05-086 INTEGRATION OF SOLID OXIDE FUEL CELLS WITH BIOMASS GASIFIERS P.V. Aravind N. Woudstra JP Ouweltjes J Andries W de Jong G Rietveld H Spliethoff Published in Proceedings 2nd World Conference

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Clean Coal Technologies Conference 2009 19 May 2009 Joshua Mermelstein

More information

Energy Efficient Production of Pressurized Hydrogen - E2P2H2

Energy Efficient Production of Pressurized Hydrogen - E2P2H2 Energy Efficient Production of Pressurized Hydrogen - E2P2H2 (EUDP project commenced by DTU Energi in collaboration with HTAS, 2014-2016) Workshop, April 4 th 2017 Søren Højgaard Jensen Department of Energy

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur.

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur. Roadmap: Batteries Self assembly A123 High production and material costs Reduce use of Cobalt, then replace it with low cost Replace Cobalt entirely with low cost Low production and material costs Low

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and. Preparation for study trip to the CUTEC-Institute

Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and. Preparation for study trip to the CUTEC-Institute Fuel Cells, Gasifier, Fischer- Tropsch Synthesis and Energy Park Preparation for study trip to the CUTEC-Institute 1 2nd of November 2009 Current utilization of biomass 2 2nd of November 2009 Fuel cells

More information

Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen

Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen Topsoe Fuel Cell A/S Nymøllevej 66 2800 Lyngby, Denmark nc@topsoe.dk Haldor Topsøe A/S has been

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Jersey: 1 st Floor, 17 Esplanade, St, Helier, Jersey JE1 1WT, Channel Islands Smart communities small cities, towns, neighbourhoods and villages that reduce their energy demand and generate their own power

More information

Low Temperature PEM vs. High Temperature PEM fuel cells

Low Temperature PEM vs. High Temperature PEM fuel cells Hochschule Ulm presentation seminar EPS (ECPS2) Low Temperature PEM vs. High Temperature PEM fuel cells Aaron Fesseler EE2 3126581 Tim Kistenfeger EE2 3126534 supervisor: Dr. Joachim Scholta WS 2017/2018

More information

Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system

Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system Biomass Conv. Bioref. (2011) 1:55 61 DOI 10.1007/s13399-011-0004-4 REVIEW ARTICLE Hydrogen from biomass: large-scale hydrogen production based on a dual fluidized bed steam gasification system Stefan Müller

More information

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage Project Overview General Overview Sulphur, Carbon, and re-oxidation Tolerant Anodes and

More information

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Presented at 9 th Annual NH3 Fuel Conference San Antonio, TX Andrew McFarlan, Ph.D. October 1 2012 CanmetENERGY

More information

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Christopher Graves Closing the Carbon Cycle: Fuels from Air conference at Arizona State

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT JEROD SMEENK 1, GEORGE STEINFELD 2, ROBERT C. BROWN 1, ERIC SIMPKINS 2, AND M. ROBERT DAWSON 1 1 Center for Coal and the Environment

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Solid Oxide Electrolysis Cells: Long-term Durability

Solid Oxide Electrolysis Cells: Long-term Durability Solid Oxide Electrolysis Cells: Long-term Durability Steam electrolysis Carbon dioxide electrolysis Co-electrolysis of steam and carbon dioxide Sune D Ebbesen, Christopher Graves, Anne Hauch, Søren H Jensen,

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 478~482, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.478 Review A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel Dr. William A. Summers Program Manger, Energy Security Directorate June 11, 2009 Fifth International Hydrail Conference

More information

Thermo-chemical conversion of biomass a route for liquid fuels. S Dasappa Indian Institute of Science Bangalore

Thermo-chemical conversion of biomass a route for liquid fuels. S Dasappa Indian Institute of Science Bangalore Thermo-chemical conversion of biomass a route for liquid fuels S Dasappa Indian Institute of Science Bangalore 560 012 Presented at the EU-India Conference on advance Biofuels Delhi 7-8 March 2018 Conceived

More information

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting

Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Carbon Tolerant Ni/ScCeSZ SOFC Anode by Aqueous Tape Casting Nor Anisa Arifin Supervisors: Prof Tim Button Prof Robert Steinberger-Wilckens Centre for Fuel Cell & Hydrogen Research School of Chemical Engineering

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

Electrochemical Energy Conversion Revised Roadmap

Electrochemical Energy Conversion Revised Roadmap International Institute for Carbon-Neutral Energy Research 1 Electrochemical Energy Conversion Revised Roadmap June 2017 A World Premier Institute 2 Division Objective This division conducts fundamental

More information

Switzerland : USA: Choice of Gas Engines

Switzerland : USA: Choice of Gas Engines IEA Bioenergy Agreement Task 33: Thermal Gasification of Biomass DRAFT Work Shop 2: Gas Cleaning & Gas Engines for Small-scale Biomass Gasification Applications Copenhagen, Denmark, October 25, 2004 by

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Introduction to Department of Energy Conversion and Storage Jens Oluf Jensen Proton Conductors Department of Energy Conversion and Storage Kemitorvet 207 DK-2800 Lyngby Denmark jojen@dtu.dk (DTU) Founded

More information

Integrated Membrane Reactor for Pre-Combustion CO 2 Capture

Integrated Membrane Reactor for Pre-Combustion CO 2 Capture Integrated Membrane Reactor for Pre-Combustion CO 2 Capture Ashok Damle Techverse, Inc. 2015 NETL CO2 Capture Technology Meeting June 24, 2015 June 24, 2015 Techverse, Inc. 2 Project Overview DOE SBIR

More information

CHEMISTRY. SCIENCE Paper 2. (Two hours) You will not be allowed to write during the first 15 minutes.

CHEMISTRY. SCIENCE Paper 2. (Two hours) You will not be allowed to write during the first 15 minutes. CHEMISTRY SCIENCE Paper 2 (Two hours) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

TwoStage gasification of biomass for clean syngas: Technology and applications

TwoStage gasification of biomass for clean syngas: Technology and applications Downloaded from orbit.dtu.dk on: Dec 19, 2017 TwoStage gasification of biomass for clean syngas: Technology and applications Ahrenfeldt, Jesper Publication date: 2013 Link back to DTU Orbit Citation (APA):

More information

OTM - An Advanced Oxygen Technology for IGCC

OTM - An Advanced Oxygen Technology for IGCC OTM - An Advanced Oxygen Technology for IGCC Ravi Prasad, Jack Chen, Bart van Hassel, John Sirman, James White, Eric Shreiber, Joe Corpus, Joshua Harnanto San Francisco, Oct 30, 2002 Gasification Technologies

More information

BIOMASS AND WASTE-RELATED SNG PRODUCTION TECHNOLOGIES

BIOMASS AND WASTE-RELATED SNG PRODUCTION TECHNOLOGIES April 2004 ECN-RX--04-024 BIOMASS AND WASTE-RELATED SNG PRODUCTION TECHNOLOGIES Technical, economic and ecological feasibility M. Mozaffarian R.W.R. Zwart H. Boerrigter E.P. Deurwaarder Contribution to

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition

A0606. Functional SOFC Interfaces Created by Aerosol-Spray Deposition A0606 Functional SOFC Interfaces Created by Aerosol-Spray Deposition Neil Kidner, Kari Riggs, Gene Arkenberg, Matthew Seabaugh, Scott Swartz Nexceris, LLC 404 Enterprise Drive, Lewis Center Tel.: +1-614-842-6606

More information

Lignite as a fuel for direct carbon solid oxide fuel cell

Lignite as a fuel for direct carbon solid oxide fuel cell Lignite as a fuel for direct carbon solid oxide fuel cell Janusz Jewulski, Marek Skrzypkiewicz, Michał Struzik, Iwona Lubarska-Radziejewska Institute of Power Engineering Fuel Cell Department Augustowka

More information

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte

Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Manufacturing of Metal Foam Supported SOFCs with Graded Ceramic Layer Structure and Thinfilm Electrolyte Feng Han 1, Robert Semerad 2, and Rémi Costa 1 1 German Aerospace Center 2 Ceraco Ceramic Coating

More information

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 SOEC: Key enabling Technology for sustainable Fuels and Feedstocks John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 +

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

SOFC-FIELD TESTS WITH BIOMASS GASIFICATION DERIVED PRODUCT GAS FOR THE EVALUATION OF STATIONARY BIG-SOFC-CHP-CONCEPTS

SOFC-FIELD TESTS WITH BIOMASS GASIFICATION DERIVED PRODUCT GAS FOR THE EVALUATION OF STATIONARY BIG-SOFC-CHP-CONCEPTS SOFC-FIELD TESTS WITH BIOMASS GASIFICATION DERIVED PRODUCT GAS FOR THE EVALUATION OF STATIONARY BIG-SOFC-CHP-CONCEPTS Speaker: Markus Kleinhappl instead of S. Martini stefan.martini@bioenergy2020.eu M.

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Biogas in the future integrated energy system

Biogas in the future integrated energy system Biogas in the future integrated energy system Nordic Biogas Conference, Reykjavik, August 2014 Rasmus Munch Sørensen rms@energinet.dk 1 Content Looking into the crystal ball: How could a cost-optimised,

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Chapter page 1

Chapter page 1 Chapter 04-04 page 1 04-04: Odd biomass fractions Properties and processes Introduction There are mainly five different processes to choose from to produce useful energy from any type of biomass. Three

More information

MILENA gasification technology for high efficient SNG production from biomass

MILENA gasification technology for high efficient SNG production from biomass ECN-RX--05-183 MILENA ification technology for high efficient SNG production from biomass A. van der Drift C.M. van der Meijden H. Boerrigter Published at 14th European Biomass Conference & Exhibition,

More information

Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials

Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials Christopher Graves crg2109@columbia.edu May 4, 2010 Sustainable Fuels Workshop Faculty House, Columbia Univ. Comparisons

More information

moving bioenergy forward

moving bioenergy forward DONG 85/15 Energy moving bioenergy forward Rudolph Blum, Director R&D DONG Energy Power EUROHEAT&POWER 2012 Annual Conference 26-27 th April 2012 Copenhagen, Denmark Symbiosis CHP/industry Combined heat

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Institut für

More information

Electrolysis for energy storage

Electrolysis for energy storage Electrolysis for energy storage Mogens B. Mogensen and Christodoulos Chatzichristodoulou Department of Energy Conversion and Storage Technical University of Denmark Acknowledgements to colleagues at DTU

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

ITI Energy Limited. A New Era in Gasification. Presentation to. UK Energy Symposium Nottingham

ITI Energy Limited. A New Era in Gasification. Presentation to. UK Energy Symposium Nottingham ITI Energy Limited A New Era in Gasification Presentation to UK Energy Symposium Nottingham 14 th October, 2010 By Tony Fordham www.iti-energy.com Email: tony@iti-energy.com PROCESS INTENSIFICATION & MINIATURIZATION

More information

CO2 Capture with SureSource Fuel Cell Powerplants

CO2 Capture with SureSource Fuel Cell Powerplants Executive Summary A better option is now available for the capture of carbon dioxide from the exhaust of fossil fueled power and thermal systems. FuelCell Energy has developed an application of its SureSource

More information

Biomass gasification and tar reforming: the Topsoe approach. Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S

Biomass gasification and tar reforming: the Topsoe approach. Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S Biomass gasification and tar reforming: the Topsoe approach Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S Biomass gasification activities Tar reforming Sponsored by EUDP Possible Gasolution project

More information

Gas and surface applications of atmospheric pressure plasmas

Gas and surface applications of atmospheric pressure plasmas Gas and surface applications of atmospheric pressure plasmas Eugen Stamate Technical University of Denmark Roskilde 4000, Denmark OUTLINE Introduction of DTU Energy Conversion and Storage Activities in

More information

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell

Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell Numerical Simulation of Electrolyte- Supported Planar Button Solid Oxide Fuel Cell A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya Excerpt from the Proceedings of the 2012 COMSOL Conference

More information

FMI ENERGY CONFERENCE. Orlando September 2008

FMI ENERGY CONFERENCE. Orlando September 2008 FMI ENERGY CONFERENCE Orlando September 2008 FUEL CELL ORIGINS Sir William Grove invented the fuel cell in 1839 Demonstrated that reaction was reversible Fuel cell term introduced by Ludwig Mond and Charles

More information

The Methanol Synthesis past and future. John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017

The Methanol Synthesis past and future. John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017 The Methanol Synthesis past and future John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017 We have been committed to catalytic process technology for more than 70

More information

Pre-Combustion Technology for Coal-fired Power Plants

Pre-Combustion Technology for Coal-fired Power Plants Pre-Combustion Technology for Coal-fired Power Plants Thomas F. Edgar University of Texas-Austin IEAGHG International CCS Summer School July, 2014 1 Introduction 2 CO 2 Absorption/Stripping of Power Plant

More information

A0909. Break-down of Losses in High Performing Metal- Supported Solid Oxide Fuel Cells

A0909. Break-down of Losses in High Performing Metal- Supported Solid Oxide Fuel Cells A0909 Break-down of Losses in High Performing Metal- Supported Solid Oxide Fuel Cells Alexander Kromp (1), Jimmi Nielsen (2), Peter Blennow (2), Trine Klemensø (2), André Weber (1) (1) Institut für Werkstoffe

More information

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society 24 SATOSCHI DODO *1 MITSUHIRO KARISHUKU *2 NOBUO YAGI *2 TOMOHIRO ASAI *3 YASUHIRO

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

Research and Development Initiatives of WRI

Research and Development Initiatives of WRI Research and Development Initiatives of WRI Presented at COAL GASIFICATION: WHAT DOES IT MEAN FOR WYOMING? February 28, 2007 www.westernresearch.org Who is WRI? WRI is a 501 (c) 3 research, technology

More information

MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS*

MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS* MIXED-CONDUCTORS FOR ELECTRIC POWER APPLICATIONS* U. (Balu) Balachandran Argonne, IL 60439, U.S.A. Email: balu@anl.gov * Work supported by the U.S. Department of Energy. Argonne National Laboratory Office

More information

PROCESS ECONOMICS PROGRAM. Report No by NICK KORENS ROBERT W. VAN SCOY. January private report by the PARK, CALIFORNIA

PROCESS ECONOMICS PROGRAM. Report No by NICK KORENS ROBERT W. VAN SCOY. January private report by the PARK, CALIFORNIA Report No. 110 SYNTHESIS GAS PRODUCTION by NICK KORENS and ROBERT W. VAN SCOY January 1977 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I MENLO PARK, CALIFORNIA For detailed

More information

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER Josef Schefold, 21/09/17 Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER 1 Steam electrolysis with electrolyte supported solid oxide cell (SOC) Cell SOC

More information

Review on hydrogen production technologies from solar energy

Review on hydrogen production technologies from solar energy European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee

Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee Laboratory of Advanced Ceramics for Energy and Environment Introduction Prof. Younki Lee School of Materials Science and Engineering Gyeongsang National University, Jinju, Republic of Korea 2 Research

More information

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen:

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1

Figure 8: Typical Process Flow Diagram Showing Major Components of Direct Hydrogen PEFC System. Lecture No.8 Page 1 PEFC Systems PEFC stacks require tight control of fuel and air feed quality, humidity level, and temperature for sustained high-performance operation. To provide this, PEFC stacks must be incorporated

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Downloaded from orbit.dtu.dk on: Dec 20, 2017 Introduction to Department of Energy Conversion and Storage Jensen, Jens Oluf Publication date: 2013 Link back to DTU Orbit Citation (APA): Jensen, J. O. (2013).

More information

Synthesis of DME via Catalytic Conversion of Biomass

Synthesis of DME via Catalytic Conversion of Biomass International Conference on Bioenergy Utilization and Environment Protection 6 th LAMNET Workshop Dalian, China 2003 Synthesis of DME via Catalytic Conversion of Biomass Dr. Chang Jie / Mr. Wang Tiejun

More information

Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot. Esben Lauge Sørensen, May 2009

Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot. Esben Lauge Sørensen, May 2009 Valorisation of Synthesis Gas from Biomass - the Piteå DME pilot Esben Lauge Sørensen, May 2009 Contents Presentation of Haldor Topsøe A/S Presentation of Chemrec AB The BioDME Project Lay-out of DME pilot

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD Testing and demonstration of fuel cells and hydrogen technologies at DTU Eva Ravn Nielsen Center Manager, PhD 23-04-2018 Outline FCH Test Center - DTU Energy Testing Test procedures for SOFC/SOEC Demonstration

More information

3- PHOSPHORIC ACID FUEL CELLS

3- PHOSPHORIC ACID FUEL CELLS 3- PHOSPHORIC ACID FUEL CELLS (PAFCs) The phosphoric acid fuel cell (PAFC) was the first fuel cell technology to be commercialized. The number of units built exceeds any other fuel cell technology, with

More information