Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu

Size: px
Start display at page:

Download "Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms. Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu"

Transcription

1 10.119/ The Electrochemical Society Study on Infrared Absorption Characteristics of Ti and TiN x Nanofilms Mingquan Yuan, Xiaoxiong Zhou, Xiaomei Yu National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, , China Infrared detector has a wide range of applications. To fabricate an IR detector with good sensitivity, an efficient IR absorber is needed. In this paper, we theoretically and experimentally investigated the absorption characteristics of Ti, multi-layer structured Ti-SiO 2 and TiN x -SiN x nano films. The multi-layer structured TiN x -SiN x films with different nitrogen contents and Ti nano films with different thicknesses were deposited by e- beam sputtering. Their IR absorption characteristics were investigated by Fourier Transform Infrared Spectrometer. For single nano Ti film, 35% absorptivity was obtained at a wavelength of 1.67μm when the film thickness was 15.3nm. A better IR absorption characteristic was achieved for multi-layer structured Ti-SiO 2 nano film. In this structure, an absorption peak of appears at a wavelength of 9.5μm. Compared with the absorption behavior of single SiN x film, an additional nano TiN x film obviously improved IR absorption at a wider band. And a maximum IR absorptivity of 27% was obtained at the wavelength of 1μm. Introduction Infrared (IR) detector has a wide range of applications including night vision, environmental monitoring, security surveillance, remote sensing, biomedical diagnostics, and thermal probing of active microelectronic devices. It can be generally divided into two categories: photon and thermal detectors (1). When IR photon detectors are not widely used since they require huge and expensive cooling systems, MEMS based thermal detectors have gained increasing attention due to their low cost, low weight, low power, simple device structure and compatibility with microfabrication processes (2). Among them, uncooled bimaterial microcantilever IR detector is a typical one that has received considerable progress during the past years (3). To achieve good IR absorptivity and mechanical sensitivity simultaneously, a thin IR absorber that can convert IR radiation into heat efficiently is needed (). Thin metallic films and metallic compound can be used as IR absorbers because electrons in metallic films can interact with IR radiation but cannot move freely. In this way the energy of IR radiation is taken away and absorption occurs (5). For a thin film material, the maximum absorptivity occurs when its sheet resistance is 377Ω/ equaling to the impedance of free space. M. Almasri reported that IR absorptivity of 75% can be obtained in the long wavelength region using a.5nm thick NiCr layer as the absorber (6). A TiW layer with the thickness of 16nm and the sheet resistance of 50Ω/ was deposited for IR absorption. By using a resonance cavity, an IR absorptivity of 60% for TiW can be reached (7). In M. Hsieh s work, a strong absorption of about 90% at 7~13μm was achieved using a 6.2nm Ni film (8). 129

2 In this paper, Ti, multi-layer structured Ti-SiO 2 and TiN x -SiN x nano films were deposited as IR absorbers. And their IR absorption behaviors were studied. Theory of IR Absorption on Nano Metallic Films The absorptivity of a thin metallic film can easily be calculated from A=1-R-T [1] Where A is the absorptivity, R is the reflectivity, and T is the transmissivity. To decrease R and T is an effective way for increasing IR absorption, as shown in Figure 1. Infrared radiation Transmission (T) Reflection (R) lossless dielectric s Figure 1 A model of a thin metallic film in front a lossless dielectric Figure 2 shows the diagrammatic sketch that infrared radiates from left side through metal and dielectric films. In this model, media 1 and are vacuum medium, media 2 is thin metallic film and media 3 is dielectric film. The model is in free space, the first and fourth media have a refractive index equal to unity. 1 2 Metal 3 Dielectric E 12 E 22 E 32 E 11 E 21 E 31 E 1 x=0 x=s x=d+s Figure 2. Schematic diagram of metal film supported on a dielectric Using the equations set up by Hadley and Dennison, we can get the appropriate boundary equations through the theory of electromagnetic wave (9). We define absorptivity as A L when infrared radiates from the left-hand side and A R when infrared radiates from the right-hand side. 130

3 For the first condition, infrared radiates from left side through metal film and dielectric film. When x=0, E11 E12 E21 E22 [2] E E a ( E E ) [3] When x=s, E exp( iks) E exp( iks) E exp( iks) E exp( iks) [3] When x=d+s, E exp( iks) E exp( iks) a[ E exp( iks) E exp( iks)] [] E exp[ ik ( d s)] E exp[ ik ( d s)] E exp[ ik ( d s)] [5] E exp[ ik ( d s)] E exp[ ik ( d s)] a E exp[ ik ( d s)] [6] The expression of k 1, k 2, k 3, k are expressed as follows: k 1 =2π/λ, k 2 =2π(η+iκ)/λ, k 3 =2πn/λ, k =2π/λ. And a 1 =k 2 /k 1, a 2 =k 3 /k 2, a 3 =k /k 3. Where, s is thickness, η is refraction index and κ is extinction coefficient of metallic film. d is thickness and n is refraction index of the lossless dielectric film. The reflectivity R and transmissivity T can be calculated. R E E / E E [7] * * T E E / E E [8] * * A L and A R can then be calculated by formula [1] f(cos k3d sin k 2 3d) AL n [9] 2 f n ( 1) sin 2 k3d ( f 2) cos k3d n f AR 2 f [10] n ( 1) sin 2 k3d ( f 2) cos k3d n 1/2 Where f s( 0 / 0) is the ratio of free space impedance to sheet resistance of nano film, σ is conductivity, μ 0 is permeability, and ε 0 is dielectric constant. When sheet resistance of deposited metallic film equals to 377Ω/, the maximum absorptivity can be obtained. Thin metallic film can be deposited with a specific sheet resistance by changing its electrical resistivity ρ and the thickness s of the film. For a particular metallic film, ρ is a nature physical property. To decrease the IR reflection from the absorber surface, films with the thickness of a few nanometers should be designed to match the impedance of free space. 131

4 Experimental Procedure Experiments and Results Before depositing nano Ti film, a 100nm thick SiO 2 film was deposited on a double side polished silicon wafer by LPCVD at the temperature of 720 C and pressure of 250mtorr. Then, the nano Ti films were deposited via E-beam sputtering of Ti target at room temperature and base pressure of 1Pa. The electrical resistivity for bulk titanium (20 C) is 20 nω m, which means that the Ti film with a thickness of 1.1nm owns a sheet resistance of 377Ω/. Yet, thin metallic film deposited by PVD commonly has an electrical resistivity about 2~7 times larger than that of bulk material. Based on this, Nano Ti films with different thicknesses,.9nm, 6.8nm, 13.nm and 15.3nm, were deposited on 100nm thick SiO 2 layers. As a metallic compound, nano TiN x films can also be applied as IR absorbers. It is a transition metal nitride which has a structure combined with covalent bond, ionic bond and metal bond. TiN x films were sputtered in the N 2 atmosphere. In our design, the effect on IR absorption behaviors of an additional thin TiN x film deposited on 200nm thick SiN x films was investigated. Besides, we also tried to find out the relationship between IR absorptivity and the amount of nitrogen in TiN x. In order to obtain TiN x film with different proportions of titanium and nitrogen, different Ar-N 2 flow ratios were controlled during the sputtering process. In our design, TiN x films with the thicknesses of 9nm and 1.3nm were deposited on 200nm thick SiN x films with Ar-N 2 flow ratios of 1:1 and 1:2 respectively. Testing Results The reflectivity and the transmissivity were acquired using Nicolet Magna 750 Fourier Transform Infrared Spectrometer (FTIR). And the IR absorptivity was calculated by formula [1]. Figure 3 is the infrared absorption spectra of the Ti nano films at different thicknesses without SiO 2 layers in the wavelength region from 1.67μm to 12μm. Due to the limitation of IR source, the wavelength of 1.67μm is the threshold in our experiment. It can be seen that the 15.3nm thick Ti film exhibits the best IR absorption ability among the samples at short-, mid- and long-wave infrared bands. A maximum absorptivity of 35% is achieved at wavelength of 1. 67μm. And Absorptivity(%) nm 13.nm 6.8nm.9nm Wavelength(um) Figure 3. IR absorptivity of Ti films with different thicknesses without SiO 2 layer 132

5 the 15.3nm thick Ti film can also efficiently absorb about 30% IR radiation in midwave region. However, compared with absorption characteristics in short- and midwave band, an absorption bottom is shown at 9.5μm wavelength. Table I lists sheet resistance of Ti films, which was measured by four-point probe meter. The 6.8nm thick Ti film has a sheet resistance of 77 / that is about twice as much as the impedance of free space. Though sheet resistance of.9nm thick Ti film was not acquired exactly by four-point probe meter, it should be larger than that of 6.8nm thick Ti film due to its inverse relation with the impedance of free space. The sheet resistance of 15.3nm and 13.nm thick Ti films is relatively close to the impedance of free space, which explains the reason of high absorptivities of 13.nm and 15.3nm Ti films. TABLE I. Sheet resistance of Ti films. Thickness/nm Sheet Resistance/Ω The IR absorption spectra for multi-layer structured Ti-SiO 2 nano films were shown in Figure. The absorption peaks at the wavelength of 9.5μm were observed for the Ti films with four different thicknesses. And the improved IR absorptivities were exhibited in short-, mid- and long-wave infrared region for multi-layer structured films. Compared with the absorptivities of single Ti films shown in Figure 3, the absorptivities of multi-layer structured Ti-SiO 2 nano films have got an increase, especially in the long-wave infrared region. A maximum absorptivity of 35% is achieved at wavelength of 1.67μm. Besides, the IR absorptivity of a single nano SiO 2 film with the thickness of 100nm was also measured and was shown in Figure. And a strong absorption peak occurs at the wavelength of 9.5μm, which is beneficial to enhance the IR absorptivity of the multi-layer structured Ti-SiO 2 nano films. It also explains the phenomenon of two inverse absorption peaks shown in Figure 3 and Figure respectively. Absorptivity(%) nm Ti+ 100nm SiO2 13.nm Ti+ 100nm SiO2 6.8nm Ti+ 100nm SiO2.9nm Ti+ 100nm SiO2 100nm SiO Wavelength(um) Figure. IR absorptivity of Ti-SiO 2 films and SiO 2 film 133

6 IR absorption spectra of single 200nm SiN x film and multi-layer structured TiN x - SiN x film were measured from wavelength of 2.5μm to 25μm. The SiN x film, as is shown in Figure 5, has absorption peak at the wavelength of 12μm. The maximum absorptivity of 20% can be obtained. However, its absorptivity decreases rapidly in other bands. Compared with the absorptivity of single SiN x film, an additional TiN x film deposited obviously improves IR absorption at a wider band. In mid-wave infrared region, the absorptivity of 2% can be obtained at wavelength of 2.5μm. IR absorptivity of TiN x film deposited in the flow ratio of Ar/N 2 equaling to 9:1 was investigated by Y. Zheng (10). Compared with his testing results, much better IR absorptivities were obtained in this paper. In our work, nano TiN x films can efficiently absorb IR radiation at multi-wave bands. At the same time, a maximum absorptivity of 27% can be obtained in our work while it was only 20% in Y. Zheng s work (10). It is proven that an increased proportion of nitrogen in TiN x film can result in a better absorption behavior. This phenomenon can be explained as follows. When the content of nitrogen increases in TiN x, a rougher surface is formed. And the roughness of surface can decrease the reflectivity of infrared, which may result in an improvement of IR absorption nmTiNx+200nmSiNx(Ar:N=2:1) 9nmTiNx+200nmSiNx(Ar:N=1:1) 200nmSiNx Absorptivity(%) Wavelength(um) Figure 5. IR absorptivity of multi-layer structured TiN x -SiN x films and SiN x films Conclusions In this paper, we presented the theory, experiment and test results of IR absorption of Ti, TiN x, Ti-SiO 2 and TiN x -SiN x nano films. A good IR absorption characteristic of Ti nano film can be obtained with its sheet resistance close to 377Ω/. For multi-layer structure of 15.3nm Ti and 100nm SiO 2, IR absorptivity of 35% can be achieved at the wavelength of 1.67μm. Furthermore, an additional TiN x deposition on SiN x layer broadens the IR absorption spectra and results in a good absorptivity in mid-wave infrared band. Further researches in developing high efficient IR absorbers at multiwave are needed, especially on structure designing to target at certain frequency precisely. Acknowledgments This work was supported by Natural Science Foundation of China (founded No , and ). 13

7 References 1. X. Yu, Y. Yi, S. Ma, et al., J. Micromech. Microeng, (8pp), 18 (2008). 2. S. Eminoglu, M. Y. Tanrikulu and T. Akin, J. Microelectromech. Syst, 20, 17 (2008). 3. D. Grbovic, N. V. Lavrik and P. G. Datskos, Appl. Phys. Lett, 89, (2006).. M. Schossig, V. Norkus and G. Gerlach, IEEE Sens. J, 156, 10 (2010). 5. W. Lang, K. Kühl and H. Sandmaier, Sensor. Actuat. A-Phys, 23, 3 (1992). 6. M. Almasri, B. Xu and J. Castracane, IEEE Sens. J, 293, 6 (2006). 7. C. D. W. Jones, C. A. Bolle, R. Ryf, et al., Sensor. Actuat. A-Phys, 7, 155 (2009). 8. M. Hsieh, Y. Fang, P. Wu, et al., IEEE Sens. J, 360, 2 (2002) 9. L. N. Hadley and D. M. Dennison, J. Opt. Soc, 51, 37 (197). 10. Y. Zheng, X. Yu, M. Yuan, et al, IEEE NEMS, 25, Kaohsiung (2011). 135

IR spectra of ICPCVD SiNx thin films for MEMS structures

IR spectra of ICPCVD SiNx thin films for MEMS structures Journal of Physics: Conference Series PAPER OPEN ACCESS IR spectra of ICPCVD SiNx thin films for MEMS structures To cite this article: G Rudakov and I Reshetnikov 2015 J. Phys.: Conf. Ser. 643 012063 View

More information

Hydrogenated Amorphous Silicon Nitride Thin Film as ARC for Solar Cell Applications

Hydrogenated Amorphous Silicon Nitride Thin Film as ARC for Solar Cell Applications ISSN 2278 211 (Online) Hydrogenated Amorphous Silicon Nitride Thin Film as ARC for Solar Cell Applications Dr. G. Natarajan Professor & Head, Department of Physics PSNA College of Engineering and Technology,

More information

Infrared Absorption by Ferroelectric Thin Film Structures Utilizing Novel Conducting Oxides

Infrared Absorption by Ferroelectric Thin Film Structures Utilizing Novel Conducting Oxides Approved for public release; distribution is unlimited. Infrared Absorption by Ferroelectric Thin Film Structures Utilizing Novel Conducting Oxides R. C. Hoffman, W. A. Beck, C. W. Tipton, D. N. Robertson,

More information

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining

Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining Sādhanā Vol. 34, Part 4, August 2009, pp. 557 562. Printed in India Microstructures using RF sputtered PSG film as a sacrificial layer in surface micromachining VIVEKANAND BHATT 1,, SUDHIR CHANDRA 1 and

More information

ADOPT Winter School Merging silicon photonics and plasmonics

ADOPT Winter School Merging silicon photonics and plasmonics ADOPT Winter School 2014 Merging silicon photonics and plasmonics Prof. Min Qiu Optics and Photonics, Royal Institute of Technology, Sweden and Optical Engineering, Zhejiang University, China Contents

More information

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering

Crystalline silicon surface passivation with SiON:H films deposited by medium frequency magnetron sputtering Available online at www.sciencedirect.com Physics Procedia 18 (2011) 56 60 The Fourth International Conference on Surface and Interface Science and Engineering Crystalline silicon surface passivation with

More information

Surface Micromachining of Uncooled Infrared Imaging Array Using Anisotropic Conductive Film

Surface Micromachining of Uncooled Infrared Imaging Array Using Anisotropic Conductive Film Surface Micromachining of Uncooled Infrared Imaging Array Using Anisotropic Conductive Film Weiguo Liu, Lingling Sun, Weiguang Zhu, Ooi Kiang Tan Microelectronics Center, School of Electrical and Electronic

More information

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED Y. H. Lin and C. Y. Liu Department of Chemical Engineering and Materials Engineering, National Central University, Jhongli,

More information

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Optimization

More information

Change in stoichiometry

Change in stoichiometry Measurement of Gas Sensor Performance Gas sensing materials: 1. Sputtered ZnO film (150 nm (Massachusetts Institute of Technology) 2. Sputtered SnO 2 film (60 nm) (Fraunhofer Institute of Physical Measurement

More information

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization

Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization Polycrystalline Silicon Produced by Joule-Heating Induced Crystallization So-Ra Park 1,2, Jae-Sang Ro 1 1 Department of Materials Science and Engineering, Hongik University, Seoul, 121-791, Korea 2 EnSilTech

More information

Magnetron Sputtering Coating of Protective Fabric Study on Influence of Thermal Properties

Magnetron Sputtering Coating of Protective Fabric Study on Influence of Thermal Properties Journal of Textile Science and Technology, 2015, 1, 127-134 Published Online November 2015 in SciRes. http://www.scirp.org/journal/jtst http://dx.doi.org/10.4236/jtst.2015.13014 Magnetron Sputtering Coating

More information

Fabrication of sub-100nm thick Nanoporous silica thin films

Fabrication of sub-100nm thick Nanoporous silica thin films Fabrication of sub-100nm thick Nanoporous silica thin films Abstract M. Ojha, W. Cho, J. L. Plawsky, W. N. Gill Department of chemical and biological engineering, Rensselaer Polytechnic Institute Low refractive

More information

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON

FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON FIBRE-COUPLED HIGH-INDEX PECVD SILICON- OXYNITRIDE WAVEGUIDES ON SILICON Maxim Fadel and Edgar Voges University of Dortmund, High Frequency Institute, Friedrich-Woehler Weg 4, 44227 Dortmund, Germany ABSTRACT

More information

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 2492 2496 Part, No. 5A, May 2000 c 2000 The Japan Society of Applied Physics Passivation of O 2 / Interfaces Using High-Pressure-H 2 O-Vapor Heating Keiji SAKAMOTO

More information

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications

Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Characterisation of Fe-Ni amorphous thin films for possible magnetostrictive sensor applications Contents 9.1 Introduction 9.2 Experiment 9.3 Results and Discussions 9.4 Conclusion 9.1 Introduction Magnetostrictive

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films

Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films Laser Annealing of Amorphous Ni-Ti Shape Memory Alloy Thin Films Xi Wang, Zhenyu Xue, Joost J. Vlassak Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, U.S.A. Yves Bellouard

More information

Study on the resistance characteristic of Pt thin film

Study on the resistance characteristic of Pt thin film Available online at www.sciencedirect.com Physics Procedia 3 (01 ) 77 778 18 th International Vacuum Congress Study on the resistance characteristic of Pt thin film Yujia Zhai,Changlong Cai*, Jing Huang,Huan

More information

Rectangular Junction Ferrite Component in Millimeter Waves

Rectangular Junction Ferrite Component in Millimeter Waves PIERS ONLINE, VOL. 4, NO. 5, 2008 526 Rectangular Junction Ferrite Component in Millimeter Waves D. Vincent Saint-Etienne University, France Abstract The design of non reciprocal components still remains

More information

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery

Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Hollow Glass Waveguides (HGWs) for Infrared Spectroscopy and Laser Delivery Carlos M. Bledt * a, Daniel V. Kopp a, and James A. Harrington a

More information

Growth, Optical and Electrical Properties of zinc tris (thiourea) sulphate (ZTS) Single Crystals

Growth, Optical and Electrical Properties of zinc tris (thiourea) sulphate (ZTS) Single Crystals Volume 7 No.1, May 013 Growth, Optical and Electrical Properties of zinc tris (thiourea) sulphate (ZTS) Single Crystals M.Loganayaki Department of Physics, SRM University, Ramapuram, Chennai-600 089 A.

More information

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology

Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Applied Surface Science 212 213 (2003) 388 392 Silicon nitride deposited by ECR CVD at room temperature for LOCOS isolation technology Marcus A. Pereira, José A. Diniz, Ioshiaki Doi *, Jacobus W. Swart

More information

Understanding Optical Coatings For Military Applications

Understanding Optical Coatings For Military Applications Understanding Optical Coatings For Military Applications By Trey Turner, Chief Technology Officer, REO Virtually all optical components used in military applications, such as target designation, rangefinding

More information

Deposited by Sputtering of Sn and SnO 2

Deposited by Sputtering of Sn and SnO 2 Journal of the Korean Ceramic Society Vol. 49, No. 5, pp. 448~453, 2012. http://dx.doi.org/10.4191/kcers.2012.49.5.448 Comparative Study of Nitrogen Incorporated SnO 2 Deposited by Sputtering of Sn and

More information

Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source

Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source Influence of Underlayer on Crystallography and Roughness of Aluminum Nitride Thin Film Reactively Sputtered by Ion-Beam Kaufman Source GABLECH Imrich 1,*, SVATOŠ Vojtěch 1,, PRÁŠEK Jan 1,, HUBÁLEK Jaromír

More information

2007 IEEE International Conference on Electron Devices and Solid-State Circuits

2007 IEEE International Conference on Electron Devices and Solid-State Circuits Proceedings 2007 IEEE International Conference on Electron Devices and Solid-State Circuits ~ December 20-22, 2007 Tayih Landis Hotel, Tainan, Taiwan Volume I Aluminium Incorporation in Lanthanum Oxide

More information

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film

Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Materials Transactions, Vol. 48, No. 5 (27) pp. 975 to 979 #27 The Japan Institute of Metals Excimer Laser Annealing of Hydrogen Modulation Doped a-si Film Akira Heya 1, Naoto Matsuo 1, Tadashi Serikawa

More information

Thermal Evaporation. Theory

Thermal Evaporation. Theory Thermal Evaporation Theory 1. Introduction Procedures for depositing films are a very important set of processes since all of the layers above the surface of the wafer must be deposited. We can classify

More information

Lecture Day 2 Deposition

Lecture Day 2 Deposition Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating

More information

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition

Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted deposition Nuclear Instruments and Methods in Physics Research B 206 (2003) 357 361 www.elsevier.com/locate/nimb Microstructure, morphology and their annealing behaviors of alumina films synthesized by ion beam assisted

More information

Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings

Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings Ageing Resistance (12 years) of Hard and Oxidation Resistant SiBCN Coatings Jiri Houska Department of Physics and NTIS - European Centre of Excellence, University of West Bohemia, Czech Republic Acknowledgment

More information

Assessment of the composition of Silicon-Rich Oxide films for photovoltaic applications by optical techniques

Assessment of the composition of Silicon-Rich Oxide films for photovoltaic applications by optical techniques Available online at www.sciencedirect.com Energy Procedia 10 (2011 ) 28 32 European Materials Research Society Conference Symp. Advanced Inorganic Materials and Concepts for Photovoltaics Assessment of

More information

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride

Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and Nano-Sized Boron Nitride The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Enhanced Thermal Conductivity of Polyimide Films via a Hybrid of Micro- and

More information

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima Proceedings of 6th Thin Film Materials & Devices Meeting November 2-3, 2009, Kyoto, Japan http://www.tfmd.jp/ Characterization of SiO x /Si Interface Properties by Photo Induced Carrier Microwave Absorption

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

High Performance Optical Waveguides based on Boron and Phosphorous doped Silicon Oxynitride

High Performance Optical Waveguides based on Boron and Phosphorous doped Silicon Oxynitride High Performance Optical Waveguides based on Boron and Phosphorous doped Silicon Oxynitride Fei Sun*, Alfred Driessen, Kerstin Wörhoff Integrated Optical Micro Systems group, MESA+ Research Institute for

More information

Effect of annealing temsperature on some optical properties of LiF thin films

Effect of annealing temsperature on some optical properties of LiF thin films Nedhal A. Mahmood Effect of annealing temsperature on some optical Nedhal A. Mahmood Diyala University-College of Science-Department of Physics Receiving Date: 31-03-2011 - Accept Date: 13-09-2011 Abstract

More information

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Journal of Crystal Growth 289 (26) 48 413 www.elsevier.com/locate/jcrysgro Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition Wu Weidong a,b,, He Yingjie

More information

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy F. Sgrignuoli, P. Ingenhoven, A. Anopchenko, A.Tengattini, D.Gandolfi, L. Pavesi Nanoscience Laboratory, Department of Physics, University of Trento,Via Sommarive 14, 38123 Povo (Trento) Italy. G.Pucker,

More information

Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation

Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation 182 Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation Oday A. Hamadi, Khaled Z. Yahia, and Oday N. S. Jassim Abstract In this work, thermal evaporation system was

More information

Buckling behavior of metal film/substrate structure under pure bending

Buckling behavior of metal film/substrate structure under pure bending Buckling behavior of metal film/substrate structure under pure bending Ying Li, Xi-Shu Wang a Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P.R. China Xiang-Kang Meng National

More information

Fabrication of photonic band-gap crystals

Fabrication of photonic band-gap crystals Fabrication of photonic band-gap crystals C. C. Cheng and A. Scherer California Institute of Technology, Pasadena, California 91125 Received 19 June 1995; accepted 9 August 1995 We describe the fabrication

More information

Interference effects on the I D /I G ratio of the Raman spectra of diamond-like carbon thin films

Interference effects on the I D /I G ratio of the Raman spectra of diamond-like carbon thin films Interference effects on the I D /I G ratio of the Raman spectra of diamond-like carbon thin films Elitza Petrova, Savcho Tinchev, and Petranka Nikolova, Institute of Electronics, Bulgarian Academy of Sciences,

More information

Crystalline Silicon Technologies

Crystalline Silicon Technologies Crystalline Silicon Technologies in this web service in this web service Mater. Res. Soc. Symp. Proc. Vol. 1210 2010 Materials Research Society 1210-Q01-01 Hydrogen Passivation of Defects in Crystalline

More information

KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications

KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications OPEN ACCESS Conference Proceedings Paper Sensors and Applications www.mdpi.com/journal/sensors KrF Excimer Laser Micromachining of Silicon for Micro- Cantilever Applications A.F.M. Anuar 1*, Y. Wahab,

More information

Amorphous Materials Exam II 180 min Exam

Amorphous Materials Exam II 180 min Exam MIT3_071F14_ExamISolutio Name: Amorphous Materials Exam II 180 min Exam Problem 1 (30 Points) Problem 2 (24 Points) Problem 3 (28 Points) Problem 4 (28 Points) Total (110 Points) 1 Problem 1 Please briefly

More information

MATERIALS. Silicon Wafers... J 04 J 01. MATERIALS / Inorganics & thin films guide

MATERIALS. Silicon Wafers... J 04 J 01. MATERIALS / Inorganics & thin films guide J MATERIALS SUBSTRATES Silicon Wafers... J 04 J J 01 MATERIALS SUBSTRATES NEYCO has a complete range of crystal substrates for a wide variety of applications, including Semiconductor, Biotechnology, Nanotechnology,

More information

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1

Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Modeling Of A Diffraction Grating Coupled Waveguide Based Biosensor For Microfluidic Applications Yixuan Wu* 1, Mark L. Adams 1 1 Auburn University *yzw0040@auburn.edu Abstract: A diffraction grating coupled

More information

OPTICAL CHARACTERISTICS OF CARBON NITRIDE FILMS PREPARED BY HOLLOW CATHODE DISCHARGE *

OPTICAL CHARACTERISTICS OF CARBON NITRIDE FILMS PREPARED BY HOLLOW CATHODE DISCHARGE * Journal of Optoelectronics and Advanced Materials Vol., No., December 000, p. 5-55 OPTICAL CHARACTERISTICS OF CARBON NITRIDE FILMS PREPARED BY HOLLOW CATHODE DISCHARGE * M. Balaceanu, E. Grigore, G. Pavelescu

More information

Stress analysis of a high fill-factor micromachined bolometer for thermal imaging applications

Stress analysis of a high fill-factor micromachined bolometer for thermal imaging applications Stress analysis of a high fill-factor micromachined bolometer for thermal imaging applications M.Safy, A.Hafz Zaky, H.Abdalla, Y. Elshaer Department of Electronics Military Technical College EGYPT Abstract:

More information

Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications

Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications Multilayer Silver / Dielectric Thin-Film Coated Hollow Waveguides for Sensor and Laser Power Delivery Applications Theory, Design, and Fabrication Carlos M. Bledt a, James A. Harrington a, and Jason M.

More information

Nano-Patterning by Diffraction Mask-Projection Laser Ablation

Nano-Patterning by Diffraction Mask-Projection Laser Ablation Nano-Patterning by Diffraction Mask-Projection Laser Ablation Marisa MÄDER, Klaus ZIMMER, Rico BÖHME, Thomas HÖCHE, Jürgen W. GERLACH and Bernd RAUSCHENBACH Leibniz Institute of Surface Modification, Permoserstrasse

More information

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator

Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Enhanced Light Trapping in Periodic Aluminum Nanorod Arrays as Cavity Resonator Rosure B. Abdulrahman, Arif S. Alagoz, Tansel Karabacak Department of Applied Science, University of Arkansas at Little Rock,

More information

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector

Light Trapping Enhancement in Thin Film Silicon Solar Cell with Different Back Reflector International Journal of Electrical Components and Energy Conversion 2017; 3(5): 83-87 http://www.sciencepublishinggroup.com/j/ijecec doi: 10.11648/j.ijecec.20170305.11 ISSN: 2469-8040 (Print); ISSN: 2469-8059

More information

INVESTIGATION ON STRUCTURAL, OPTICAL, MORPHOLOGICAL AND ELECTRICAL PROPERTIES OF LEAD SULPHIDE (PbS) THIN FILMS

INVESTIGATION ON STRUCTURAL, OPTICAL, MORPHOLOGICAL AND ELECTRICAL PROPERTIES OF LEAD SULPHIDE (PbS) THIN FILMS Journal of Ovonic Research Vol. 11, No. 3, May - June 015, p. 13-130 INVESTIGATION ON STRUCTURAL, OPTICAL, MORPHOLOGICAL AND ELECTRICAL PROPERTIES OF LEAD SULPHIDE (PbS) THIN FILMS S.THIRUMAVALAVAN a*,

More information

Study on Properties of Silicon Oxycarbide Thin Films Prepared by RF Magnetron Sputtering Tao Chen a, Maojin Dong, Jizhou Wang,Ling Zhang and Chen Li

Study on Properties of Silicon Oxycarbide Thin Films Prepared by RF Magnetron Sputtering Tao Chen a, Maojin Dong, Jizhou Wang,Ling Zhang and Chen Li Study on Properties of Silicon Oxycarbide Thin Films Prepared by RF Magnetron Sputtering Tao Chen a, Maojin Dong, Jizhou Wang,Ling Zhang and Chen Li Science and Technology on Surface Engineering Laboratory,

More information

3-6 Optical Thin Film Technology Used in the Terahertz Frequency

3-6 Optical Thin Film Technology Used in the Terahertz Frequency 3-6 Optical Thin Film Technology Used in the Terahertz Frequency HOSAKO Iwao The multi-layer optical films realize various functions such as wide-band anti-reflection coating, high reflection coating,

More information

Surface micromachining and Process flow part 1

Surface micromachining and Process flow part 1 Surface micromachining and Process flow part 1 Identify the basic steps of a generic surface micromachining process Identify the critical requirements needed to create a MEMS using surface micromachining

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphoton..7 Supplementary Information On-chip optical isolation in monolithically integrated nonreciprocal optical resonators Lei Bi *, Juejun Hu, Peng Jiang, Dong Hun

More information

Efficient directional excitation of surface plasmons by a singleelement nanoantenna (Supporting Information)

Efficient directional excitation of surface plasmons by a singleelement nanoantenna (Supporting Information) Efficient directional excitation of surface plasmons by a singleelement nanoantenna (Supporting Information) Wenjie Yao, #, Shang Liu, #, Huimin Liao, *, Zhi Li, *, Chengwei Sun,, Jianjun Chen,, and Qihuang

More information

Passive TCF Compensation in High Q Silicon Micromechanical Resonators

Passive TCF Compensation in High Q Silicon Micromechanical Resonators Passive TCF Compensation in High Q Silicon Micromechanical Resonators A.K. Samarao, G. Casinovi and F. Ayazi IEEE International Conference on Micro Electro Mechanical Systems pp. 116 119, January 2010

More information

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry

Red luminescence from Si quantum dots embedded in SiO x films grown with controlled stoichiometry Red luminescence from Si quantum dots embedded in films grown with controlled stoichiometry Zhitao Kang, Brannon Arnold, Christopher Summers, Brent Wagner Georgia Institute of Technology, Atlanta, GA 30332

More information

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 SUPPLEMENTARY INFORMATION A Functional Micro-Solid Oxide Fuel Cell with

More information

Department of Chemistry, University of California, Davis, California 95616, USA 2

Department of Chemistry, University of California, Davis, California 95616, USA 2 Enhance Solar Water Splitting Performance by Utilizing Near Infrared Radiation with Composite Films of Hematite and Rare Earth Doped Upconversion Materials Ming Zhang, 1 Yongjing Lin, 2 Thomas J. Mullen,

More information

Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices

Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices Advanced Sheet-to-Sheet and Roll-to-Roll thin-film processing on ultra-thin flexible glass for flexible electronic devices M. Junghaehnel 1, J. Westphalen 1, F. Naumann 2, G. Lorenz 2, M. Fahland 1, S.

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Supplementary Information Integrating Plasmonic Nanostructures with Natural Photonic Architectures

More information

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1191-1195 Invited lecture PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION J. Ihlemann * Laser-Laboratorium Göttingen e.v.,

More information

Mirror Coatings for Next Generation Detector

Mirror Coatings for Next Generation Detector Mirror Coatings for Next Generation Detector Prof. Shiuh Chao (Member of LSC) Institute of Photonics Technologies (IPT) National Tsing Hua University (NTHU) Hsinchu, Taiwan, R.O.C. The 3rd KAGRA International

More information

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014

Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing. Fil Bartoli Lehigh University 4/9/2014 Nanostructured Plasmonic Interferometers for Ultrasensitive Label-Free Biosensing Fil Bartoli Lehigh University 4/9/2014 P.C. Rossin College of Engineering and Applied Science Department of Electrical

More information

The CVD diamond booklet

The CVD diamond booklet available at: www.diamond-materials.com/download Content 1. General properties of diamond... 2 2. Optical Properties... 4 Optical transparency... 4 Absorption coefficient at 10.6 µm... 5 Refractive index:

More information

16.2 Scanning Infrared Spectrometers

16.2 Scanning Infrared Spectrometers 16.2 Scanning Infrared Spectrometers it's difficult to find materials transparent in the infrared water vapor and atmospheric CO 2 can cause problems there are three common sources high diffraction orders

More information

Laser treatment of gravure-printed ITO films on PET

Laser treatment of gravure-printed ITO films on PET Laser treatment of gravure-printed ITO films on PET Howard V Snelling, Anton A Serkov, Jack Eden, Rob J Farley Physics, School of Mathematical and Physical Sciences, University of Hull, HU6 7RX, UK Presentation

More information

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda: EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie SOI Micromachining Agenda: SOI Micromachining SOI MUMPs Multi-level structures Lecture 5 Silicon-on-Insulator Microstructures Single-crystal

More information

Magnesium Oxide Films as Temperature Sensor

Magnesium Oxide Films as Temperature Sensor Asian Journal of Chemistry Vol. 21, No. 1 (29), S76-8 Magnesium Oxide Films as Temperature Sensor ISHU SHARMA, AMBIKA and P.B.BARMAN* Department of Physics, Jaypee University of Information Technology

More information

The Effect of Annealing on Resistivity Measurements of TiSi 2 and TiN Using the collinear Four Point Probe Technique

The Effect of Annealing on Resistivity Measurements of TiSi 2 and TiN Using the collinear Four Point Probe Technique The Effect of Annealing on Resistivity Measurements of TiSi 2 and TiN Using the collinear Four Point Probe Technique Eman Mousa Alhajji North Carolina State University Department of Materials Science and

More information

Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide. glass nanofilms

Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide. glass nanofilms Supplementary Information: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms Christos Markos, Irnis Kubat, and Ole Bang DTU Fotonik, Department of Photonics Engineering,

More information

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication

Outline. Introduction to the LIGA Microfabrication Process. What is LIGA? The LIGA Process. Dr. Bruce K. Gale Fundamentals of Microfabrication Outline Introduction to the LIGA Microfabrication Process Dr. Bruce K. Gale Fundamentals of Microfabrication What is LIGA? The LIGA Process Lithography Techniques Electroforming Mold Fabrication Analyzing

More information

Near Infrared Reflecting Properties of TiO 2 /Ag/TiO 2 Multilayers Prepared by DC/RF Magnetron Sputtering

Near Infrared Reflecting Properties of TiO 2 /Ag/TiO 2 Multilayers Prepared by DC/RF Magnetron Sputtering Near Infrared Reflecting Properties of TiO 2 /Ag/TiO 2 Multilayers Prepared by DC/RF Magnetron Sputtering Sung Han Kim, Seo Han Kim, and Pung Keun Song* Department of materials science and engineering,

More information

Amorphous silicon waveguides for microphotonics

Amorphous silicon waveguides for microphotonics 4 Amorphous silicon waveguides for microphotonics Amorphous silicon a-si was made by ion irradiation of crystalline silicon with 1 10 15 Xe ions cm 2 at 77 K in the 1 4 MeV energy range. Thermal relaxation

More information

Materials Characterization

Materials Characterization Materials Characterization C. R. Abernathy, B. Gila, K. Jones Cathodoluminescence (CL) system FEI Nova NanoSEM (FEG source) with: EDAX Apollo silicon drift detector (TE cooled) Gatan MonoCL3+ FEI SEM arrived

More information

Localised Laser Joining of Glass to Silicon with BCB Intermediate Layer

Localised Laser Joining of Glass to Silicon with BCB Intermediate Layer Dublin Institute of Technology ARROW@DIT Articles School of Electrical and Electronic Engineering 2009 Localised Laser Joining of Glass to Silicon with BCB Intermediate Layer Qiang wu Dublin Institute

More information

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm

Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm Shunquan Wang, Changhe Zhou, Yanyan Zhang, and Huayi Ru We describe the design, fabrication,

More information

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation

Micro-Electro-Mechanical Systems (MEMS) Fabrication. Special Process Modules for MEMS. Principle of Sensing and Actuation Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming

More information

Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters

Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters Journal of Physics: Conference Series PAPER OPEN ACCESS Design and fabrication of ultrathin silicon-nitride membranes for use in UV-visible airgap-based MEMS optical filters To cite this article: Mohammadamir

More information

Solar cell technologies present and future

Solar cell technologies present and future Solar cell technologies present and future Joachim LUTHER, Armin ABERLE and Peter Wuerfel Solar Energy Research Institute of Singapore (SERIS) Nature Photonics Technology Conference, Tokyo, Japan 20 October

More information

Amorphous Er 2 O 3 films for antireflection coatings

Amorphous Er 2 O 3 films for antireflection coatings Amorphous Er 2 O 3 films for antireflection coatings Zhu Yan-Yan( 朱燕艳 ) a), Fang Ze-Bo( 方泽波 ) b), and Liu Yong-Sheng( 刘永生 ) a) a) Shanghai University of Electric Power, Shanghai 200090, China b) Department

More information

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi. Lecture - 10 Semiconductor Materials

Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi. Lecture - 10 Semiconductor Materials Semiconductor Optoelectronics Prof. M. R. Shenoy Department of Physics Indian Institute of Technology, Delhi Lecture - 10 Semiconductor Materials Today we will discuss about semiconductor materials in

More information

FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING. Chao-Heng Chien, Hui-Min Yu,

FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING. Chao-Heng Chien, Hui-Min Yu, Stresa, Italy, 26-28 April 2006 FABRICATION OF SWTICHES ON POLYMER-BASED BY HOT EMBOSSING, Mechanical Engineering Department, Tatung University 40 Chung Shan N. Rd. Sec. 3 Taipei, Taiwan ABSTRACT In MEMS

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

Ultrahigh Figure-of-Merit in Metal-Insulator-Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films

Ultrahigh Figure-of-Merit in Metal-Insulator-Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films Supplementary Information Ultrahigh Figure-of-Merit in Metal-Insulator-Metal Magnetoplasmonic Sensors Using Low Loss Magneto-optical Oxide Thin Films Jun Qin,, Yan Zhang,, Xiao Liang,, Chuan Liu,, Chuangtang

More information

Low Thermal Budget NiSi Films on SiGe Alloys

Low Thermal Budget NiSi Films on SiGe Alloys Mat. Res. Soc. Symp. Proc. Vol. 745 2003 Materials Research Society N6.6.1 Low Thermal Budget NiSi Films on SiGe Alloys S. K. Ray 1,T.N.Adam,G.S.Kar 1,C.P.SwannandJ.Kolodzey Department of Electrical and

More information

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties

Graphene/Fe 3 O Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Graphene/Fe 3 O 4 @Fe/ZnO Quaternary Nanocomposites: Synthesis and Excellent Electromagnetic Absorption Properties Yu Lan Ren, Hong Yu Wu, Ming Ming Lu, Yu Jin Chen, *, Chun Ling Zhu, # Peng Gao *, # Mao

More information

Etching Mask Properties of Diamond-Like Carbon Films

Etching Mask Properties of Diamond-Like Carbon Films N. New Nawachi Diamond et al. and Frontier Carbon Technology 13 Vol. 15, No. 1 2005 MYU Tokyo NDFCT 470 Etching Mask Properties of Diamond-Like Carbon Films Norio Nawachi *, Akira Yamamoto, Takahiro Tsutsumoto

More information

F. J. Cadieu*, I. Vander, Y. Rong, and R. W. Zuneska, Physics Department, Queens College of CUNY, Flushing, NY

F. J. Cadieu*, I. Vander, Y. Rong, and R. W. Zuneska, Physics Department, Queens College of CUNY, Flushing, NY Copyright JCPDS-International Centre for Diffraction Data 2012 ISSN 1097-0002 1 X-Ray Measurements of Nanometer Thick Ta x O 1-x and Hf x O 1-x Films on Silicon Substrates for Thickness and Composition

More information

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers

High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers High Pressure Chemical Vapor Deposition to make Multimaterial Optical Fibers Subhasis Chaudhuri *1 1, 2, 3, John V. Badding 1 Department of Chemistry, Pennsylvania State University, University Park, PA

More information

Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films

Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films Indian Journal of Pure & Applied Physics Vol. 55, January 2017, pp. 81-85 Optical, microstructural and electrical studies on sol gel derived TiO 2 thin films M Bilal Tahir*, S Hajra, M Rizwan & M Rafique

More information

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS

Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Properties of TiN thin films grown on SiO 2 by reactive HiPIMS Friðrik Magnus 1, Árni S. Ingason 1, Ólafur B. Sveinsson 1, S. Shayestehaminzadeh 1, Sveinn Ólafsson 1 and Jón Tómas Guðmundsson 1,2 1 Science

More information

Procedia Chemistry 1 (2009) Proceedings of the Eurosensors XXIII conference

Procedia Chemistry 1 (2009) Proceedings of the Eurosensors XXIII conference Procedia Chemistry 1 (2009) 609 613 Procedia Chemistry www.elsevier.com/locate/procedia Proceedings of the Eurosensors XXIII conference Thermal Characterization of Polycrystalline CVD Diamond Thin Films

More information