Chapter 8: Mechanical Failure ISSUES TO ADDRESS...

Size: px
Start display at page:

Download "Chapter 8: Mechanical Failure ISSUES TO ADDRESS..."

Transcription

1 Chapter 8: Mechanical Failure ISSUES TO ADDRESS... What are the common modes of mechanical failures? How do micro-cracks lead to failure? How do the fracture resistances of the different materials compare? How do loading rate, loading history, and temperature affect the failure behavior of materials? Ship-cyclic loading from waves. Adapted from chapter-opening photograph, Chapter 8, Callister & Rethwisch 8e. (by Neil Boenzi, The New York Times.) Computer chip-cyclic thermal loading. Adapted from Fig (b), Callister 7e. (Fig (b) is courtesy of National Semiconductor Corporation.) Hip implant-cyclic loading from walking. Adapted from Fig (b), Callister 7e. Chapter 8-1

2 The First (#1) Type of Mechanical Failure - Fracture Ductile fracture Accompanied by significant plastic deformation More predictable Brittle fracture Little or no plastic deformation Often sudden & catastrophic Chapter 8-2

3 Ductile vs Brittle Fracture Morphology difference: Fracture behavior: Very Ductile Moderately Ductile Brittle Adapted from Fig. 8.1, Callister & Rethwisch 8e. %AR or %EL Ductile fracture is usually more desirable than brittle fracture! Large Ductile: Warning before fracture Moderate Small Brittle: No warning Chapter 8-3

4 Example: Pipe Fractures Ductile fracture: -- large plastic deformation Brittle fracture: -- many pieces -- almost no plastic deformations Figures from V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 4.1(a) and (b), p. 66 John Wiley and Sons, Inc., Used with permission. Chapter 8-4

5 Failure process: necking s Ductile Fracture void nucleation void growth and coalescence shearing at surface fracture Resulting fracture surfaces (steel) particles serve as void nucleation sites mm From V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig , p. 294, John Wiley and Sons, Inc., (Orig. source: P. Thornton, J. Mater. Sci., Vol. 6, 1971, pp ) 100 mm Fracture surface of tire cord wire loaded in tension. Courtesy of F. Roehrig, CC Technologies, Dublin, OH. Used with permission. Chapter 8-5

6 Ductile vs. Brittle Fracture cup-and-cone for ductile fracture flat cross-section for brittle fracture Adapted from Fig. 8.3, Callister & Rethwisch 8e. Chapter 8-6

7 Intergranular (between grains) 4 mm Fracture Surfaces 304 S. Steel (metal) Reprinted w/permission from "Metals Handbook", 9th ed, Fig. 633, p Copyright 1985, ASM International, Materials Park, OH. (Micrograph by J.R. Keiser and A.R. Olsen, Oak Ridge National Lab.) 316 S. Steel (metal) Reprinted w/ permission from "Metals Handbook", 9th ed, Fig. 650, p Copyright 1985, ASM International, Materials Park, OH. (Micrograph by D.R. Diercks, Argonne National Lab.) Transgranular (through grains) 160 mm Polypropylene (polymer) Reprinted w/ permission from R.W. Hertzberg, "Defor-mation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.35(d), p. 303, John Wiley and Sons, Inc., mm (Orig. source: K. Friedrick, Fracture 1977, Vol. 3, ICF4, Waterloo, CA, 1977, p ) Al2O3 (ceramic) Reprinted w/ permission from "Failure Analysis of Brittle Materials", p. 78. Copyright 1990, The American Ceramic Society, Westerville, OH. (Micrograph by R.M. Gruver and H. Kirchner.) 3 mm Chapter 8-7

8 Fracture (Tensile) Strength of Ideal (Perfect) Material vs Real Materials Stress-strain behavior (Room T): E/10 s Perfect/ideal materials (i.e., no flaws) carefully produced glass fiber TS engineering materials << TS perfect materials E/100 typical ceramic 0.1 typical strengthened metal typical polymer Material (3D) defects degrades strength -- Example: the longer the wire, the smaller the load for failure. Reasons: -- flaws cause premature failure. -- larger samples contain more & larger flaws/defects (especially micro-cracks)! e Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig John Wiley and Sons, Inc., Chapter 8-8

9 t Flaws are Stress Concentrators! Stress at the tip of a micro-crack is many times higher than the average applied stress σ 0 Micro-cracks are examples of common flaws or 3D defects Stress concentration at tip of a micro-crack 1/ 2 s m 2s o a t where t = radius of curvature at the crack tip s o = (average) applied stress s m = stress at crack tip a = crack width K s Adapted from Fig. 8.8(a), Callister & Rethwisch 8e. t o Chapter 8-9

10 Concentration of Stress at Crack Tip Adapted from Fig. 8.8(b), Callister & Rethwisch 8e. Chapter 8-10

11 Crack Propagation Cracks having sharp tips propagate easier than cracks having blunt tips A material with better toughness plastically deforms before cracks grows at its tip, which need more energy for the crack to grow (or propagate) compared with brittle material. deformed region brittle ductile Chapter 8-11

12 Criterion for Crack Propagation Crack propagates when crack-tip concentrated stress (s m ) exceeds the critical stress (s c ), which can be theoretically estimated i.e., s m > s c s c 2E a s 1/ 2 where E = modulus of elasticity s = specific surface energy a = one half length of internal crack Chapter 8-12

13 KIc(MPa m 0.5 ) Fracture Toughness: Measure of Materials Property as Resistance to Brittle Fracture Metals/ Alloys Steels Ti alloys Al alloys Mg alloys Graphite/ Ceramics/ Semicond Diamond Si carbide Al oxide Si nitride <100> Si crystal <111> Glass -soda Concrete Polymers PET PP PC PS PVC Polyester Composites/ fibers C-C( fibers) 1 Al/Al oxide(sf) 2 Y 2 O 3 /ZrO 2 (p) 4 C/C( fibers) 1 Al oxid/sic(w) 3 Si nitr/sic(w) 5 Al oxid/zro 2 (p) 4 Glass/SiC(w) 6 Glass 6 Based on data in Table B.5, Callister & Rethwisch 8e. Composite reinforcement geometry is: f = fibers; sf = short fibers; w = whiskers; p = particles. Addition data as noted (vol. fraction of reinforcement): 1. (55vol%) ASM Handbook, Vol. 21, ASM Int., Materials Park, OH (2001) p (55 vol%) Courtesy J. Cornie, MMC, Inc., Waltham, MA. 3. (30 vol%) P.F. Becher et al., Fracture Mechanics of Ceramics, Vol. 7, Plenum Press (1986). pp Courtesy CoorsTek, Golden, CO. 5. (30 vol%) S.T. Buljan et al., "Development of Ceramic Matrix Composites for Application in Technology for Advanced Engines Program", ORNL/Sub/ /2, ORNL, (20vol%) F.D. Gace et al., Ceram. Eng. Sci. Proc., Vol. 7 (1986) pp Chapter 8-13

14 Impact Testing for Evaluating Fracture Toughness Impact loading: -- severe testing case (Charpy) Adapted from Fig. 8.12(b), Callister & Rethwisch 8e. (Fig. 8.12(b) is adapted from H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc. (1965) p. 13.) final height initial height Chapter 8-14

15 Impact Energy Influence of Temperature on Materials Fracture Toughness Ductile-to-Brittle Transition Temperature (DBTT) For certain metals and polymers, they are ductile above DBTT, but suddenly become brittle below DBTT FCC metals (e.g., Cu, Ni), no obvious DBTT BCC metals (e.g., iron) & some polymers High strength materials (s y > E/150), no obvious DBTT Ductile-to-brittle transition temperature (DBTT) Temperature Adapted from Fig. 8.15, Callister & Rethwisch 8e. Chapter 8-15

16 Design Strategy: Use Materials with DBTT Much Lower than Lowest Usage Temperature Pre-WWII: The Titanic WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and Sons, Inc., (Orig. source: Dr. Robert D. Ballard, The Discovery of the Titanic.) Problem: Steels used had DBTT s just below room temperature in those cases Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and Sons, Inc., (Orig. source: Earl R. Parker, "Behavior of Engineering Structures", Nat. Acad. Sci., Nat. Res. Council, John Wiley and Sons, Inc., NY, 1957.) Chapter 8-16

17 A Second (#2) Type of Mechanical Failure - Fatigue Fatigue = failure under repeated applied or cyclic stress. bearing specimen compression on top bearing Stress varies with time. -- key parameters are S, s m, and cycling frequency motor flex coupling tension on bottom s max s min s m counter s Adapted from Fig. 8.18, Callister & Rethwisch 8e. (Fig is from Materials Science in Engineering, 4/E by Carl. A. Keyser, Pearson Education, Inc., Upper Saddle River, NJ.) S time Fatigue --can cause part failure, even though s max < s y. --responsible for ~ 90% of mechanical engineering failures. Chapter 8-17

18 Types of Fatigue Behavior Fatigue limit, S fat : --no fatigue if S < S fat i.e., material can be used indefinitely as long as applied stress stays below the fatigue limit value S = stress amplitude S fat safe unsafe N = Cycles to failure Example: steel Adapted from Fig. 8.19(a), Callister & Rethwisch 8e. For some materials, there is no apparent fatigue limit! i.e., to use it for longer/more cycles, the maximum stress applied has to be reduced further S = stress amplitude safe unsafe N = Cycles to failure Example: Al Adapted from Fig. 8.19(b), Callister & Rethwisch 8e. Chapter 8-18

19 Fatigue Crack Growth Failed rotating shaft -- Crack grew with relatively low stress level -- Crack grows faster as Ds or S increases crack gets longer loading freq. increases. Adapted from Fig. 8.21, Callister & Rethwisch 8e. (Fig is from D.J. Wulpi, Understanding How Components Fail, American Society for Metals, Materials Park, OH, 1985.) crack origin Chapter 8-19

20 S = stress amplitude 1. Impose compressive surface stresses (to suppress surface cracks from growing) Improving Fatigue Life Increasing mean (tensile) stress s m leads to shorter cycle life N = Cycles to failure Adapted from Fig. 8.24, Callister & Rethwisch 8e. near zero or compressive s m moderate tensile s m Larger tensile s m --Method 1: shot peening shot put surface into compression --Method 2: carburizing C-rich gas 2. Remove stress concentrators. bad bad better better Adapted from Fig. 8.25, Callister & Rethwisch 8e. Chapter 8-20

21 A Third (#3) Type of Mechanical Failure - Creep Sample deforms more and more at a constant stress (s) over time - Creep s s,e 0 t Primary Creep: slope (creep rate) decreases with time. Secondary Creep: steady-state i.e., constant slope (De/Dt). Tertiary Creep: slope (creep rate) increases with time, i.e. acceleration of rate. Adapted from Fig. 8.28, Callister & Rethwisch 8e. Chapter 8-21

22 Creep - Temperature Dependence Occurs at elevated or higher temperature: T > 0.4 T m (in K) Higher temperature faster creep! tertiary primary secondary elastic Adapted from Fig. 8.29, Callister & Rethwisch 8e. Chapter 8-22

23 Creep Failure Failure: often along grain boundaries. g.b. cavities applied stress From V.J. Colangelo and F.A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 4.32, p. 87, John Wiley and Sons, Inc., (Orig. source: Pergamon Press, Inc.) Chapter 8-23

24 Creep for Al 2 O 3 Ceramics Al 2 O 3 : Melting point: Tm = 2025 o C As received Al 2 O 3 tube After running at >1400 o C for hours without proper mechanical support Curved Al 2 O 3 tube after creep Chapter 8-24

25 SUMMARY Engineering materials not as strong as predicted by theory Flaws/microcracks act as stress concentrators that cause failure, fracture in particular, at stress level much lower than theoretical values. Sharp corners produce large stress concentrations and premature failure. Failure type depends on T and s : -For simple fracture (noncyclic s and T < 0.4T m), failure stress decreases with: - increased maximum flaw size - For fatigue (cyclic s): - cycles to fail decreases as Ds or s m increases or increase T. - For creep (T > 0.4T m ): - time to rupture decreases as s or T increases. Chapter 8-25

26 Homework Read chapter 8 and give a statement confirm reading Explain in your own words the following concepts: Brittle fracture Ductile fracture Ductile to brittle transition temperature (DBTT) Fatigue Creep Chapter 8-26

CHAPTER 7: MECHANICAL FAILURE

CHAPTER 7: MECHANICAL FAILURE CHAPTER 7: MECHANICAL FAILURE ISSUES TO ADDRESS... Failure mechanism? How is fracture resistance quantified; how do different material classes compare? How do we estimate the stress to fracture? How do

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

Types of fracture in metals

Types of fracture in metals Type of fracture in metal The concept of material trength and fracture ha long been tudied to overcome failure. The introduction of malleable iron during the revolution of material contruction led to the

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

21 Fracture and Fatigue Revision

21 Fracture and Fatigue Revision 21 Fracture and Fatigue Revision EG2101 / EG2401 March 2015 Dr Rob Thornton Lecturer in Mechanics of Materials www.le.ac.uk Fracture concepts Fracture: Initiation and propagation of cracks within a material

More information

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS... Stress and strain: What are they and why are they used instead of load and deformation? Elastic behavior: When loads are small, how much deformation

More information

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties ISSUES TO ADDRESS... Stress and strain Elastic behavior: When loads are small, how much reversible deformation occurs? What material resist reversible deformation better? Plastic behavior: At what point

More information

The fracture of a Al bicycle crank arm.

The fracture of a Al bicycle crank arm. The frature of a Al biyle rank arm. Failure In hapters 6 and 7 we examined the elasti and plasti behaviour of materials. We learned how the motion of disloations makes it possible for the material to deform.

More information

Chapter 6:Mechanical Properties

Chapter 6:Mechanical Properties Chapter 6:Mechanical Properties Why mechanical properties? Need to design materials that can withstand applied load e.g. materials used in building bridges that can hold up automobiles, pedestrians materials

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

Characteristics affecting each stage of fatigue fracture

Characteristics affecting each stage of fatigue fracture Characteristics affecting each stage of fatigue fracture This chapter presents fatigue of metals, stages in fatigue fracture and material characteristics affecting each stage of fatigue fracture. Further,

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS

3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS 3. MECHANICAL PROPERTIES OF STRUCTURAL MATERIALS Igor Kokcharov 3.1 TENSION TEST The tension test is the most widely used mechanical test. Principal mechanical properties are obtained from the test. There

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

Price and Availability

Price and Availability Price and Availability Outline Introduction Relative cost of materials Example MECH 321 Mech. Eng. Dept. - Concordia University lecture 21/1 Current Prices on the web (a) : - Short term trends: fluctuations

More information

ENGINEERING MATERIAL 100

ENGINEERING MATERIAL 100 Department of Applied Chemistry Division of Science and Engineering SCHOOL OF ENGINEERING ENGINEERING MATERIAL 100 Experiments 4 and 6 Mechanical Testing and Applications of Non-Metals Name: Yasmin Ousam

More information

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility.

WEEK FOUR. This week, we will Define yield (failure) in metals Learn types of stress- strain curves Define ductility. WEEK FOUR Until now, we Defined stress and strain Established stress-strain relations for an elastic material Learned stress transformation Discussed yield (failure) criteria This week, we will Define

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 7, No. 3, pp. 261~265 (2006) J O U R N A L O F Ceramic Processing Research Tensile strength and fracture toughness of two magnesium metal matrix composites

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... Review of structures for ceramics How are impurities accommodated in the ceramic lattice? In what ways are ceramic phase diagrams similar

More information

Laboratory 3 Impact Testing of Metals

Laboratory 3 Impact Testing of Metals Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional 1.50 Credits Laboratory 3 Impact Testing of Metals 1. Objective

More information

A THERMOMECHANICAL FATIGUE CRACK INITIATION MODEL FOR DIRECTIONALLY-SOLIDIFIED NI-BASE SUPERALLOYS

A THERMOMECHANICAL FATIGUE CRACK INITIATION MODEL FOR DIRECTIONALLY-SOLIDIFIED NI-BASE SUPERALLOYS A THERMOMECHANICAL FATIGUE CRACK INITIATION MODEL FOR DIRECTIONALLY-SOLIDIFIED NI-BASE SUPERALLOYS Ali P. Gordon 1, Mahesh Shenoy 1, and Richard W. Neu 12 1 The George W. Woodruff School of Mechanical

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

Failure Analysis and Prevention: Fundamental causes of failure

Failure Analysis and Prevention: Fundamental causes of failure Failure Analysis and Prevention: Fundamental causes of failure This chapter defines the failure and elaborates the conditions for failure of mechanical components. Further, the fundamental causes of failure

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Mechanical Properties: In the course of operation or use, all the articles and structures are subjected to the action of external forces, which create stresses that inevitably cause

More information

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals

Materials Engineering 272-C Fall 2001, Lectures 9 & 10. Introduction to Mechanical Properties of Metals Materials Engineering 272-C Fall 2001, Lectures 9 & 10 Introduction to Mechanical Properties of Metals From an applications standpoint, one of the most important topics within Materials Science & Engineering

More information

True Stress and True Strain

True Stress and True Strain True Stress and True Strain For engineering stress ( ) and engineering strain ( ), the original (gauge) dimensions of specimen are employed. However, length and cross-sectional area change in plastic region.

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

Modeling of RCF Metallurgy, Microstructure, Mechanical Properties &Crack Modeling

Modeling of RCF Metallurgy, Microstructure, Mechanical Properties &Crack Modeling Modeling of RCF Metallurgy, Microstructure, Mechanical Properties &Crack Modeling RCF Modeling Objectives Acquire RCF data from in service rails through RCF Quantitative Assessment project Variety of rail

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

Intergranular Corrosion (IGC)

Intergranular Corrosion (IGC) Intergranular Corrosion (IGC) Microstructure of metals and alloys is made up of grains (separated by grain boundaries) Intergranular corrosion is a localized attack along the grain boundaries, or immediately

More information

Tensile/Tension Test Fundamentals

Tensile/Tension Test Fundamentals CIVE.3110 Engineering Materials Laboratory Fall 2016 Tensile/Tension Test Fundamentals Tzuyang Yu Associate Professor, Ph.D. Structural Engineering Research Group (SERG) Department of Civil and Environmental

More information

Institutional repository of Jönköping University

Institutional repository of Jönköping University Institutional repository of Jönköping University http://www.publ.hj.se/diva This is an author produced version of a paper published in Metallurgical and Materials Transactions A. This paper has been peer-reviewed

More information

PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY

PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY PLASTIC DEFORMATION AND THE ONSET OF TENSILE INSTABILITY Introduction In this experiment the plastic deformation behavior and the onset of plastic instability of some common structural alloys is investigated.

More information

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature. Final Exam Wednesday, March 21, noon to 3:00 pm (160 points total) 1. TTT Diagrams A U.S. steel producer has four quench baths, used to quench plates of eutectoid steel to 700 C, 590 C, 350 C, and 22 C

More information

E-BRITE E-BRITE. Technical Data Sheet. Stainless Steel: Superferritic GENERAL PROPERTIES PLANAR SOLID OXIDE FUEL CELLS CHEMICAL COMPOSITION

E-BRITE E-BRITE. Technical Data Sheet. Stainless Steel: Superferritic GENERAL PROPERTIES PLANAR SOLID OXIDE FUEL CELLS CHEMICAL COMPOSITION E-BRITE Stainless Steel: Superferritic (UNS 44627, ASTM Type XM-27) GENERAL PROPERTIES E-BRITE alloy is a high purity ferritic stainless steel which combines excellent resistance to corrosion and oxidation

More information

Evaluation of Crashworthiness for SAE Materials under Ductile to Brittle Transition Temperature (DBTT)

Evaluation of Crashworthiness for SAE Materials under Ductile to Brittle Transition Temperature (DBTT) Evaluation of Crashworthiness for SAE Materials under Ductile to Brittle Transition Temperature (DBTT) Amol Bhanage *1, Nilesh Satonkar # 2, Pratap Deshmukh # 3, Rupesh Sundge # 4 * Mechanical Engineering,

More information

Module-6. Dislocations and Strengthening Mechanisms

Module-6. Dislocations and Strengthening Mechanisms Module-6 Dislocations and Strengthening Mechanisms Contents 1) Dislocations & Plastic deformation and Mechanisms of plastic deformation in metals 2) Strengthening mechanisms in metals 3) Recovery, Recrystallization

More information

Mechanical behavior of crystalline materials- Comprehensive Behaviour

Mechanical behavior of crystalline materials- Comprehensive Behaviour Mechanical behavior of crystalline materials- Comprehensive Behaviour In the previous lecture we have considered the behavior of engineering materials under uniaxial tensile loading. In this lecture we

More information

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK 19 Wildmere Road Banbury Oxfordshire OX16 3JU Contact: Mr J Guntrip Tel: +44 (0)1295 261211 Fax: +44 (0)1295 263096 E-Mail: qualityuk@wmtr.com

More information

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals

REVISED PAGES IMPORTANT TERMS AND CONCEPTS REFERENCES QUESTIONS AND PROBLEMS. 166 Chapter 6 / Mechanical Properties of Metals 1496T_c06_131-173 11/16/05 17:06 Page 166 166 Chapter 6 / Mechanical Properties of Metals IMPORTANT TERMS AND CONCEPTS Anelasticity Design stress Ductility Elastic deformation Elastic recovery Engineering

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

CREEP AND FATIGUE CRACK GROWTH IN SEVERAL CAST SUPERALLOYS

CREEP AND FATIGUE CRACK GROWTH IN SEVERAL CAST SUPERALLOYS CREEP AND FATIGUE CRACK GROWTH IN SEVERAL CAST SUPERALLOYS P. Shahinian and K. Sadananda Material Science & Technology Division Naval Research Laboratory Washington, DC 20375 Summary Crack growth behavior

More information

The University of Jordan School of Engineering Chemical Engineering Department

The University of Jordan School of Engineering Chemical Engineering Department The University of Jordan School of Engineering Chemical Engineering Department 0905351 Engineering Materials Science Second Semester 2016/2017 Course Catalog 3 Credit hours.all engineering structures and

More information

MatSE 259 Exam 4 Review Session

MatSE 259 Exam 4 Review Session MatSE 259 Exam 4 Review Session 1. Same exam format and protocol as the previous three 2. If your score for any of the previous exams needs to be updated in the school records (entered wrong SID, left

More information

Fatigue of metals. Subjects of interest

Fatigue of metals. Subjects of interest Fatigue of metals Chapter 12 Subjects of interest Objectives / Introduction Stress cycles The S-N curve Cyclic stress-strain curve Low cycle fatigue Structural features of fatigue Fatigue crack propagation

More information

CRACK GROWTH IN THE PRESENCE OF LIMITED CREEP DEFORMATION

CRACK GROWTH IN THE PRESENCE OF LIMITED CREEP DEFORMATION 1 CRACK GROWTH IN THE PRESENCE OF LIMITED CREEP DEFORMATION O. Kwon*, K M Nikbin*, G. A. Webster*, K.V. Jata + * Department of Mechanical Engineering Imperial College London SW7 2BX UK Email: k.nikbin@ic.ac.uk

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information

12 SR STAINLESS STEEL. More Oxidation Resistant Than Type 409. More Creep Resistant Than Type 409. Applications Potential

12 SR STAINLESS STEEL. More Oxidation Resistant Than Type 409. More Creep Resistant Than Type 409. Applications Potential 12 SR STAINLESS STEEL P R O D U C T D ATA B U L L E T I N More Oxidation Resistant Than Type 409 More Creep Resistant Than Type 409 Applications Potential AK Steel 12 SR Stainless Steel was developed specifically

More information

Energy and Packing. Materials and Packing

Energy and Packing. Materials and Packing Energy and Packing Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, regular packing Energy typical neighbor bond length typical neighbor bond energy r

More information

Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels. Candido Ruas, Sylvain St-Laurent Quebec Metal Powders Limited

Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels. Candido Ruas, Sylvain St-Laurent Quebec Metal Powders Limited Effect of Molybdenum Content on Mechanical Properties of Sintered PM Steels Candido Ruas, Sylvain St-Laurent Quebec Metal Powders Limited Keywords: Molybdenum Steel Powder, Binder Treatment, Diffusion

More information

Hall-Petch Analysis from a Combined Mechanics and Materials Viewpoint

Hall-Petch Analysis from a Combined Mechanics and Materials Viewpoint Hall-Petch Analysis from a Combined Mechanics and Materials Viewpoint TOPICS CHARTS 1. Outline and historical introduction 4 2. Hall-Petch and TASRA model descriptions 2 3. Experimental measurements 3.1.

More information

Mechanics of surface damage: A new look at the old problem of wear

Mechanics of surface damage: A new look at the old problem of wear Material resistance to extreme conditions 12-14 June 2017, Kiev for future energy systems Mechanics of surface damage: A new look at the old problem of wear Ramin Aghababaei École Polytechnique Fédérale

More information

Joining of Dissimilar Automotive Materials

Joining of Dissimilar Automotive Materials Joining of Dissimilar Automotive Materials P.K. Mallick William E. Stirton Professor of Mechanical Engineering Director, Center for Lighweighting Automotive Materials and Processing University of Michigan-Dearborn

More information

Material for a pressure vessel Short term thermal insulation Energy efficient kilns

Material for a pressure vessel Short term thermal insulation Energy efficient kilns More Case Studies in Materials Selection Material for a pressure vessel Short term thermal insulation Energy efficient kilns More info: Materials Selection in Mechanical Design, Chapters 5 and 6 ME 474-674

More information

Failure Analysis of Cracked Reducer Flange

Failure Analysis of Cracked Reducer Flange J Fail. Anal. and Preven. (2010) 10:480 485 DOI 10.1007/s11668-010-9389-9 Failure Analysis of Cracked Reducer Flange Khaled Habib Submitted: 18 May 2010/in revised form: 29 July 2010/Published online:

More information

Failure Analysis of Hydraulic Torque Wrench (Drive Shaft) - A Review Sumit N. Karanjekar 1 V. N. Bhaiswar 2

Failure Analysis of Hydraulic Torque Wrench (Drive Shaft) - A Review Sumit N. Karanjekar 1 V. N. Bhaiswar 2 IJSRD - International Journal for Scientific Research & Development Vol., Issue 11, 015 ISSN (online): 31-013 Failure Analysis of Hydraulic Torque Wrench (Drive Shaft) - A Review Sumit N. Karanjekar 1

More information

Cold Spray Developments at UTRC

Cold Spray Developments at UTRC Hamilton Sundstrand Sikorsky Pratt & Whitney UTC Fire & Security Otis Elevator UTC Power Carrier Cold Spray Developments at UTRC Aaron Nardi United Technologies Research Center Cold Spray Action Team (CSAT)

More information

Roop Lal (Asst. Prof.)

Roop Lal (Asst. Prof.) Fracture of metal and alloys, brittle and ductile, fracture, FRACTURE It is defined as the separation of a specimen into two or more parts by an applied stress. Fracture can be classified as either brittle

More information

Impact Fatigue Failure Investigation of HVOF Coatings

Impact Fatigue Failure Investigation of HVOF Coatings C. N. David, 1 M. A. Athanasiou, 1 K. G. Anthymidis, 1 and P. K. Gotsis 1 Journal of ASTM International, Vol. 5, No. 6 Paper ID JAI101571 Available online at www.astm.org Impact Fatigue Failure Investigation

More information

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Properties in Shear. Figure 7c. Figure 7b. Figure 7a Properties in Shear Shear stress plays important role in failure of ductile materials as they resist to normal stress by undergoing large plastic deformations, but actually fail by rupturing under shear

More information

Chapter 14 Polymers CHAPTER 7 POLYMERIC MATERIALS. Ancient Polymer History. Rubber balls used by Incas Noah used pitch (a natural polymer) for the ark

Chapter 14 Polymers CHAPTER 7 POLYMERIC MATERIALS. Ancient Polymer History. Rubber balls used by Incas Noah used pitch (a natural polymer) for the ark Chapter 14 Polymers What is a polymer? Polymers are organic materials made of very large molecules containing hundreds of thousands of unit molecules called mers linked in a chain-like structure (repeated

More information

Chapter 16: Composite Materials

Chapter 16: Composite Materials Chapter 16: Composite Materials ISSUES TO ADDRESS... What are the classes and types of composites? Why are composites used instead of metals, ceramics, or polymers? How do we estimate composite stiffness

More information

Casing Failure Prevention East Texas Gas Producer s Assoc. 9 March 2010

Casing Failure Prevention East Texas Gas Producer s Assoc. 9 March 2010 Casing Failure Prevention East Texas Gas Producer s Assoc. 9 March 2010 The Ideal Casing String For as long as needed, it will: Safely carry all applied loads, Until the next string is set and be free

More information

III Fatigue Models. 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow?

III Fatigue Models. 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow? III Fatigue Models 1. Will a crack nucleate? 2. Will it grow? 3. How fast will it grow? Outline Sources of knowledge Modeling Crack nucleation Non propagating cracks Crack growth AM 11/03 2 Source of knowledge

More information

Resistência ao impacto. Testes Charpy:

Resistência ao impacto. Testes Charpy: Resistência ao impacto Testes Charpy: http://www.cimm.com.br/cimm/construtordepaginas/htm/3_24_8317.htm 1 Analysis of Charpy Impact Test Ductile-to-Brittle Transition Temperature 2 shock test machines

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2016

arxiv: v1 [cond-mat.mtrl-sci] 8 Nov 2016 Directional Anisotropy of Crack Propagation Along Σ3 Grain Boundary in BCC Fe G. Sainath*, B.K. Choudhary** Deformation and Damage Modeling Section, Mechanical Metallurgy Division Indira Gandhi Centre

More information

Reproducible evaluation of material properties. Static Testing Material response to constant loading

Reproducible evaluation of material properties. Static Testing Material response to constant loading Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing Material response to varying loading conditions, including

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

TOPIC 2. STRUCTURE OF MATERIALS III

TOPIC 2. STRUCTURE OF MATERIALS III Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 2. STRUCTURE OF MATERIALS III Topic 2.3: Crystalline defects. Solid solutions. 1 PERFECT AND IMPERFECT CRYSTALS Perfect

More information

COSMOS. Design to Prevent Fatigue. COSMOSWorks. SolidWorks Corporation. Introduction. What is Fatigue?

COSMOS. Design to Prevent Fatigue. COSMOSWorks. SolidWorks Corporation. Introduction. What is Fatigue? WHITE PAPER Design to Prevent Fatigue COSMOSWorks CONTENTS Introduction What is Fatigue? 1 Determining the fatigue strength of materials 2 Methods for calculating fatigue life 4 Fatigue life calculation

More information

DYNAMIC FRAGMENTATION OF ALUMINA WITH ADDITIONS OF NIOBIA AND SILICA UNDER IMPACT

DYNAMIC FRAGMENTATION OF ALUMINA WITH ADDITIONS OF NIOBIA AND SILICA UNDER IMPACT XXXX TB40 19th International Symposium of Ballistics, 7 11 May 2001, Interlaken, Switzerland DYNAMIC FRAGMENTATION OF ALUMINA WITH ADDITIONS OF NIOBIA AND SILICA UNDER IMPACT L.H.L. Louro1, A.V. Gomes1,

More information

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains Introduction In the previous lecture we have introduced the needs, background and societies for mechanical testing of composites. In this lecture and subsequent lectures we will see principles for the

More information

History and Future of High-Fatigue-Strength Steel Wire for Automotive Engine Valve Spring

History and Future of High-Fatigue-Strength Steel Wire for Automotive Engine Valve Spring FEATURED TOPIC History and Future of High-Fatigue-Strength Steel Wire for Automotive Engine Valve Spring Hiromu IZUMIDA*, Sadamu MATSUMOTO and Teruyuki MURAI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh

أت ارش. Dr. Abdel-Wahab El-Morsy Faculty of Engineering - Rabigh Basic Workshop 1 أت ارش There are thousands of materials available for use in engineering applications. Most materials fall into one of three classes that are based on the atomic bonding forces of a particular

More information

INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS

INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

Aircraft Design Introduction to Structure Life

Aircraft Design Introduction to Structure Life University of Liège Aerospace & Mechanical Engineering Aircraft Design Introduction to Structure Life Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

Chapter 2 General Mechanisms of Creep

Chapter 2 General Mechanisms of Creep Chapter 2 General Mechanisms of Creep Abstract The general creep mechanism is discussed in this chapter, which is classified as: (i) dislocation slip; (ii) climb; (iii) grain-boundary sliding; and (iv)

More information

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips M. Samadi Department of civil engineering., Mashhad Branch, Islamic Azad University, Mashhad,

More information

Heat-Treat Rack Material Selection Based on Thermal Performance

Heat-Treat Rack Material Selection Based on Thermal Performance Industrial Heating Magazine, Heat & Corrosion Resistant Materials/Composites December 3, 2015 Heat-Treat Rack Material Selection Based on Thermal Performance The choice of heat-treat rack material is important

More information

where n is known as strain hardening exponent.

where n is known as strain hardening exponent. 5.1 Flow stress: Flow stress is the stress required to sustain a certain plastic strain on the material. Flow stress can be determined form simple uniaxial tensile test, homogeneous compression test, plane

More information

Fracture toughness K IC of cemented carbide WC-Co

Fracture toughness K IC of cemented carbide WC-Co Computational Methods and Experiments in Materials Characterisation IV 217 Fracture toughness K IC of cemented carbide WC-Co S. Doi & M. Yasuoka Oita University, Japan and Fujikoshi Co., Japan Abstract

More information

Plastic Pre-Compression and Creep Damage Effects on the Fracture Toughness Behaviour of Type 316H Stainless Steel

Plastic Pre-Compression and Creep Damage Effects on the Fracture Toughness Behaviour of Type 316H Stainless Steel Plastic Pre-Compression and Creep Damage Effects on the Fracture Toughness Behaviour of Type 316H Stainless Steel Ali Mehmanparast 1 *, Catrin M. Davies 1, David W. Dean 2, Kamran M. Nikbin 1 1 Mechanical

More information

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging. EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging. Introduction Materials can be hardened

More information

1E5 Advanced design of glass structures. Martina Eliášová

1E5 Advanced design of glass structures. Martina Eliášová 1E5 Advanced design of glass structures Martina Eliášová List of lessons 1) History, chemical, production 2) Glass as a material for load bearing structures 3) Design of laminated plates 4) Design of glass

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... How are metal alloys classified and what are their common applications? What are some of the common fabrication techniques for

More information

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik

FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS WORKBENCH. N. Sinan Köksal, Arif Kayapunar and Mehmet Çevik Proceedings of the Fourth International Conference on Mathematical and Computational Applications June 11-13, 2013. Manisa, Turkey, pp.111-118 FATIGUE ANALYSIS OF A NOTCHED CANTILEVER BEAM USING ANSYS

More information

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION

YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard

More information

Moment curvature analysis of concrete flexural members confined with CFRP grids

Moment curvature analysis of concrete flexural members confined with CFRP grids Materials Characterisation V 131 Moment curvature analysis of concrete flexural members confined with CFRP grids A. Michael & P. Christou Department of Civil Engineering, Frederick University, Cyprus Abstract

More information

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 34L STAINLESS STEEL H.-J. Christ, C. K. Wamukwamba and H. Mughrabi The fatigue behaviour of the austenitic stainless steel AISI34L

More information

Fiber Reinforced Concrete (FRC)

Fiber Reinforced Concrete (FRC) Progress in Fiber Reinforced Concrete (FRC) Concrete is relatively brittle, and its tensile strength is typically only about one tenths of its compressive strength. Regular concrete is therefore normally

More information