By Dr. Robert Marsh, Bohlin Instruments, 2003

Size: px
Start display at page:

Download "By Dr. Robert Marsh, Bohlin Instruments, 2003"

Transcription

1 A R H E O L O G I C A L V I E W P O I N T O F T H E R M O P L A S T I C M E L T S By Dr. Robert Marsh, Bohlin Instruments, 2003 Introduction Rheology is the science of studying the flow and deformation of materials rooted in the laws of elasticity and viscosity proposed by Hooke and Newton in the late 17 th Century. Thermoplastic polymer melts are widely used in many modern industrial processes to manufacture a multitude of objects. Polymers are used because they are relatively cheap to form into complex shapes in the molten state and therefore, we need to understand how they flow when being processed. Polymers are complicated materials to characterise rheologically because there are many factors that influence their flow properties. Examples of factors that influence the flow behaviour may include: Processing temperature; Rate of flow; Residence time etc. Furthermore the rheological properties of polymers are in between those of a liquid and a solid. This leads to time dependence of the flow properties and other important characteristics, some of which are discussed below. Melt viscosity is well known to be critically dependent on temperature. By lowering the temperature of a mould until the part being produced has a matt finish, the processor can learn the minimum temperature (hence maximum resin viscosity) at which the process can be run without surface defects becoming apparent. Reducing the mould temperature saves energy and can reduce cycle times and so an understanding of the temperature dependence of melt viscosity is very useful. Polymer melts are known to exhibit die swell when extruded. This phenomenum reveals itself as an increase of diameter of an extrudate after exiting a die. The amount of die swell is related to the amount of elastic deformation of the material at the inlet of the die. A further fact to be considered is that the degree of die swell (more correctly extrudate swell) is dependent on the length of the die when material is extruded at constant throughput. In other words polymer melts exhibit time dependency as the material forgets the elastic deformation applied at the entrance of the die, the more time the material spends within the die the less die swell. Melt elasticity can also have profound implications for many other polymer processes such as: Blow Moulding where the wall thickness of the blown component depends on the degree of swell that has taken place during the extrusion process prior to the mould being closed. Vacuum Forming or Thermoforming where the polymer must maintain a degree of elasticity to prevent the material sagging before it is pulled by vacuum over the cold forming die. If the material does not have sufficient elasticity it is likely to come into contact with the chilled die before the vacuum or pressure is applied. Polymer processing properties also depend on the concentration of lubricants, plasticisers, fillers and other componenents in the compound being processed. From this brief introduction one can appreciate that proper characterisation of polymer melt flow behaviour is likely to require sophisticated and versatile instrumentation. From the point of view of the rheologist polymer flow behaviour can be conveniently separated into three components: Shear and extensional flows which are characterised by the corresponding viscosities and Elastic behaviour which is characterised by measurement of modulus or swell ratios. To fully characterise a material, instrumentation is required which has the capability of extracting these parameters over a range of temperatures and shear/extension rates.

2 Modern laboratory rheological test apparatus can be divided into two broad categories: Rotational Rheometers Capillary Extrusion Rheometers Rotational Rheometers These instruments normally require a small specimen of the material to be tested in the form of disk typical dimensions being 25mm diameter and 1mm thick. The sample is placed between a pair of parallel plates or upper cone and lower plate whose temperature can be maintained by an external heating device such as a blown gas oven or electrical heating of the plates. Modern rotational rheometers are capable of a number of test types to allow full characterisation of a material over a range of temperarures and flow rates. Examples of the types of the types of tests available are: Flow curves to measure the shear viscosity versus shear rate or shear stress. At sufficiently low shear rates a constant value for the viscosity will be attained. This so called zero shear viscosity has been shown to depend on the average molecular weight of the polymer and the length of the plateau (how high a rate before the viscosity decreases) is known to reflect the width of the molecular weight distibution. Software packages are available to determine the average molecular weight and molecular weight distribution from such data. Creep tests (application of constant stress for a defined period of time) allow an alternative means of determining the zero shear viscosity. When combined with recovery testing (removal of the stress) these tests enable the amount of elasticity in the sample to be measured because a material will with elasticity will recoil and attempt to recover its original shape. Stress Relaxation tests apply an instantaneous deformation (strain) to the sample and record the time dependent decay of stress with time. The rate of decay of the stress depends on the viscoelasticity of the polymer at the test temperature. The data is often displayed as relaxation modulus versus time. Integration of the modulus versus time function is an often forgotten but rapid means of determining the zero shear viscosity and hence average molecular weight. Differentiation of the modulus/time function produces the continuous relaxation time distrubution curve. This rather complex function in principle contains information relating to the molecular weight distribution of the polymer. Small amplitude sinusoidal Oscillatory Testing as function of test frequency is a rapid and often used method to measure the viscous and elastic properties of a polymer simultaneously. Two parameters are most often reported Storage (Elastic) modulus and Viscous (Loss) modulus (G ) which represent the relative degrees of the material to recover (elastic response) or flow (viscous response) respectively as the rate of deformation (test frequency) changes. A typical response for a polymer melt is to exhibit elastic dominated behaviour at high frequencies and viscous dominated behaviour at low frequencies. This means that there is a critical frequency at which the two responses are equal. This is obviously a well-defined point and conveniently this cross-over frequency and modulus has been shown to depend on the molecular weight and molecular weight distribution of some linear polymers. A potential advantage of utilising this point as a quality control tool is that the cross-over of elastic and viscous moduli occurs at significantly higher frequencies than the point at which a constant value of shear viscosity occurs.testing times may therefore be considerably reduced when compared to making flow curve measurements or performing creep tests.

3 Examples of typical responses for these test modes are shown in the following figures. Figure 1 Flow curve for LDPE at 190ºC showing low shear rate plateau for viscosity. The magnitude of the zero shear viscosity is determined by the average molecular weight of the polymer. Figure 2 Creep (Blue) & Recovery (Red) Curve Polypropylene at 190ºC allow zero shaer viscosity to be determined and equilibrium recoverable compliance. Figure 3 Stress Relaxation data LDPE at190ºc The relaxation time distribution curve includes information about the molecular weight distribution of the polymer.

4 Figure 4 Frequency Sweep for Polypropylene at 190ºC. The Cross-Over Point is determined by the average molecular weight and molecular weight distribution. A full discussion of the relationship between molecular parameters and processing performance is beyond the scope of this short article, but the following examples are included to illustrate how visco elastic characterisation of polymers has solved real processing problems: A) Variability of tube and pipe gauges in extrusion processes Oscillatory testing at low frequencies (below 0.1 Hz) revealed differences in the elastic modulus between different batches of material. Clearly pipe gauge will depend on the degree of recovery of the polymer after being extruded and so not surprisingly, the pipes and tubes with the higher gauge have greater elastic modulus Storage Modulus / Pa Thick Thin Freq / rad s -1 Figure 5 Frequency Sweep data for two HDPE pipes. The sample with higher elastic modulus produced the larger gauge pipe. B) Reducing Inconsistent Fibre Spinning Properties Low frequency oscillatory testing was able to show differences in the elastic properties of different batches of material. No differences were observed in the viscosity, indicating the material was of

5 consistent molecular weight. The differences in elasticity at low frequency are related to differences in the molecular weight distribution (MWD) with the result that the broader MWD results in increased molecular chain entanglement which hinders the draw down process of the fibre spinning process. This in turn causes inconsistency in the final product. Complex Viscosity / Pa.s Bad Good log Freq / rad s -1 Figure 6 Complex Viscosity as a function of frequency for good and bad PP Fibre samples. Note that no discernable difference is evident. G' / Pa Bad Sample Good Sample Freq / rad s -1 Figure 7 Storage Modulus as a function of frequency for good and bad PP Fibre samples. The bad sample had more elasticity causing inconsistent fibre diameter.

6 Capillary Extrusion Rheometers Advanced capillary extrusion rheometers comprise a temperature-controlled barrel incorporating one or more precision bores fitted with capillary dies at the exit. Melt pressure transducers are mounted immediately above the dies to record the pressure drop as polymer melt is extruded through the dies at programmed flow rates. By the use of a capillary die and an orifice or zero length die the shear and extensional visscosities of a polymer melt may be determined simultaneously against shear and extension rates. Additional accessories are available to record die swell by means if a laser scanning gauge and or extrudate melt strength by passing the strand of polymer through a series of speed controlled nip rollers and recording the force (melt tension) as a function of haul off speed. As a general rule, capillary rheometers are used to measure melt properties at higher shear rates than rotational rheometers and allow determination of flow behaviour under typical processing conditions. A particularly important consideration is the ability to measure extensional (elongational) properties at higher extension rates than by other techniques (such as counter rotating pulley devices) and more importantly at extension rates encountered on a processing line. The figure below shows both shear and extensional data, which illustrates an important and often neglected point: Two polymers may have almost identical shear flow behaviour, but may exhibit considerbly different extensional properties. As noted previously, many polymer procesess (fibre spinning, blow mouilding) are essentially extensional processes and so determination of extensional viscosity is more important than measuring shear viscosity. 00 Shear viscosity (Pa.s) 0 rubber B 110 C rubber A 110 C 10 0 Shear rate (/s) Figure 8 Shear viscosity versus shear rate. The data for the two rubbers is indistinguishable.

7 Extensional viscosity vs. Extension rate 00 Extensional viscosity (kpa.s) 0 rubber B 110 C rubber A 110 C Extension rate (/s) Figure 9 Extensional viscosity versus extension rate for the same materials shown in figure 8. There are clear differences in the extensional properties of the two materials. Capillary rheometers are often used to examine processing behaviour, rather than determine rheological parameters: Two examples could be determination of regions of flow instability and measurement of wall slip or critical stress. Flow instabilitiy or melt fracture is generally the result of tensile stress when the melt flows from a large cross-section to a smaller one. If the tensile stress becomes large enough, the melt fractures. The effect of melt fracture becomes less noticeable as the length of die is increased and as the die temperature is increased. Increasing die length damps out the effect of the cross-section change at the entrance of the die and increasing temperarure reduces the viscosity and also the stress at the same shear rate. In a capillary rheometer a region of melt fracture is revealed as a regular oscillation of the melt pressure signal as shown below. The melt effectively fractures and then reforms with the effect that adjacent elements have experienced different extensional histories and so will swell differently upon exiting the die /s 25 Pressure (MPa) Time (s) Figure 10 Evidence of Melt Fracture is shown by the oscillating pressure signal. The material is Polypropylene measured at 190ºC.

8 A fundamental assumption when calculating rheological properties with a capillary rheometer is that the material at the wall of the capillary die is stationary this is the so-called stick condition. In practice polymer melts deviate from this situation at a critical stress and the material flows as combination of shear flow superimposed onto a plug flow. Wall slip and determination of the critical stress can be analysed in a capillary rheometer by measurement of flow curves at the same temperature for at least three sets of capillary dies with the same length to diameter ratio. For a material not experiencing wall slip identical shear stress verus shear rate profiles will be generated. In the case of wall slip ocurring, shear stress will decrease as the die diameter increases at constant shear rate. Analysis of the flow data allows the slip velocity and critical stress to be determined. These parameters are often required by computational fluid dynamics software packages along with shear and extensional viscosity data to predict the flow of melts in moulds and extrusion profiles. Unfilled HDPE at 200 C Line of constant Shear Stress 16 x 1 mm Shear Stress (kpa x 0.5 mm 12 x 0.75 mm 8 x 0.5 mm 12 x 0.75 mm 16 x 1 mm Shear Strain Rate (/s) Figure 11 Rheograms for HDPE at 200ºC. The line of constant stress reveals evidence of Wall Slip. 7 Wall Slip Velocity of Unfilled HDPE at 200 C 6 5 Wall Slip Velocity (mm/s Wall Shear Stress (kpa) Figure 12 Slip velocity versus shear rate for HDPE at 200ºC. Slip velocity is calculated by Mooney s method.

9 The two examples above show how a capillary extrusion rheometer may be used to help predict the processing performance of a polymer melt. Other test regimes are also possible: Determination of polymer degradation by multiple flow curve measurments or viscosity versus time; Measurement of critical temperature for flow to commence at constant extrusion pressure; Stress relaxation after flow cessation; Melt compressibility at constant temperature etc. Conclusion Polymer melt rheology is a complex subject that requires careful experiment design in order to obtain the information needed to meet an investigator s requirements. Rotational rheometers are the preferred choice when the requirement is to obtain information concerning the molecular structure and how this affects processing characteristics. In particular, the ability to easily extract information about the average molecular weight and molecular weight distribution via measurment of the viscoelastic properties makes the rotational rheometer a powerful tool. The capillary rheometer extends the shear rate range attainable in the laboratory beyond that available in a rotational instrument and allows the flow properties to be measured under typical processing conditions. In addition, the ability to readily determine both the shear and extensional properties under real life conditions provide the polymer producer and processor with information that is vital to the successful use of a polymer melt. Finally, the capillary rheometer enables processing problems to be investiagated in a controlled environment without the need to stop production on the factory floor.

Polymers and plastics

Polymers and plastics Polymers and plastics Also available at www.malvern.co.uk Determining extrusion and die swell properties of polymers Introduction Traditional methods of measuring viscosities of polymer melts include melt

More information

RHEOLOGICAL PROPERTIES ROSAND RH2000 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE

RHEOLOGICAL PROPERTIES ROSAND RH2000 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE RHEOLOGICAL PROPERTIES ROSAND RH2000 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE ADVANCED BENCH-TOP CAPILLARY RHEOMETERS FOR RESEARCH, PRODUCT DEVELOPMENT AND QUALITY CONTROL The RH2000

More information

RHEOLOGICAL PROPERTIES ROSAND RH7 & RH10 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE

RHEOLOGICAL PROPERTIES ROSAND RH7 & RH10 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE RHEOLOGICAL PROPERTIES ROSAND RH7 & RH10 RHEOLOGICAL INSTRUMENTS BACKED WITH RHEOLOGICAL EXPERIENCE ADVANCED, POWERFUL FLOOR STANDING CAPILLARY RHEOMETERS FOR RESEARCH AND PRODUCT DEVELOPMENT Since its

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

Industrial aspects of polymer processing

Industrial aspects of polymer processing Course MP10 Lecture 2 Industrial aspects of polymer processing Ben, I just want to say one word to you, just one word plastics Dr James Elliott 2.1 General model of polymer processing Overview of the various

More information

Unit 156: Polymer Manufacturing Processes

Unit 156: Polymer Manufacturing Processes Unit 156: Polymer Manufacturing Processes Unit code J/615/3315 Unit level 4 Credit value 15 Aim This unit is designed to develop students knowledge and understanding of the main manufacturing processes

More information

Rheological Studies on Radiation Modified Polyethylene Resins. Song Cheng* and Ed Phillips

Rheological Studies on Radiation Modified Polyethylene Resins. Song Cheng* and Ed Phillips Rheological Studies on Radiation Modified Polyethylene Resins Song Cheng* and Ed Phillips Sterigenics Advanced Applications, 7695 Formula Place, San Diego, CA 92121-2418 * Corresponding author. Email address:

More information

3.5.7 Flow Through Simple Dies

3.5.7 Flow Through Simple Dies 152 3 Fundamentals of Polymers isothermal spinning of a Newtonian fluid and predicted the critical draw ratio of 20.210. Below the critical draw ratio, any disturbance along the filament is dampened out

More information

LCR 7000 Series Capillary Rheometers. Single Bore LCR 7000 Dual Bore LCR 7002

LCR 7000 Series Capillary Rheometers. Single Bore LCR 7000 Dual Bore LCR 7002 LCR 7000 Series Capillary Rheometers Single Bore LCR 7000 Dual Bore LCR 7002 Comprehensive Polymer Melt Rheology Analysis Qualitest is the leader provider in capillary polymer melt viscosity testing, making

More information

7 Most Important Test Methods

7 Most Important Test Methods 7 Most Important Test Methods A variety of measurement methods and instruments are used for rheological characterization of cosmetic emulsions. At low shear rates [62] for detection of the apparent yield

More information

THE EFFECTS OF VISCOELASTIC BEHAVIOR ON COATING

THE EFFECTS OF VISCOELASTIC BEHAVIOR ON COATING THE EFFECTS OF VISCOELASTIC BEHAVIOR ON COATING Mark Miller Coating Tech Slot Dies, LLC 2322 Alpine Road, Suite 4 Eau Claire, WI 54703 (715) 544-7568 OFFICE (715) 456-9545 MOBILE mark.miller@slotdies.com

More information

Time dependent Properties: Creep and Stress Relaxation

Time dependent Properties: Creep and Stress Relaxation The viscoelastic behavior Linear Viscoelastic Behavior The linear viscoelastic behavior is the ratio between stress and strain as a function of time only and does not a function of the magnitudes of stress

More information

11 th Tappi European PLACE Conference Athens, May Basic Polymer Rheology, as related to Extrusion Coating Machinery

11 th Tappi European PLACE Conference Athens, May Basic Polymer Rheology, as related to Extrusion Coating Machinery 11 th Tappi European PLACE Conference Athens, May 2007 Basic Polymer Rheology, as related to Extrusion Coating Machinery David R Constant Director, Project Management Battenfeld Gloucester Engineering

More information

CEAST SmartRHEO Series. Capillary Rheometer Systems

CEAST SmartRHEO Series. Capillary Rheometer Systems CEAST SmartRHEO Series Capillary Rheometer Systems CEAST SmartRHEO Series All Things Flow Plastics are amazing materials with the unique ability to flow when heated to relatively low temperatures. They

More information

Rheological Indicators to Predict the Extrusion Coating Performance of LDPE. Per-Åke Clevenhag and Claes Oveby Tetra Pak Carton Ambient AB ABSTRACT

Rheological Indicators to Predict the Extrusion Coating Performance of LDPE. Per-Åke Clevenhag and Claes Oveby Tetra Pak Carton Ambient AB ABSTRACT Rheological Indicators to Predict the Extrusion Coating Performance of LDPE Per-Åke Clevenhag and Claes Oveby Tetra Pak Carton Ambient AB ABSTRACT LDPE from high-pressure autoclave reactors for extrusion

More information

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany

APN029. The SER2 Universal platform for material testing. A.Franck TA Instruments Germany APN029 The SER2 Universal platform for material testing A.Franck TA Instruments Germany Keywords: Elongation viscosity, Hencky rate, SER, friction testing INTRODUCTION The roots of extensional rheometry

More information

3. Mechanical Properties of Materials

3. Mechanical Properties of Materials 3. Mechanical Properties of Materials 3.1 Stress-Strain Relationships 3.2 Hardness 3.3 Effect of Temperature on Properties 3.4 Fluid Properties 3.5 Viscoelastic Properties Importance of Mechanical Properties

More information

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100 Outline Polymers Introduction Crystallinity Stress relaxation Advanced polymers - applications Crystallinity in Polymers Although it may at first seem surprising, polymers can form crystal structures (all

More information

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa

MECHANICAL PROPERTIES OF MATERIALS. Manufacturing materials, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS, IE251 Dr M. Eissa MECHANICAL PROPERTIES OF MATERIALS 1. Bending Test (Slide 3) 2. Shear Test (Slide 8) 3. Hardness (Slide 14) 4. Effect of Temperature on Properties

More information

CARL HANSER VERLAG. Tim A. Osswald, Georg Menges. Materials Science of Polymers for Engineers

CARL HANSER VERLAG. Tim A. Osswald, Georg Menges. Materials Science of Polymers for Engineers CARL HANSER VERLAG Tim A. Osswald, Georg Menges Materials Science of Polymers for Engineers 3446224645 www.hanser.de 5 Rheology of Polymer Melts 5.1 Introduction Rheology is the field of science that studies

More information

Dynamic Shear Rheometer: DSR

Dynamic Shear Rheometer: DSR 1 Dynamic Shear Rheometer: DSR Load Dynamic loading vs. static loading. Load Load Time Time Time Static Loading Dynamic Loading Types of loading. Compression, area is normal to load direction Tension,

More information

A COMPARISON OF BINDER TESTS THAT RELATE TO ASPHALT MIXTURE DEFORMATION

A COMPARISON OF BINDER TESTS THAT RELATE TO ASPHALT MIXTURE DEFORMATION A5EE-402 A COMPARISON OF BINDER TESTS THAT RELATE TO ASPHALT MIXTURE DEFORMATION Carl Robertus, Ronald Van Rooijen, Laima Thimm bp europa se, global fuels technology - bitumen, gelsenkirchen, germany ABSTRACT

More information

Chapter 2: Mechanical Behavior of Materials

Chapter 2: Mechanical Behavior of Materials Chapter : Mechanical Behavior of Materials Definition Mechanical behavior of a material relationship - its response (deformation) to an applied load or force Examples: strength, hardness, ductility, stiffness

More information

RHEOLOGICAL PROPERTIES OF RECYCLED POLYCARBONATE AND ABS MELTS

RHEOLOGICAL PROPERTIES OF RECYCLED POLYCARBONATE AND ABS MELTS RHEOLOGICAL PROPERTIES OF RECYCLED POLYCARBONATE AND ABS MELTS Ruifeng Liang and Rakesh K. Gupta Department of Chemical Engineering West Virginia University Proc. XIII Int. Congress on Rheology (August

More information

BASICS ELASTOMER TESTING FOR MORE THAN 45 YEARS! Elastomer testing VISCOSITY, RHEO-KINETICS, CAPILLARY RHEOMETRY, VULCAMETRY

BASICS ELASTOMER TESTING FOR MORE THAN 45 YEARS! Elastomer testing VISCOSITY, RHEO-KINETICS, CAPILLARY RHEOMETRY, VULCAMETRY ELASTOMER TESTING BASICS Elastomer testing ELASTOMER TESTING FOR MORE THAN 45 YEARS! VISCOSITY, RHEO-KINETICS, CAPILLARY RHEOMETRY, VULCAMETRY ELASTOMER TESTING FOR DETERMINATION OF THE PROCESSING BEHAVIOR

More information

Interfacial Instabilities during Coextrusion of LDPEs

Interfacial Instabilities during Coextrusion of LDPEs 1997 Best Paper Interfacial Instabilities during Coextrusion of LDPEs Print (10)» 1999 Best Paper The Effect of Flight Radii Size on the Performance of Single Screw Extruders» 1998 Best Paper The Effects

More information

Predicting sharkskin instability in extrusion additive manufacturing of reinforced thermoplastics. Abstract. Introduction

Predicting sharkskin instability in extrusion additive manufacturing of reinforced thermoplastics. Abstract. Introduction Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Predicting sharkskin instability in extrusion additive

More information

Material Data for Moldex3D Simulation. Jeff Chen Account Manager EMEA

Material Data for Moldex3D Simulation. Jeff Chen Account Manager EMEA Material Data for Moldex3D Simulation Jeff Chen Account Manager EMEA Outline > Material characteristics Essential characteristics needed for Moldex3D simulation Viscosity PVT Thermal conductivity Heat

More information

Rheological and mechanical properties of ABS/PC blends

Rheological and mechanical properties of ABS/PC blends Korea-Australia Rheology Journal Vol. 17, No. 1, March 2005 pp. 1-7 Rheological and mechanical properties of ABS/PC blends M.M.K. Khan*, R.F. Liang 1, R.K. Gupta 1 and S. Agarwal 1 James Goldston Faculty

More information

Dynisco Laboratory Capillary Rheometer (LCR)

Dynisco Laboratory Capillary Rheometer (LCR) From lab to production, providing a window into the process Dynisco Laboratory Capillary Rheometer (LCR) LCR7000/7001/7002 Series Offering Sophisticated Materials Characterization VERSATILE The new LCR7000

More information

Melt tension measurement (Haul-Off)

Melt tension measurement (Haul-Off) Göttfert Werkstoff-Prüfmaschinen GmbH Siemensstraße 2 74722 Buchen Email: info@goettfert.de Internet: http://www.goettfert.com WERKSTOFF-PRÜFMASCHINEN GMBH Melt tension measurement (Haul-Off) The Haul-Off

More information

Bohlin. Rheological instruments backed with rheological experience. Rheological properties

Bohlin. Rheological instruments backed with rheological experience. Rheological properties Rheological properties Rheological instruments backed with rheological experience detailed specification sheets from www.malvern.co.uk/bohlincvor A high resolution, modular rheometer and dynamic spectrometer

More information

MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS

MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS MAE 171A MECHANICAL ENGINEERING LABORATORY Materials Testing Laboratory Week 1 - LINEAR ELASTIC FRACTURE MECHANICS Objective: To gain an appreciation and understanding of the basic principles of fracture

More information

SolutionProvider. Donglin Chem

SolutionProvider. Donglin Chem HMW Processing Aid PVC Foam Regulator Melt Strength and Melt Elasticity are Two critical elements that are critical in the development of an effective rigid cellular foam PVC formula. When the balance

More information

Silicone masterbatch additives for improved plastics processing

Silicone masterbatch additives for improved plastics processing Gummi Fasern Kunststoffe, No. 11, 2000, p. 778 masterbatch additives for improved plastics processing V.B. John and H. Rubroeder* Translation submitted by C. Hinchliffe Selected from International Polymer

More information

Rubber Process Analyzer RPA Applications: Bridging the Gap Between Polymer/Compound Properties and Processing Behavior

Rubber Process Analyzer RPA Applications: Bridging the Gap Between Polymer/Compound Properties and Processing Behavior Rubber Process Analyzer RPA Applications: Bridging the Gap Between Polymer/Compound Properties and Processing Behavior Greg Kamykowski, PhD Alina Latshaw, PhD TA Instruments Waters LLC Akron, OH September

More information

Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers. Mackenzie Geiger Applications Scientist September 6, 2017

Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers. Mackenzie Geiger Applications Scientist September 6, 2017 Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers Mackenzie Geiger Applications Scientist September 6, 2017 Is DMA Thermal Analysis or Rheology? Definitions Thermal Analysis measurement

More information

PRESSURE COEFFICIENT OF HIGH SHEAR RATE NON-NEWTONIAN FLOW IN CAPILLARY PIPE

PRESSURE COEFFICIENT OF HIGH SHEAR RATE NON-NEWTONIAN FLOW IN CAPILLARY PIPE International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 8, August 2018, pp. 193 203, Article ID: IJMET_09_07_021 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=8

More information

ADVANCED. Rubber Process Analyzer RPA9000.

ADVANCED. Rubber Process Analyzer RPA9000. ADVANCED Rubber Process Analyzer RPA9000 www.worldoftest.com/rubber-process-analyzer Applications RPA9000 Rubber Process Analyzer is designed for measuring the viscoelastic properties of polymers and elastomeric

More information

Viscoelasticity, Creep and Fiber-filled Materials

Viscoelasticity, Creep and Fiber-filled Materials Viscoelasticity, Creep and Fiber-filled Materials Hubert Lobo expert material testing CAE material parameters CAE Validation software & infrastructure for materials materials know ledge electronic lab

More information

Polymer Rheology - from tensor maths to practical benefits for processors & end users alike. D.J.Fleming

Polymer Rheology - from tensor maths to practical benefits for processors & end users alike. D.J.Fleming Polymer Rheology - from tensor maths to practical benefits for processors & end users alike D.J.Fleming FLEMING Polymer Testing & Consultancy, Kidderminster, UK ABSTRACT This paper discusses how rheology

More information

PLASTIC PIPE TERMS & DEFINITIONS

PLASTIC PIPE TERMS & DEFINITIONS PLASTIC PIPE TERMS & DEFINITIONS Every product has certain terms and definitions that are unique to that particular product. Listed below are some of the more common terms and definitions that relate to

More information

FLEXPACKCON SPE Flexible Packaging Division. Strategies to Avoid Interfacial Instability in Multilayer Films October 31, 2018 Phoenix, Arizona

FLEXPACKCON SPE Flexible Packaging Division. Strategies to Avoid Interfacial Instability in Multilayer Films October 31, 2018 Phoenix, Arizona FLEXPACKCON SPE Flexible Packaging Division Strategies to Avoid Interfacial Instability in Multilayer Films October 31, 2018 Phoenix, Arizona Presented by: Paul Waller Plastics Touchpoint Group, Inc. Optical

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

LOW AND HIGH SHEAR RATE RHEOLOGY OF INJECTION MOULDING GRADE LIQUID CRYSTAL POLYMERS

LOW AND HIGH SHEAR RATE RHEOLOGY OF INJECTION MOULDING GRADE LIQUID CRYSTAL POLYMERS LOW AND HIGH SHEAR RATE RHEOLOGY OF INJECTION MOULDING GRADE LIQUID CRYSTAL POLYMERS Ahmed Rahman, Rahul K Gupta*, Sati N. Bhattacharya, Shishir Ray 1 and Franco Costa 1 Rheology and Materials Processing

More information

Chapter 6: Mechanical Properties: Part One

Chapter 6: Mechanical Properties: Part One Slide 1 Chapter 6: Mechanical Properties: Part One ` 6-1 Slide 2 Learning Objectives 1. Technological significance 2. Terminology for mechanical properties 3. The tensile test: Use of the stress strain

More information

Extrusion. Key Issues to Address. Lecture 2. Process. Process Variants. Process Analysis. Problem Solving

Extrusion. Key Issues to Address. Lecture 2. Process. Process Variants. Process Analysis. Problem Solving Extrusion Lecture 2 Chapter 4 Key Issues to Address Process Process Variants Process Analysis Problem Solving S.V. Atre 1 Extrusion Material is forced to flow through a die orifice to provide long continuous

More information

Exceptional Technology for Material Science TT DMA. Dynamic Mechanical Analyser

Exceptional Technology for Material Science TT DMA. Dynamic Mechanical Analyser Exceptional Technology for Material Science TT DMA Dynamic Mechanical Analyser The Company Triton Technology Ltd was first established in 1997 to design, manufacture and sell a range of instrumentation

More information

TA INSTRUMENTS RHEOMETERS

TA INSTRUMENTS RHEOMETERS TA INSTRUMENTS RHEOMETERS THE TA INSTRUMENTS RHEOMETER Sensitive, Accurate, Rugged, and Reliable, these words describe a TA Instruments rheometer. Our exciting new rheometers are fifth generation products

More information

NORDIC CENTRE OF EXCELLENCE NETWORK IN FISHMEAL AND FISH OIL COPENHAGEN,

NORDIC CENTRE OF EXCELLENCE NETWORK IN FISHMEAL AND FISH OIL COPENHAGEN, Rheology NORDIC CENTRE OF EXCELLENCE NETWORK IN FISHMEAL AND FISH OIL COPENHAGEN, 14-15.11.2018 Tor Andreas Samuelsen & Åge Oterhals Nofima Nutrition and Feed Technology research group, Bergen, Norway

More information

Rubber Testing Solutions

Rubber Testing Solutions Rubber Testing Solutions MonTech Rubber Testing Intruments Huge changes in rubber industry affecting quality control and laboratories Rising quality demands and more demanding applications Increasing pressure

More information

Flow Study of Wood Plastic Composite Through a Circular Die in an Extrusion Process

Flow Study of Wood Plastic Composite Through a Circular Die in an Extrusion Process Int J Advanced Design and Manufacturing Technology, Vol. 10/ No. 2/ June 2017 37 Flow Study of Plastic Composite Through a Circular Die in an Extrusion Process N. Jafarian Jam* Department of Mechanical

More information

Ceramic and glass technology

Ceramic and glass technology 29 Glass Properties Glass is an inorganic, nonmetallic material which cools to a rigid solid without crystallization. Glassy, or noncrystalline, materials do not solidify in the same sense as do those

More information

TA INSTRUMENTS D YNAMIC M ECHANICAL A NALYZERS

TA INSTRUMENTS D YNAMIC M ECHANICAL A NALYZERS D YNAMIC M ECHANICAL A NALYZERS TA INSTRUMENTS TA Instruments, the world s leading supplier of DMAs is uniquely positioned to provide the best solution for any application. The DMA, based on combined motor

More information

EXTRUSION 15/03/17. Extrusion. Polymer Types. Extrusion. The extruder is the most important piece of machinery in the polymer processing industry.

EXTRUSION 15/03/17. Extrusion. Polymer Types. Extrusion. The extruder is the most important piece of machinery in the polymer processing industry. petrochemical reactors and plants Plastic processing technology map reactor and plant continuous mixer big pelletizer (CIM) compounding machine pellet EXTRUSION high functional domestic twin-screw extruder

More information

Abstract. Experimental. Introduction. for the polymer showing the lowest crystallinity is very advantageous for a number of applications.

Abstract. Experimental. Introduction. for the polymer showing the lowest crystallinity is very advantageous for a number of applications. Elastic Nonwoven Fabrics from Polyolefin Elastomers by S. Srinivas, C. Y. Cheng (Consultant), N. Dharmarajan, and G. Racine ExxonMobil Chemical, 52 Bayway Drive, Baytown, TX 7752 Abstract Vistamaxx Specialty

More information

University of Groningen. Rheokinetics Cioffi, Mario

University of Groningen. Rheokinetics Cioffi, Mario University of Groningen Rheokinetics Cioffi, Mario IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

More information

Metals are generally ductile because the structure consists of close-packed layers of

Metals are generally ductile because the structure consists of close-packed layers of Chapter 10 Why are metals ductile and ceramics brittle? Metals are generally ductile because the structure consists of close-packed layers of atoms that allow for low energy dislocation movement. Slip

More information

TA INSTRUMENTS. Thermal Analysis

TA INSTRUMENTS. Thermal Analysis TA INSTRUMENTS Thermal Analysis TA INSTRUMENTS Thermal Analysis WWW.TAINSTRUMENTS.COM TA INSTRUMENTS, WORLDWIDE More worldwide customers choose TA Instruments as their preferred thermal analysis supplier.

More information

Thermosets and Structural Adhesives. revised by A. Franck, TA Instruments Germany

Thermosets and Structural Adhesives. revised by A. Franck, TA Instruments Germany AN3 Thermosets and Structural Adhesives revised by A. Franck, TA Instruments Germany Keywords: hot melts structurak adhesives, thermosets, cure, Tg., cure cycle, gel point INTRODUCTION Structural adhesives

More information

PRACTICAL TEST METHODS FOR MEASURING THE ZERO SHEAR VISCOSITY OF BITUMINOUS BINDERS

PRACTICAL TEST METHODS FOR MEASURING THE ZERO SHEAR VISCOSITY OF BITUMINOUS BINDERS 124 PRACTICAL TEST METHODS FOR MEASURING THE ZERO SHEAR VISCOSITY OF BITUMINOUS BINDERS J. De Visscher and A. Vanelstaete Belgian Road Research Centre, Belgium Abstract When the zero shear viscosity (ZSV)

More information

Effect of Processing Parameters on Polypropylene Film Properties

Effect of Processing Parameters on Polypropylene Film Properties Vol.2, Issue.5, Sep.-Oct. 2012 pp-3056-3060 ISSN: 2249-6645 Effect of Processing Parameters on Polypropylene Film Properties Ikilem Gocek 1, Sabit Adanur 2 1 (Department of Textile Engineering, Istanbul

More information

Rheometer RHEOTEST RN 4.1 For Quality Control and R&D

Rheometer RHEOTEST RN 4.1 For Quality Control and R&D Rheometer RHEOTEST RN 4.1 For Quality Control and R&D Applications paints and coatings polymers and lubricants pharmaceutics and cosmetic food and luxury food building material bitumen and bituminous products

More information

MECHANICS OF PASTE FLOW IN RADIAL SCREEN EXTRUDERS

MECHANICS OF PASTE FLOW IN RADIAL SCREEN EXTRUDERS MECHANICS OF PASTE FLOW IN RADIAL SCREEN EXTRUDERS P. J. Martin and D. I. Wilson Department of Chemical Engineering, University of Cambridge, UK ABSTRACT High solids volume particle-liquid mixtures, sometimes

More information

The word design means many different things to different people. Here, design is used to denote an educated method of choosing and adjusting the

The word design means many different things to different people. Here, design is used to denote an educated method of choosing and adjusting the The word design means many different things to different people. Here, design is used to denote an educated method of choosing and adjusting the physical parameters of a vibrating system in order to obtain

More information

Characterisation of the flow properties of filled materials and update on standards

Characterisation of the flow properties of filled materials and update on standards Characterisation of the flow properties of filled materials and update on standards Polymeric Materials IAG Wednesday March Martin Rides & Crispin Allen H - Flow properties of filled materials (-) U: Dynamic

More information

High Modulus Carbon Fibres in Super-Structural Compounds

High Modulus Carbon Fibres in Super-Structural Compounds High Modulus Carbon Fibres in Super-Structural Compounds As a matter of fact, even if composite properties guarantee the best answer to the most severe project requirements, many industrial products can

More information

Influence of extrusion coating processing conditions on structure and tensile properties of some polyethylene grades

Influence of extrusion coating processing conditions on structure and tensile properties of some polyethylene grades ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 1, 22 Influence of extrusion coating processing conditions on structure and tensile properties of some polyethylene grades Nils Toft and Mikael

More information

Dynamar TM Polymer Processing Additives (PPA s)

Dynamar TM Polymer Processing Additives (PPA s) 3M TM Specialty Additives Energy & Advanced Materials Division People Technology - Future Dynamar TM Polymer Processing Additives (PPA s) 1 Dyneon 2012 What are Dynamar TM PPA s? Dynamar TM polymer processing

More information

Endex Foam Extrusion General Information Guide

Endex Foam Extrusion General Information Guide Endex International Innovation for the Future Endex Foam Extrusion General Information Guide Section 01 - Foam Extrusion Foam extrusion, in simple terms, consists of mixing a chemical foaming agent with

More information

Continuous Processing of Black Powder

Continuous Processing of Black Powder Continuous Processing of Black Powder Proceedings of AICHE Annual Meeting Austin, Texas Processing and Safety of Energetics Materials Session November 11, 2004 Kristin L. Jasinkiewicz*, Timothy E. Dawag*,

More information

High performance polypropylene thermal insulation for high temperature and deep water applications

High performance polypropylene thermal insulation for high temperature and deep water applications High performance polypropylene thermal insulation for high temperature and deep water applications Allan Boye Hansen and Adam Jackson Bredero Shaw Norway AS, div. Thermotite ABSTRACT Flow assurance including

More information

Flow Behaviour and Viscoelasticity of Polypropylene-Kaolin Composites Extruded at Different Temperatures

Flow Behaviour and Viscoelasticity of Polypropylene-Kaolin Composites Extruded at Different Temperatures Pertanika J. Sci. & Technol. 19 (2): 383 388 (2011) ISSN: 0128-7680 Universiti Putra Malaysia Press Flow Behaviour and Viscoelasticity of Polypropylene-Kaolin Composites Extruded at Different Temperatures

More information

PROBLEM 2: PREDICTING GLASS RIBBON SHAPE IN

PROBLEM 2: PREDICTING GLASS RIBBON SHAPE IN PROBLEM 2: PREDICTING GLASS RIBBON SHAPE IN THE TIN BATH Industry: Glass Industry Representative: Eddie Ferreira Moderator: TBD Student Moderator: TBD PROBLEM STATEMENT During the forming process, the

More information

THE RTM-LIGHT MANUFACTURING PROCESS: EXPERIMENTATION AND MODELLING

THE RTM-LIGHT MANUFACTURING PROCESS: EXPERIMENTATION AND MODELLING THE RTM-LIGHT MANUFACTURING PROCESS: EXPERIMENTATION AND MODELLING O. Maclaren 1, J.M. Gan 2, C.M.D. Hickey 2, S. Bickerton 2, P.A. Kelly 1 1 Department of Engineering Science, 2 Centre for Advanced Composite

More information

Introduction to polymers

Introduction to polymers The University of Edinburgh Division of Engineering Session 2001-2002 Materials Science and Engineering Introduction to polymers 1. Polymeric materials basic definitions, structure, classification 1.1

More information

Using Rheometry to Predict Liquid Adhesive ÒProcessabilityÓ. Peter Whittingstall TA Instruments Inc.

Using Rheometry to Predict Liquid Adhesive ÒProcessabilityÓ. Peter Whittingstall TA Instruments Inc. Using Rheometry to Predict Liquid Adhesive ÒProcessabilityÓ. Peter Whittingstall TA Instruments Inc. A controlled stress rheometer with normal force measurement capability was used to screen a series of

More information

Evaluation of Joint and Crack Sealants Based on. Cyclic Loading and Rheological Properties

Evaluation of Joint and Crack Sealants Based on. Cyclic Loading and Rheological Properties Evaluation of Joint and Crack Sealants Based on Cyclic Loading and Rheological Properties Haithem Soliman Graduate Student Department of Civil Engineering University of Manitoba Email: umsolimh@cc.umanitoba.ca

More information

Optimizing Rheology for Paint and Coating Applications

Optimizing Rheology for Paint and Coating Applications Optimizing Rheology for Paint and Coating Applications RHEOLOGY AND VISCOSITY INTRODUCTION Paints or coatings, like many commercial products, must be optimized for their end use performance, which for

More information

ABSTRACT INTRODUCTION. PO Innovations in Extrusion Coating High Value Solutions in a Critical Processing Technology

ABSTRACT INTRODUCTION. PO Innovations in Extrusion Coating High Value Solutions in a Critical Processing Technology PO Innovations in Extrusion Coating High Value Solutions in a Critical Processing Technology M. Kirchberger, Borealis GmbH, St.-Peter-Str. 25, A-421 Linz, Austria ABSTRACT Linear structured materials such

More information

Rheograph 25 / 75 / 120 High Pressure Capillary Rheometers. certified according to DIN EN ISO 9001:2000 GFT

Rheograph 25 / 75 / 120 High Pressure Capillary Rheometers. certified according to DIN EN ISO 9001:2000 GFT Rheograph 25 / 75 / 120 High Pressure Capillary Rheometers certified according to DIN EN ISO 9001:2000 GFT 011-9-09 2 Tensile Tester Extruder Elastomer Testing Capillary Rheometers On-Line Systems Melt

More information

STP772-EB/Jun Index

STP772-EB/Jun Index STP772-EB/Jun. 1982 Index Acoustic emission monitoring, 106-112 Aerospace applications, 64, 133, 225 Agglomerations, fiber, 6, 9, 47 Analysis (see Testing, Thermal mechanical analysis technique, Ultrasonic

More information

Elongational Viscosity in Quality Control. Manfred Stadlbauer Raw Material Characterization 13.2

Elongational Viscosity in Quality Control. Manfred Stadlbauer Raw Material Characterization 13.2 Elongational Viscosity in Quality Control Manfred Stadlbauer Raw Material Characterization 13.2 Content Performance Polyolefins for Extrusion Coating Selected Resins QC Parameters vs. EC Performance Summary

More information

MiniLab-Compounder and Reactor

MiniLab-Compounder and Reactor MiniLab-Compounder and Reactor Georgius Isaakides, Dr. A. Frendel, J. Bouton Thermo Haake, Dieselstrasse 4, D-76771 Karlsruhe, Germany Jacques.bouton@thermorheo.com Presented on PPS-17, Montreal Abstract

More information

DA910 for Masterbatchers. June 2012

DA910 for Masterbatchers. June 2012 DA910 for Masterbatchers. June 2012 Daiel DA910 : a new PPA designed for the Breakthrough most demanding the current film applications limits and the future will be better... Daikin Chemical Europe Polymer

More information

AAN018e. Rheological Analysis of Tack. Charles L. Rohn, TA Instruments USA

AAN018e. Rheological Analysis of Tack. Charles L. Rohn, TA Instruments USA AAN018e Keywords: tack, peel, compliance, PSA Rheological Analysis of Tack Charles L. Rohn, TA Instruments USA ABSTRACT Materials that are tacky or sticky are easily identified by touch. However, it is

More information

In-situ microfibrillar PP PA6 composites: rheological, morphological and mechanical properties

In-situ microfibrillar PP PA6 composites: rheological, morphological and mechanical properties Bull. Mater. Sci., Vol. 40, No. 5, September 2017, pp. 971 982 DOI 10.7/s12034-017-1469-y Indian Academy of Sciences In-situ microfibrillar PP PA6 composites: rheological, morphological and mechanical

More information

SCREW DESIGN BASICS The Processor Point Of View. Andrew W. Christie Optex Process Solutions, LLC

SCREW DESIGN BASICS The Processor Point Of View. Andrew W. Christie Optex Process Solutions, LLC SCREW DESIGN BASICS The Processor Point Of View Andrew W. Christie Optex Process Solutions, LLC www.optexprocesssolutions.com Outline Define the goal Review basic extruder components Discuss process elements

More information

THE EXPERIMENTAL CHARACTERISATION OF PREPREG TACK

THE EXPERIMENTAL CHARACTERISATION OF PREPREG TACK THE EXPERIMENTAL CHARACTERISATION OF PREPREG TACK R. J. Crossley, P. J. Schubel, N. A. Warrior. Polymer Composites Group Division of Materials, Mechanics and Structures Faculty of Engineering The University

More information

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4. Mechanical behaviour of ceramics 7.5. Mechanical behaviour of polymers

More information

Canadian Council of Independent Laboratories Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) AASHTO T315-09

Canadian Council of Independent Laboratories Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR) AASHTO T315-09 EQUIPMENT 1. TEST PLATES: smooth polished surface stainless steel or aluminum test plates (records) a) plate diameter 8.00 ± 0.02 mm or 25.00 ± 0.05 mm dia.... i) with raised portion of minimum 1.50 mm...

More information

Engineering. Composiies. CRC Press. Taylor & Francis Croup. Boca Raton London New York. CRC Press is an imprint of the

Engineering. Composiies. CRC Press. Taylor & Francis Croup. Boca Raton London New York. CRC Press is an imprint of the Engineering Design with Polymers and Composiies Second Edition lames G. Gerdeen, PhD, PE Ronald A. L. Rorrer, PhD, PE CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

DISCOVERY HYBRID RHEOMETERS TEMPERATURE SYSTEMS AND ACCESSORIES

DISCOVERY HYBRID RHEOMETERS TEMPERATURE SYSTEMS AND ACCESSORIES DISCOVERY HYBRID RHEOMETERS TEMPERATURE SYSTEMS AND ACCESSORIES ETC oven ENVIRONMENTAL TEST CHAMBER Environmental Test Chamber (ETC) The ETC is a high temperature Smart Swap accessory that employs a combination

More information

TA INSTRUMENTS. Rheometers

TA INSTRUMENTS. Rheometers TA INSTRUMENTS Rheometers TA INSTRUMENTS Rheometers WWW.TAINSTRUMENTS.COM TA INSTRUMENTS, WORLDWIDE More worldwide customers choose TA Instruments than any competitor as their preferred rheometer supplier.

More information

Technology and Application of Engineering i Polymers

Technology and Application of Engineering i Polymers EBB 427 Technology and Application of Engineering i Polymers EBB 427 Course Synopsis : This course covers topics on technology and applications of various polymers in engineering applications. The course

More information

CHAPTER - 1 INTRODUCTION

CHAPTER - 1 INTRODUCTION CHAPTER - 1 INTRODUCTION 1. 1.1 Polymer Matrix Composites Composite materials are formed by combining two or more materials that have different properties. The constituent materials work together to give

More information

Solubility of Small-molecule Drugs into Polymer Excipients in Hot Melt Extruded Dosage Forms

Solubility of Small-molecule Drugs into Polymer Excipients in Hot Melt Extruded Dosage Forms ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 22, 204 Solubility of Small-molecule Drugs into Polymer Excipients in Hot Melt Extruded Dosage Forms Johanna Aho, Magnus Edinger, Johan P. Boetker,

More information

BLOW MOULDING. Blow moulding is a process used to produce hollow objects from thermoplastic.

BLOW MOULDING. Blow moulding is a process used to produce hollow objects from thermoplastic. 1 BLOW MOULDING Blow moulding is a process used to produce hollow objects from thermoplastic. The basic blow moulding process has two fundamental phases. First, a parison (or a preform) of hot plastic

More information

Experiment 4 - Testing of Materials in Tension

Experiment 4 - Testing of Materials in Tension Experiment 4 - Testing of Materials in Tension Object: The object of this experiment is to measure the tensile properties of two polymeric materials, steel and aluminum at a constant strain rate on the

More information