Striving for energy density

Size: px
Start display at page:

Download "Striving for energy density"

Transcription

1 Striving for energy density HIGH VOLTAGE MATERIALS FOR LITHIUM ION BATTERIES Public C. Brünig / G. Nuspl BL Energy Storage

2 2 Public, Striving for energy density Table of contents Corporate introduction 3 Business line Energy Storage 7 Clariant high volt materials 11 Lithium cobalt phosphate LiCoPO 4 13 High volt spinel LiMn 1,6 Ni 0,4 O 4 15 Summary 24

3 Corporate Introduction Public C. Brünig / G. Nuspl BL Energy Storage

4 4 Public, Corporate Introduction Historical milestones Clariant has come a long way now we are going beyond what has already been achieved Clariant Spin-Off and IPO Acquisition of Hoechst Specialty Chemicals Acquisition of BTP /2010 Restructuring ff Acquisition of Süd-Chemie 2013 Divestment of 5 Businesses

5 5 Public, Corporate Introduction A globally leading company in specialty chemicals Clariant focuses on creating value through innovation and sustainability Sales 2013 (CHF m) from continuing operations 858 EBITDA 2013 (CHF m) before exceptionals 4 Business Areas 323 Net result 2013 (CHF m) from continuing operations 14.1% EBITDA margin 2013 before exceptionals Employees 2013 Corporate Center, Pratteln, Switzerland

6 6 Public, Corporate Introduction Four Business Areas* The right portfolio with leading market positions Care Chemicals Catalysis & Energy Natural Resources Plastics & Coatings SALES (CHF m) SALES (CHF m) 713 SALES (CHF m) SALES (CHF m) EBITDA** (CHF m) 263 EBITDA** (CHF m) 159 EBITDA** (CHF m) 195 EBITDA** (CHF m) 356 EBITDA MARGIN** 16.8% EBITDA MARGIN** 22.3% EBITDA MARGIN** 15.2% EBITDA MARGIN** 14.1% *Results full year 2013 **Before exceptional items, as reported

7 Business Line Introduction Public C. Brünig / G. Nuspl BL Energy Storage

8 8 Public, Business Line Introduction Global HQ for Business Line Energy Storage relocate from Munich to Singapore as of 1 st January 2013 Sales Office Headquarter Legal Entity R&D/pilot facilities Production facilities Candiac, Canada LFP plant (P2, P2E) Opened in 2012 Sales Office Capacity expansion Munich, Germany Sales Office Moosburg, Germany R&D facility and pilot plants LFP (P2S), LTO LMFP, LMNO Opened in Shanghai, China Sales Office South Korea Sales Office Wisconsin, USA Sales Office Tokyo, Japan Sales Office Switzerland, Pratteln LiFePO 4 + C Licensing AG Singapore Headquarter 1 Start of regular production

9 9 Public, Business Line Introduction LFP - Clariant s main cathode material Group of materials Physical characteristics Powder P2 & P2E P2S Spherical agglomerates Grades Life Power P2 very high rate capability due to small primary particles Life Power P2E reduced BET surface area and increased D50 versus P2 for reduced solvent demand and easier dispersion Life Power P2S spherical agglomerates for easier product handling and electrode coating

10 10 Public, Business Line Introduction Clariant s roadmap for Energy Storage LiFePO 4 LiMnPO 4 LiCoPO 4 LiNiPO 4 5V High-Voltage Materials LiMn 2 O 4 LiMn 2-x Ni x O 4 Li 4 Ti 5 O 12

11 New Cathode Materials CLARIANT S HIGH-VOLT MATERIALS Public C. Brünig / G. Nuspl BL Energy Storage

12 12 High volt materials 3 possible candidates (and derivatives of these) Nickel manganese spinel LiMn 2-x Ni x O 4 Lithium cobalt phosphate LiCoPO 4 Lithium nickel phosphate LiNiPO 4 Promising results in battery test, good cycle life, good rate capability, positive safety test Synthesis of fine particulate and phase pure samples possible, till now no battery tests with an acceptable cycle life, problems during safety tests Synthesis phase pure samples possible, till now impossible to charge/discharge the material in half cells, also no positive results in literature

13 13 Lithium cobalt phosphate - LiCoPO 4 Synthesis of phase pure and fine particulate powders possible with Clariant synthesis routes Till now the tested materials show strong capacity loss after a few cycles

14 14 Lithium Cobalt Phosphate - LiCoPO 4 Thermal behavior of LCP is different from LFP and LMP Thermal behavior of LCP is depending on the state of charge Fully charged Fully charged Experimental investigation on the electrochemical and thermal behavior of LiCoPO 4 -based cathode Journal of Power Sources, Volume 222, 15 January 2013, Pages Simon Theil, Meike Fleischhammer, Peter Axmann, Margret Wohlfahrt-Mehrens

15 15 High volt spinel - Basic information - Voltage vs. Li /Li + : 4.75V Voltage vs. C-anode (graphite) 4.5 V Theoretical spec. capacity: 147 mah/g Spec. Energy (powder, theo.) 655 Wh/kg Energy Density 2670 Wh/l Rechargeable spec. Capacity: 135 mah/g Practical reality of a high volt Li-Ion Battery is still an open question! suitable electrolyte with stability between -0.5 to 5.5V for the 4.5 V Li-Ion Battery required

16 16 High volt spinel Energy Density on cell level Projected energy density of a cell with graphite anode compared to other cathode materials and assuming equal electrode loadings and porosities 5V-Spinel offers the opportunity of raising energy density on cell level vs. NMC by roundabout 20%. The higher cell voltage of 5Vspinel offers an additional benefit on pack level by a reduced number of cells in series.

17 17 High volt spinel - LiMn 2-x Ni x O 4 - High volt spinels form solid solutions for different ratios of manganese and nickel Focus on LiMn 1,6 Ni 0,4 O 4 phase pure samples Particle size distribution: D(0,50) 7-8 µm BET-surface: 1 qm/g Press density: 2.3 g/cm 3

18 18 High volt spinel - Battery tests - Battery test results: - Capacity values 135 C/2, close to theoretic capacity of 147 mah/g - Electrolyte FEC:DMC 1:4, half cell testing - Good cycle life for 200 cycles in half cells

19 19 High volt spinel - Battery tests - Tests at CEA institute show that the results are reproducible Also good results at higher temperature C/5 / D/5, 25 C 100 cycles C/5 / D/5, 55 C 100 cycles

20 20 High volt spinel - Battery tests - Rate capability testing had shown very promising results Loading about 5 mg/cm 2 (thin electrode) 1/2D 1D 3D 5D 10D

21 21 High volt spinel - Battery tests / results of customers - Full cell test vs. graphite - 25 C, cycled with 1 C, 100 % DOD

22 22 High volt spinel - dissolution of manganese - Manganese dissolution is a key factor in limiting cycle and calendar life of manganese spinel (LMO) cells Soaking test of a 4 V spinel sample compared with a high volt spinel Electrode films prepared from both samples Stored in EC:DMC 1:1, LiPF 6 at 60 C for 2 weeks Dissolution of manganese in the high volt spinel samples clearly lower

23 23 High volt spinel - safety aspects, DSC analysis - Only small exothermal behaviour when charged material is heated in the presence of electrolyte The nickel doped spinel is a safe cathode material [W/g] LiMn 1.6 Ni 0.4 O 4 [W/g] Temperature C Temperature C

24 24 Summary Till now the nickel doped manganese spinel is the most promising high volt material Status: batch size: 2,5 kg, up-scaling in progress Synthesis route yields phase pure samples of the nickel doped manganese spinel Nickel doped spinel shows no critical exothermal reaction during heating Only small dissolution of manganese in the electrolyte Promising results in the battery tests: Capacity values 135 mah/g (LiMn 1,6 Ni 0,4 O 4 ) close to theoretic capacity of 147 mah/g First rate capability tests show a good behaviour at high rates Full cell tests of customers are very promising, over 500 cycles vs. graphite

Main presentation title

Main presentation title Main presentation title Presentation sub-title Developments in battery chemistries Dr. Marcel Meeus (Umicore): Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies,

More information

Kuang-Che Hsiao. Supervisor: Prof. Tony West

Kuang-Che Hsiao. Supervisor: Prof. Tony West New Potential Cathode Materials for Lithium-ion ion Battery - Synthesis and characterization of Li 1+x FePO 4-x N x cathode - Kuang-Che Hsiao Supervisor: Prof. Tony West 08/06/2010 E-mail: dtp09kh@sheffield.ac.uk

More information

Electrochemical performance of lithium-rich layered oxides for

Electrochemical performance of lithium-rich layered oxides for IBA 2013 Electrochemical performance of lithium-rich layered oxides for electric vehicle applications Jay Hyok Song, Andrei Kapylou, Chang Wook Kim, Yong Chan You, and Sun Ho Kang* SAMSUNG SDI Contents

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

SPECIALTY CARBONS FOR THE POSITIVE ELECTRODE OF LITHIUM-ION BATTERIES

SPECIALTY CARBONS FOR THE POSITIVE ELECTRODE OF LITHIUM-ION BATTERIES SPECIALTY CARBONS FOR THE POSITIVE ELECTRODE OF LITHIUM-ION BATTERIES Imerys & Carbon A STRONG COMPANY C-NERGY versus application benefits Imerys & Carbon, member of the Imerys Group, is the reference

More information

Batteries for Vehicular Applications

Batteries for Vehicular Applications Batteries for Vehicular Applications Venkat Srinivasan * Staff Scientist Lawrence Berkeley National Laboratory March 2, 2008 *vsrinivasan@lbl.gov Range Specific c Energy (W Wh/kg) 1000 100 10 Relative

More information

Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders

Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders Thomas Mathivet & Thierry Baert AABC Conference January 30 th February 2 nd 2017 Mainz, Germany Agenda 1. Solvay in brief 2. Solvay

More information

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal introduction Jeff Norris CEO +1.803.528.0941 JNorris@ParacleteEnergy.com Michigan

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BY 2025, THE WORLD WILL MANUFACTURE 8 BILLION LI-ION CELLS Continued market growth requires rapid advances in higher energy density, higher performance

More information

2.4 Secondary Lithium Batteries Lithium-Metal Batteries Lithium-Ion Batteries Lithium Polymer Batteries...

2.4 Secondary Lithium Batteries Lithium-Metal Batteries Lithium-Ion Batteries Lithium Polymer Batteries... 1 Basic Elements for Energy Storage and Conversion... 1 1.1 Energy Storage Ability... 1 1.2 The Sustained Energy.... 3 1.3 Energy Storage for Nano-electronics................... 4 1.4 Energy Storage...................................

More information

Carbon Nanotubes for Li + Batteries. U.S. Government

Carbon Nanotubes for Li + Batteries. U.S. Government Assistant Professor Chemical & Biomedical Engineering Group Leader of CNT and Advanced Batteries NanoPower Research Laboratories (NPRL) Golisano Institute for Sustainability (GIS) Rochester Institute of

More information

Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes

Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes Natural Graphite versus Synthetic, Silicon and Others in Lithium Ion Battery Anodes George C Hawley President George C Hawley & Associates Supermin123@hotmail.ca Biography George C. Hawley & Associates

More information

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science From Surface To Cell: Understanding the Lithium Ion Battery 1 The world leader in serving science Content Discharge Detail the Li-ion Battery industry drivers & trends Our position in industry and our

More information

Lithium Ion Batteries Lecture WS 2016/2017

Lithium Ion Batteries Lecture WS 2016/2017 Ulm, 12.12.2016 Lithium Ion Batteries Lecture WS 2016/2017 Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg - 1 - Major types of reaction: Insertion

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300139 15 December 2017 The below identified

More information

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries

Solef. Solef PVDF Aqueous Dispersions. for Lithium Batteries Solef Solef PVDF Aqueous Dispersions for Lithium Batteries Innovative Polymerization Technology Solef PVDF is a partially fluorinated, semi-crystalline polymer with excellent thermo-mechanical and chemical

More information

Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques

Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques Won-Sub Yoon 1, *, Kyung-Wan Nam 2, Kyung Yoon Chung 3, Mahalingam Balasubramanian 4, Dong-Hyuk Jang 1, Joengbae

More information

Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS

Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS Richard LAUCOURNET Group head in the development of advanced materials for new energies CEA TOWARD A MORE EFFICIENT PROCESS TO RECOVER MATERIALS STATE OF THE ART The directive on recycling for A high environmental

More information

Electrode and Molecular Architectures for Iron based Multivalent Systems

Electrode and Molecular Architectures for Iron based Multivalent Systems Electrode and Molecular Architectures for Iron based Multivalent Systems Jagjit Nanda Materials Science and Technology Division 2 nd MRES, North Eastern University August 20 th 2014 Collaborators S. K.

More information

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013 Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries Heribert Walter, Battery+Storage 2013 Agenda SGL Group at a Glance Anode Materials Overview Material Synthesis and Modification

More information

Establishing Industrial Leadership of EU in Advanced Materials for low-carbon energy & energy efficiency technologies

Establishing Industrial Leadership of EU in Advanced Materials for low-carbon energy & energy efficiency technologies Establishing Industrial Leadership of EU in Advanced Materials for low-carbon energy & energy efficiency technologies EMIRI Energy Materials Industrial Research Initiative Dr Fabrice Stassin - Managing

More information

MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES

MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES Katja Waetzig, Jochen Schilm, B. Matthey, St. Barth, K. Nikolowski, M. Wolter Dresden, 20 th

More information

Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes

Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes JOUL, Volume 2 Supplemental Information Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes Xabier Judez, Gebrekidan Gebresilassie Eshetu, Chunmei Li, Lide M. Rodriguez-

More information

Green Materials & Processes of Lithium-Ion Battery

Green Materials & Processes of Lithium-Ion Battery Nano and Advanced Materials Institute (NAMI) Green Materials & Processes of Lithium-Ion Battery Paul Ho 1 Content NAMI Lithium-ion Battery Researches Green Materials & Processes for Lithiumion Battery

More information

Factors Governing Life of High-Energy Lithium-Ion Cells

Factors Governing Life of High-Energy Lithium-Ion Cells Factors Governing Life of High-Energy Lithium-Ion Cells D.P. Abraham IBA 2013 March 11, 2013 Barcelona, Spain Research sponsors are both Government and Private Sector 2 Diagnostics Overview Use of characterization

More information

Processing of water-based electrode pastes for lithium nickel manganese cobalt oxide (NMC) batteries

Processing of water-based electrode pastes for lithium nickel manganese cobalt oxide (NMC) batteries Processing of water-based electrode pastes for lithium nickel manganese cobalt oxide (NMC) batteries F. A. Çetinel, D. Nötzel and W. Bauer Shaping 5, 29-31 January 2013, Mons, Belgium Institute for Applied

More information

Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium

Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium Portugaliae Electrochimica Acta 2013, 31(6), 331-336 DOI: 10.4152/pea.201306331 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium

More information

Advanced Lithium-ion Battery Manufacturing R&D

Advanced Lithium-ion Battery Manufacturing R&D EVS28 KINTEX, Korea, May 3-6, 2015 Advanced Lithium-ion Battery Manufacturing R&D James F. Miller Argonne National Laboratory, Argonne, Illinois, USA 60439 Introduction I. The cost of lithium-ion batteries

More information

A Quantum Leap Forward for Li-Ion Battery Cathodes

A Quantum Leap Forward for Li-Ion Battery Cathodes A Quantum Leap Forward for Li-Ion Battery Cathodes Josh Thomas Ångström Advanced Battery Centre, Uppsala University, Sweden. josh.thomas@mkem.uu.se GCEP Research Symposium: Energy Research Five Years and

More information

KAJ Mining Projects. The Future

KAJ Mining Projects. The Future KAJ Mining Projects The Future KAJ Mining LLC Zimbabwe Mineral Consulting Exploration and Development Company KAJ is uniquely positioned to help those interested in seeking mining investment opportunities

More information

Werkstoffforschung in der Batterietechnik

Werkstoffforschung in der Batterietechnik Werkstoffforschung in der Batterietechnik Philipp Adelhelm Institute for Technical Chemistry and Environmental Chemistry Center for Energy and Environmental Chemistry (CEEC Jena) Friedrich Schiller University

More information

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation JRC Exploratory Research Workshop Safer Li-Ion Batteries by Preventing Thermal

More information

Novel Materials for Lithium-Ion Batteries

Novel Materials for Lithium-Ion Batteries Novel Materials for Lithium-Ion Batteries John Bradley May 18th 2012 Project Supervisors: Prof. West & Chaou Tan Abstract The effect of carbon coating on two novel battery cathode materials LiMnP 2 O 7

More information

Batteries for Mobile Applications

Batteries for Mobile Applications Batteries for Mobile Applications Dr A.R. Armstrong and Dr A.D. Robertson, School of Chemistry, University of St. Andrews February 2002 Portable electronic devices are an increasingly vital element of

More information

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED LiMPO 4 (M= Mn, Co & Ni) NANOPARTICLES CHAPTER VI 181 CHAPTER - VI FABRICATION AND ELECTROCHEMICAL

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales

NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales Departamento de Química Inorganica e Ingeniería Química Universidad de Córdoba 1 Great

More information

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009 Final Report for AOARD Grant FA 4869-7-1-49 Lithium-air Battery Research December 29 Name of Principal Investigators: Prof. N. Munichandraiah - e-mail address : muni@ipc.iisc.ernet.in - Institution : Indian

More information

Artificial Graphite for Lithium Ion Batteries

Artificial Graphite for Lithium Ion Batteries Artificial Graphite for Lithium Ion Batteries Dr. Roland Müller London, 6. Dec 2011 Agenda Group at a Glance Graphite Properties Production of Artificial Graphite Anode Materials in Lithium Ion Batteries

More information

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Fundamental Chemistry of Sion Power Li/S Battery Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Outline Thermodynamics of Li-S Discharge-charge mechanism in the

More information

Energy Science and Technology III Lecture Winter Term 2015/16. Battery Safety 28 January 2016

Energy Science and Technology III Lecture Winter Term 2015/16. Battery Safety 28 January 2016 Energy Science and Technology III Lecture Winter Term 2015/16 Battery Safety 28 January 2016 Harry Döring, Harald Brazel, Mario Wachtler Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg

More information

Submitted By Maksim V. Tyufekchiev Somyi Hur. Submitted on April 23, 2013

Submitted By Maksim V. Tyufekchiev Somyi Hur. Submitted on April 23, 2013 PROJECT NUMBER: MQP YW1-YW11 Developing a Low-Cost Methodology for Fabricating All-Solid-State Lithium-Ion Battery A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE

More information

Electric Vehicle Revolution and Implications for the Nickel Market

Electric Vehicle Revolution and Implications for the Nickel Market Electric Vehicle Revolution and Implications for the Nickel Market 1 This presentation may include statements that present Vale's expectations about future events or results. All statements, when based

More information

Progress and Challenges: Generation 3b Tobias Placke

Progress and Challenges: Generation 3b Tobias Placke Progress and Challenges: Generation 3b Tobias Placke Division Manager, Materials Division, MEET Battery Research Center (University of Münster) Progress and Challenges: Generation 3b Dr. Tobias Placke

More information

ADVANCES IN THE PERFORMANCE OF LAC KNIFE NATURAL FLAKE SOURCES

ADVANCES IN THE PERFORMANCE OF LAC KNIFE NATURAL FLAKE SOURCES ADVANCES IN THE PERFORMANCE OF LAC KNIFE NATURAL FLAKE AND EXPANDED GRAPHITE 34th International IN ELECTROCHEMICAL Battery Seminar POWER SOURCES March 20 to 23, 2017 Dr. Joseph E. Doninger, Director of

More information

Rechargeable Batteries for Electrochemical Energy Storage: From Battery Research to Application

Rechargeable Batteries for Electrochemical Energy Storage: From Battery Research to Application Rechargeable Batteries for Electrochemical Energy Storage: From Battery Research to Application Workshop: Batteries Fuelling the Alliance with the Future Santiago de Compostela, Nov. 6 th, 2018 Dr. Tobias

More information

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017

Lower Cost Higher Performance Graphite for LIBs. Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Lower Cost Higher Performance Graphite for LIBs Prepared by: Dr. Edward R. Buiel President and CEO Coulometrics, LLC. Date: March 23, 2017 Outline Company overview Review of natural graphite resources

More information

Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication

Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication Vacuum and Atmospheric Coating and Lamination Techniques Applied to Li-S Battery Fabrication AIMCAL Web Coating Conference Paper AB5, 1:00 PM Wednesday, October 26, 2011 The Rechargeable Battery Company

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

Power the future CIC March 21st 2012

Power the future CIC March 21st 2012 Power the future CIC March 21st 2012 Batteries, Past, Present and Future Michel Armand 2010 CIC energigune. 2010 All rights reserved 1 Billion Cars in 2010 and and 1.3 Millions fatalities on the roads!

More information

Battery Materials Availability and Recycling. NAS Review July 26, Linda Gaines Center for Transportation Research Argonne National Laboratory

Battery Materials Availability and Recycling. NAS Review July 26, Linda Gaines Center for Transportation Research Argonne National Laboratory Battery Materials Availability and Recycling NAS Review July 26, 2010 Linda Gaines Center for Transportation Research Argonne National Laboratory We don t want to trade one crisis for another! Insure against

More information

Thermal Conductivity Graphite Solutions for Polymers

Thermal Conductivity Graphite Solutions for Polymers Polymers Thermal Conductivity Solutions for Polymers TIMREX TIMREX C-THERM Highest purity with synthetic graphite Consistent quality Regulatory compliance High performance Contact us for further information

More information

Cathodes for Li-ion cells. Batteries ACME Faculty, EHVE course B.Sc. Studies, III year, V semester. Cathodes for Lithium-ion cells

Cathodes for Li-ion cells. Batteries ACME Faculty, EHVE course B.Sc. Studies, III year, V semester. Cathodes for Lithium-ion cells Batteries ACME Faculty, EHVE course B.Sc. Studies, III year, V semester Leszek Niedzicki, PhD, Eng. Cathodes for Lithium-ion cells Cathode required properties (wish list): High capacity(high energy density);

More information

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes Supporting information Carbon-Coated Na 3 V 2 (PO 4 ) 3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li-Cathodes By Changbao Zhu, Kepeng Song, Peter

More information

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Supporting Information Oxidation State of Cross-over Manganese Species

More information

The European Commission s science and knowledge service. Joint Research Centre

The European Commission s science and knowledge service. Joint Research Centre The European Commission s science and knowledge service Joint Research Centre EU-Commission JRC Contribution to EVE IWG M. De Gennaro, E. Paffumi 24th Meeting of the GRPE Informal Working Group on Electric

More information

On the Dynamic Frontier of R&D of novel power sources

On the Dynamic Frontier of R&D of novel power sources On the Dynamic Frontier of R&D of novel power sources In collaboration with BASF,GM,Pellion Doron Aurbach Bar Ilan university, Israel Dr. Ran Elazari Ariel Rosenman Prof. Gregory Salitra Daniel Sharon

More information

Key actions for Sustainable Materials for Future Mobility

Key actions for Sustainable Materials for Future Mobility Key actions for Sustainable Materials for Future Mobility Roland Gauß, Julien Frey EIT Raw Materials is supported by EIT, a body of the European Union IEA-HEV Workshop l November l 2018 Supply risk Criticality

More information

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Abstract: New technologies for creating efficient low cost lithium ion batteries

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS

TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS TOWARD THE COMPLETE REMOVAL OF ORGANIC SOLVENTS Andrea Glawe R&D Director KROENERT GmbH& Co KG STATE OF THE ART The Coating Machinery Experts Self-Metered CoatingTechniques Pre-Metered CoatingTechniques

More information

EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY

EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY Weiming Lu and D.D.L. Chung Composite Materials Research Laboratory University at Buffalo The State

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

Challenge for recycling advanced EV batteries

Challenge for recycling advanced EV batteries Challenge for recycling advanced EV batteries EV Segment addressed very well CO2 emission and low energy consumption, But. What about resources??? resources aspect must be integrated to access to a sustainable

More information

Progress in rechargeable Li ion batteries.

Progress in rechargeable Li ion batteries. Progress in rechargeable Li ion batteries. Doron Aurbach Department of Chemistry, Bar-Ilan University, Ramat-Gan 529, Israel At Bar Ilan University: Elena Markevich Gregory Salitra Ella Zinigrad Boris

More information

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Terrill B. Atwater 1,2 and Alvin J. Salkind 2,3 1 US Army RDECOM, CERDEC, Ft. Monmouth NJ 2 Rutgers University,

More information

Synthesis of Lithium Manganate Powders by Spray Pyrolysis and its Application to Lithium Ion Batteries for Trams

Synthesis of Lithium Manganate Powders by Spray Pyrolysis and its Application to Lithium Ion Batteries for Trams Synthesis of Lithium Manganate Powders by Spray Pyrolysis and its Application to Lithium Ion Batteries for Trams Hironori Ozawa*, Takashi Ogihara*, Izumi Mukoyama*, Kenich Myojin*, Hitoshi Aikiyo**, Takashi

More information

Advanced Battery Materials

Advanced Battery Materials Advanced Battery Artificial Graphite Negative Electrode Separators High-heat processing Casting/ molding Mixing/ dispersion Carbon Coated Foil Carbon structure control SDX Membran/ crystal growth Laminate/

More information

Thermal Management of Lithium-ion Batteries

Thermal Management of Lithium-ion Batteries Thermal Management of Lithium-ion Batteries APEC 2018 Greg Albright 1 What Are We Talking About? Maximize Vehicle Range (battery kwh; regen; charge time) Maximize Performance (power) Minimize Cost ($/mile)

More information

SPECIALTY CARBONS FOR BIPOLAR PLATES OF FUEL CELLS

SPECIALTY CARBONS FOR BIPOLAR PLATES OF FUEL CELLS Mobile Energy SPECIALTY CARBONS FOR BIPOLAR PLATES OF FUEL CELLS TIMREX TIMCAL Graphite ENSACO TIMCAL Carbon Black imerys-graphite-and-carbon.com Imerys Graphite & Carbon WHO ARE WE? Imerys Graphite &

More information

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center

The sunliquid process - cellulosic ethanol from agricultural residues. Dr. Ing. Paolo Corvo Biotech & Renewables Center The sunliquid process - cellulosic ethanol from agricultural residues Dr. Ing. Paolo Corvo Biotech & Renewables Center Introduction to Clariant and the Biotech & Renewable Center Dr. Ing. Paolo Corvo Biotech

More information

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells NAATBATT Conference March 2016 Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells Presented By: John Hart Business Development Manager Power Technologies j.hart@dexmet.com

More information

Optimized for Economies of Scale: High-Performing Natural Graphite for Next-Generation Li-ion Batteries

Optimized for Economies of Scale: High-Performing Natural Graphite for Next-Generation Li-ion Batteries Optimized for Economies of Scale: High-Performing Natural Graphite for Next-Generation Li-ion Batteries 2018 International Battery Seminar and Exhibit Shaun Verner - Managing Director & CEO Christina Lampe-Onnerud

More information

EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY

EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY Bambang Prihandoko 1, R. Ibrahim Purawiardi 1 and Sri Rakhmawati 2 1 Research Centre for Physics, Indonesian Institute

More information

Research Article Synthesis and Characterization of Electrophoretically Deposited Nanostructured LiCoPO 4 for Rechargeable Lithium Ion Batteries

Research Article Synthesis and Characterization of Electrophoretically Deposited Nanostructured LiCoPO 4 for Rechargeable Lithium Ion Batteries ISRN Nanotechnology Volume 213, Article ID 653237, 5 pages http://dx.doi.org/1.1155/213/653237 Research Article Synthesis and Characterization of Electrophoretically Deposited Nanostructured LiCoPO 4 for

More information

Ionic Conductivity and Solid Electrolytes II: Materials and Applications

Ionic Conductivity and Solid Electrolytes II: Materials and Applications Ionic Conductivity and Solid Electrolytes II: Materials and Applications Chemistry 754 Solid State Chemistry Lecture #27 June 4, 2003 References A. Manthiram & J. Kim Low Temperature Synthesis of Insertion

More information

Review Thermal Runaway Reactions mechanisms Issue date : January 2011

Review Thermal Runaway Reactions mechanisms Issue date : January 2011 Project HELIOS - High Energy Lithium-Ion Storage Solutions (www.helios-eu.org) Project number: FP7 2333765 (A 3 year project, supported by the European Commission, to study and test the comparative performances

More information

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator 217 BLI X, Symposium on Energy Storage, June 27-29, 217, at IBM- Research Almaden in San Jose, CA, USA Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with

More information

Investigation of Alkaline Ion Rocking Chair Batteries. Reza Fathi

Investigation of Alkaline Ion Rocking Chair Batteries. Reza Fathi University of Milano-Bicocca Department of Material Science Investigation of Alkaline Ion Rocking Chair Batteries Doctoral dissertation in Materials Science (XVII cycle) of Reza Fathi Supervisor : Prof.

More information

Li-S S and Li-Air Systems: The Characterization Challenge

Li-S S and Li-Air Systems: The Characterization Challenge Li-S S and Li-Air Systems: The Characterization Challenge Petr Novák Anna Evans Arnd Garsuch (BASF SE) Hermann Kaiser Pascal Maire Tiphaine Poux Holger Schneider 2 Go beyond Li-ion! But what is there???

More information

Al 2 O 3 coating for improving thermal stability performance of manganese spinel battery

Al 2 O 3 coating for improving thermal stability performance of manganese spinel battery DOI: 10.1007/s11771 011 0912 2 Al 2 O 3 coating for improving thermal stability performance of manganese spinel battery LIU Yun-jian( 刘云建 ) 1, 2, GUO Hua-jun( 郭华军 ) 2, LI Xin-hai( 李新海 ) 2 1. School of

More information

Centre for Nanomaterials Research Institute of Science Universiti Teknologi MARA Shah Alam, Selangor, Malaysia

Centre for Nanomaterials Research Institute of Science Universiti Teknologi MARA Shah Alam, Selangor, Malaysia DOPED LiMn2O4 WITH Ti AND Sn AS CATHODE FOR Li-ION BATTERY *Aida Fazliza Mat Fadzil 1, Norlida Kamarulzaman 1, Mohd Azmi Bustam 2 1 Centre for Nanomaterials Research Institute of Science Universiti Teknologi

More information

Dag Noréus. General problems with rechargeable batteries

Dag Noréus. General problems with rechargeable batteries Dag Noréus General problems with rechargeable batteries Innovative Iron-Air Battery High power hydrides for HEV batteries Recycling of NiMH batteries Cobalt free batteries Rechargable batteries are not

More information

Phase Composition and Dynamical Studies of Lithium Iron Phosphate

Phase Composition and Dynamical Studies of Lithium Iron Phosphate Phase Composition and Dynamical Studies of Lithium Iron Phosphate Thesis by Joanna L. Dodd In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology

More information

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplemental Information Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using

More information

T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N. Product Information Primary and Rechargeable Batteries

T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N. Product Information Primary and Rechargeable Batteries T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N Product Information Primary and Rechargeable Batteries Introduction The following document provides product information on portable

More information

Cristelle HERRIOT Application Engineer ENTEGRIS TOWARD A BETTER CONTROLLED MANUFACTURING PROCESS

Cristelle HERRIOT Application Engineer ENTEGRIS TOWARD A BETTER CONTROLLED MANUFACTURING PROCESS Cristelle HERRIOT Application Engineer ENTEGRIS TOWARD A BETTER CONTROLLED MANUFACTURING PROCESS STATE OF THE ART What is a contamination Particular (solid) and molecular (ionic) Distinction between the

More information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH Nanocrystalline LiFePO as cathode material for lithium battery applications Abstract S.C SIAH Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 LiFePO was prepared

More information

IMERYS GRAPHITE & CARBON

IMERYS GRAPHITE & CARBON IMERYS GRAPHITE & CARBON CARBONS FOR ADVANCED LEAD ACID BATTERIES: PROPERTIES AND ROLE Albena, 13 th imerys-graphite-and-carbon.com OVERVIEW 1. ABOUT IMERYS GRAPHITE & CARBON 3. «ONE-STOP SHOP»: YOUR PARTNER

More information

LITHIUM ION BATTERIES

LITHIUM ION BATTERIES LITHIUM ION BATTERIES NICKEL & COBALT FOR LITHIUM ION BATTERIES Cobalt and nickel are critical raw materials in the production of cathodes for the lithium-ion battery (LiB) market. These metals are used

More information

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle Supporting Information Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability Dahee Jin, Jeonghun Oh, Alex Friesen, Kyuman Kim,

More information

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO 4 /Graphite Electrodes in High Capacity Lithium-ion Batteries

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO 4 /Graphite Electrodes in High Capacity Lithium-ion Batteries Model Prediction and Experiments for the Electrode Design Optimization Bull. Korean Chem. Soc. 2013, Vol. 34, No. 1 79 http://dx.doi.org/10.5012/bkcs.2013.34.1.79 Model Prediction and Experiments for the

More information

A Brief Review: Past, Present and Future of Lithium Ion Batteries 1

A Brief Review: Past, Present and Future of Lithium Ion Batteries 1 ISSN 1023-1935, Russian Journal of Electrochemistry, 2016, Vol. 52, No. 12, pp. 1095 1121. Pleiades Publishing, Ltd., 2016. Published in Russian in Elektrokhimiya, 2016, Vol. 52, No. 12, pp. 1229 1258.

More information

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4

Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Effect of electrolyte and additives on performance of LiNi 0.5 Mn 1.5 O 4 Brett L. Lucht Department of Chemistry University of Rhode Island Source of Energy Fade of Lithium-ion Batteries Poor calendar

More information

AMERICAN MANGANESE CATHODE RECYCLING TECHNOLOGY

AMERICAN MANGANESE CATHODE RECYCLING TECHNOLOGY CONTRACT REEARCH & TESTING COMPANY CONTRACT RESEARCH & TECHNOLOGY COMMERICALIZATION New Technologies That May Change the Economics of Recycling Lithium-Ion Batteries AMERICAN MANGANESE CATHODE RECYCLING

More information

Degradation of high-voltage cathodes for advanced lithium-ion batteries differential capacity study on differently balanced cells

Degradation of high-voltage cathodes for advanced lithium-ion batteries differential capacity study on differently balanced cells Science and Technology of Advanced Materials ISSN: 1468-6996 (Print) 1878-5514 (Online) Journal homepage: https://www.tandfonline.com/loi/tsta20 Degradation of high-voltage cathodes for advanced lithium-ion

More information

Advanced Electrodes for High Power Li-ion Batteries

Advanced Electrodes for High Power Li-ion Batteries Advanced Electrodes for High Power Li-ion Batteries Karim Zaghib, Alain Mauger, Henri Groult, John B. Goodenough, Christian M. Julien To cite this version: Karim Zaghib, Alain Mauger, Henri Groult, John

More information

Li-ion batteries a family of chemistries with many possibilities

Li-ion batteries a family of chemistries with many possibilities Li-ion batteries a family of chemistries with many possibilities Kristina Edström * Department of Chemistry The Ångström Laboratory 1 Billion Cars in 2010 and and 1.3 Millions accidents on the roads! >

More information