Journal of Integrative Agriculture 2017, 16(0): Available online at ScienceDirect

Size: px
Start display at page:

Download "Journal of Integrative Agriculture 2017, 16(0): Available online at ScienceDirect"

Transcription

1 Journal of Integrative Agriculture 2017, 16(0): Available online at ScienceDirect RESEARCH ARTICLE Wheat streak mosaic virus: incidence in field crops, potential reservoir within grass species and uptake in winter wheat cultivars Jana Chalupniková 1, 2, Jiban Kumar Kundu 1, Khushwant Singh 1, Pavla Bartaková 1, Eva Beoni 1 1 Division of Crop Protection and Plant Health, Crop Research Institute, Drnovská 507, Prague, Czech Republic 2 Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Albertov 6, Prague, Czech Republic Abstract Wheat streak mosaic virus (WSMV) has become a re-emerging pathogen in cereal crops in the Czech Republic. WSMV was first reported in the former Czechoslovakia in the early 1980s, and then no record of the virus was documented until The incidence of the virus was recorded in recent years in several winter wheat field and many grass species. Here, we surveyed the incidence of WSMV in cereal crops. The results demonstrated the existence of the virus in winter wheat and volunteer wheat during each year of the monitoring period, which spanned from Although the range of infected samples was low (6.4% of the total tested samples), a high incidence of well-distributed virus was recorded. In at least six fields, the virus reached severe and potentially epidemic levels. In accordance with our previous report detailing WSMV infection of native grasses, we tested several grass species commonly grown in the Czech Republic. We found that some grass species acted as experimental hosts and possible reservoirs of the virus; these included Anthoxanthum odoratum (sweet vernal grass), Arrhenatherum elatius (false oat-grass), Lolium multiflorum (Italian rye-grass), Bromus japonicus (Japanese chess), Echinochloa crus-galli (barnyard grass), Holcus lanatus (meadow soft grass) and Holcus mollis (creeping soft grass). Some of these grass species are also important weeds of cereals, which may be the potential source of WSMV infection in cereal crops. Several widely used winter wheat cultivars were tested in the field after artificial inoculation with WSMV to evaluate virus titre by RT-qPCR. Overall, the tested cultivars had a low virus titre, which is associated with mild disease symptoms and may provide a good level of crop resistance to WSMV. Keywords: WSMV, survey, grass species, cereal crops 1. Introduction Received 14 July, 2016 Accepted 19 September, 2016 Correspondence Jiban Kumar Kundu, Tel: , Fax: , jiban@vurv.cz 2017, CAAS. All rights reserved. Published by Elsevier Ltd. doi: /S (16) Wheat streak mosaic virus (WSMV) is the type member of the genus Tritimovirus of the family Potyviridae (Rabenstein et al. 2004). WSMV is widespread throughout the world and represents a severe threat in most wheat-growing regions (Rabenstein et al. 2002; Hadi et al. 2011; Coutts et al. 2014). WSMV infects many plant species of the family Poaceae (Brakke 1971; French and Stenger 2002), including wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hor-

2 *** et al. Journal of Integrative Agriculture 2017, 16(0): deum vulgare L.), maize (Zea mays L.), millet (Panicum, Setaria, and Echinochloa spp.) and several grasses (see Table 1). Symptoms caused by WSMV include leaf mottling (mosaic pattern of green and chlorotic zones) and leaf streaking and are mainly observed in wheat (Vacke et al. 1986; Murray et al. 1998). The symptoms may progress to chlorosis and severe stunting of the plant, and in many cases, plants become sterile or produce shrivelled seeds (Ellis et al. 2004). WSMV is transmitted by wheat curl mites (WCMs, Aceria tosichella) (Slykhuis 1955; Orlob 1966), which are dispersed passively by air currents (Slykhuis 1955). The virus is also transmitted at low levels by seeds in wheat (Jones et al. 2005). Estimated levels of WSMV in seed lots originating from infected commercial wheat crops range from 0 to 0.22%, with an overall transmission rate of 0.06% (Lanoiselet et al. 2008). WSMV was first reported in the Great Plains Region (GPR) of North America in Since then, WSMV has been recorded in many wheat-growing regions of the world, including North and South America, Europe, the Middle East, Asia, Australia and New Zealand (Navia et al. 2013; Skoasracka et al. 2014). Crop losses caused by WSMV vary widely, ranging from 7 to 13% in Kansas (Atkinson and Grant 1967), reaching 18% in Canada (Christian and Willis 1993) and reaching up to 83% in wheat in Australia (Lanoiselet et al. 2008). WSMV spreads to cereal crops from virus reservoirs, which can include volunteer wheat plants and some grasses. At least 45 grass species are reported to be natural hosts for WSMV, and the majority of them are annuals (Sill and Agusiobo 1955; Christian and Willis 1993; French and Stenger 2002; Ito et al. 2012). Many of these WSMV grass hosts are also hosts for WCM (for review, see Navia et al. 2013). There is limited protection of cereal crops against WSMV and its WCM vector. Host resistance against the virus and/ or vector is the most effective way to reduce the yield loss caused by WSMV (Thomas et al. 2004; Richardson et al. 2014). Three resistance genes, known as Wsm1, Wsm2, and Wsm3, have been identified and introduced in wheat breeding lines. Wsm1 and Wsm2 resistance sources were found to be more temperature-sensitive (Seifers et al. 2013) than Wsm3 (Fahim et al. 2012); however, they have not yet been introduced into a commercial cultivar. The Wsm2 gene is the most widely used and has been successfully introduced into several wheat cultivars, including RonL (Seifers et al. 2006), Snowmass (Haley et al. 2011), Clara CL (Martin et al. 2014) and Oakley CL (Zhang et al. 2015a). However, with the deployment of WSMV-resistant cultivars, the limited resistance sources in these cultivars may be broken down by selective pressure on the virus (Zhang et al. 2015b). WSMV was first reported in the former Czechoslovakia in the early 1980s (Vacke et al. 1986). The incidence of the virus in recent years has become more frequent in winter wheat crops (Gadiou et al. 2009; Dráb et al. 2015). Vacke et al. (1986) reported the existence of WSMV in wheat, barley, oat and some cultivars of corn as well as in some grass species, including Avena fatua, Avena strigesa, Panicum miliaceum, Lolium multiflorum, Lagurus ovatus and Digitaria sanguinalis. In the present work, we report the results of a four-year survey of the incidence of WSMV in cereal crops, which was recorded for several winter wheat fields each year. We previously found that several grass species can become naturally infected with WSMV (Dráb et al. 2014), which may be a source of virus inoculum for cereal crops. We tested several grass species commonly grown in the Czech Republic and found that some of them were experimental hosts and possible reservoirs of the virus, such as Anthoxanthum odoratum (sweet vernal grass), Arrhenatherum elatius (false oat-grass), L. multiflorum (Italian rye-grass), Bromus japonicus (Japanese chess), Echinochloa crus-galli (barnyard grass), Holcus lanatus (meadow soft grass) and Holcus mollis (creeping soft grass). Several widely used winter wheat cultivars were tested in field experiments after artificial inoculation with WSMV to evaluate virus titre using real-time RT-qPCR. Several of the wheat cultivars, including Caldwell, Cubus, Florida, Matchball and Cim rana, had low levels of virus uptake. Furthermore, in one triticale cultivar, Koler, WSMV was undetected even when highly sensitive RT-qPCR was used. This low virus uptake in cultivars may be associated with a significant level of crop resistance to WSMV. 2. Materials and methods 2.1. Survey of WSMV in crop and grass hosts Samples from cereal fields, the fields margins and perennial meadows were collected from in different regions of the Czech Republic. The samples were collected during the early spring to autumn period randomly based on disease suspicion in the fields (Table 2) Experimental hosts within grass species Twenty-four species of grass (see Table 2) from Poaceae that naturally occur in the agro-ecosystem of the Czech Republic were tested. The plants were grown in greenhouses, and they were mechanically inoculated with a WSMV isolate (CZlab, accession number FJ216408) at the two-leaf stage. To accomplish this, individual plant leaves were smeared with sap containing the WSMV isolate with 0.1 mol L 1 phosphate buffer (ph 7.2) and carborundum powder. One month post-inoculation, the plants were tested by TAS-ELISA and then by RT-PCR as described in Gadiou et al. (2009).

3 4 *** et al. Journal of Integrative Agriculture 2017, 16(0): Table 1 Host species of Wheat streak mosaic virus (WSMV) Host Common name References Agropyron repens Couch grass Dráb et al Agrostis capillaris Common Bent In this study Alopecurus pratensis Meadow foxtail Dráb et al Anthoxanthum odoratum Sweet vernal-grass In this study Arrhenatherum elatius False oat-grass Dráb et al Austrostipa compressa Speargrass Vincent et al Aegilops cylindrica Jointed goatgrass Sill et al Avena barbata Bearded oat Coutts et al Avena fatua Wild oat Vacke et al Avena sativa Oat Brakke 1971 Avena strigesa Wild oats Vacke et al Avena sterilis Wild oats Murray et al Briza maxima Blowfly grass Coutts et al Bromus arvenis Field brone Sill et al Bromus diandrus Great brome Murray et al Bromus japonicus Japanese brome Wegulo et al Bromus rigidus Brome grass Coutts et al Bromus secalinus Cheat grass Sill et al Bromus tectorum Downy brome Sill et al Cynodon dactylon Couch grass Ellis et al Cenchrus longispinus Mat sandbur Connin 1956 Cenchrus pauciflours Sandbur Wegulo et al Digitaria sanguinalis Hairy crab grass Vacke et al. 1986; Somensen and Sill 1970 Echinochloa crus-galli Barnyardgrass Sill and Connin 1953 Echinochloa colonum Junglerice Khadivar and Nasrolahnejad 2009 Elymus repens Quackgrass Ito et al Eragrostis cilianensis Stink grass Connin 1956 Eragrostis curvula African lovegrass Ellis et al Eriochloa acuminata Tapertip cupgrass Seifers et al Eriochloa contracta Prairie cupgrass Christian and Willis 1993 Eleusine indica Crowsfoot Murray et al Eleusine tristachya Spike goosegrass Ellis et al Elymus canadensis Canada wild rye Ito et al Holcus lanatus Soft-grass In this study Holcus mollis Creeping soft grass In this study Hordeum leporinum Barley grass Coutts et al Hordeum vulgare Barley Brakke 1971 Lagurus ovatus Hare's-tail Vacke et al Lolium mitiflorum Annual ryegrass Vacke et al. 1986; Ellis et al Lolium rigidum Ryegrass Murray et al. 2005; Coutts et al Panicum dichotomiflorum Fall panicgrass Sill and Connin 1953 Panicum capillare Witch grass Coutts et al. 2008a, b Panicum millaceum Broomcorn millet Sill and Agusiobo 1955; Vacke et al. 1986; Ellis et al Pennisetum glaucum Pearl millet Seifers et al Phalaris aquatica phalaris Ellis et al Phleum pratense Timothy-grass Dráb et al Poa pratensis Bluegrass Ito et al. 2012; Dráb et al Secale cereale Cereal rye Vacke et al. 1986; Ito et al Setaria verticellata Whorled pigeon grass Murray et al Setaria viridis Green bristlegrass Sill and Connin 1953 Setaria italica Foxtail millet Truol et al Sorghum bicolor Sorgum Seifers et al Tragus australianus Small burr grass Coutts et al. 2008a, b Triticum aestivum Wheat Brakke 1971 Zea mays Maize Brakke 1971

4 *** et al. Journal of Integrative Agriculture 2017, 16(0): Table 2 Survey of the incidence of WSMV in wheat and barley crops and volunteer plants Sampling year Crop species Total tested samples Number of sampling fields Number of WSMV-positive samples Number of MSMV-infected field Percentage of WSMV-infected samples (%) Percentage of WSMV-infected fields (%) 2013 Winter wheat Winter barley Spring barley Winter wheat Winter barley Winter wheat Winter barley Spring barley Wheat volunteer Winter wheat Winter barley Spring barley Total Detection of WSMV TAS-ELISA WSMV was detected by triple anitbody sandwich (TAS)-ELISA using commercial antiserum (SEDIAG SAS, France) according to the manufacturer s instructions. RNA isolation WSMV-infected leaves were used for total RNA extraction using a Spectrum Plant Total RNA Kit (Sigma Aldrich, USA) following the manufacturer s instructions with minor modifications. A total of 100 mg of infected leaves was homogenized in liquid nitrogen to obtain a very fine powder. 500 µl of lysis buffer supplemented with 2-mercaptoethanol were added and mixed vigorously. The samples were incubated at 60 C for 5 min and centrifuged at r min 1 for 5 min. The supernatant was transferred to a filtration column and centrifuged again. 500 µl of binding solution were added to the filtrate, followed by centrifugation for 1 min at r min 1. The column was washed with 500 μl of wash buffer I and centrifuged. The column was washed three times with 500 μl of wash buffer II before adding 50 μl of elution buffer. The RNA was quantified using a Nanodrop 2000 (Thermo Scientific, USA) and stored at 80 C for further use. RNA was treated with DNase I using DNA-free (Ambion, USA) RT-PCR cdna synthesis First-strand cdna was synthesised using a Reverse Transcription System (Promega, USA). A reaction mixture composed of 1 µg RNA and 0.5 µg random primer was incubated at 70 C for 5 min and chilled on ice for 2 min. Then, the following components were added in the given order: 5 reaction buffer, 20 U µl 1 RNasin RNase inhibitor, 10 mmol L 1 dntp mix and 200 U µl 1 M-MLV reverse transcriptase enzyme. The mixture was incubated at 37 C for 1 h. The reaction was stopped by heating at 70 C for 10 min and subsequent chilling on ice. PCR cdna was amplified as described in Gadiou nt et al. (2009) using the primer pair WSMspeFw (5 - GCCTCGACACGGGAGCTA nt 3 ) and WSMspeRv ( nt ACCCATCCAGGAAGCAAGG nt -3 ). The reaction mixture contained cdna, 10 μmol L 1 each of forward and reverse primers, and 2 DreamTaq Green PCR Master Mix (Thermo Scientific, USA). The PCR conditions were as follows: initial denaturation at 94 C for 5 min, followed by 30 amplification cycles (94 C, 45 s; 66 C, 30 s; and 72 C, 1 min), and a final extension at 72 C for 10 min. The PCR assay yielded a 358-bp product. The PCR product was then separated on a 1% agarose gel and stained with SYBR Safe DNA Gel Stain (Invitrogen, USA) Quantitative analysis of WSMV in winter wheat cultivars Plant material and field experiment Quantitative analysis of WSMV was performed in wheat cultivars, including Florida, Vlada, Alcedo, Caldwell, Rocky, Ludwig, Cubus, Manager, Muszelka, Cim rana, Tobak, Matchball, Genius, Asano, and Bohemia as well as in the triticale cultivar Kolor. These cultivars are commonly grown in the Czech Republic. Each cultivar was grown in two rows (total ten plants per row) and in two replicates, one for virus inoculation and another for a non-inoculated control. The plants were mechanically inoculated with a WSMV isolate (CZlab, accession number FJ216408) at the three-leaf stage during autumn as described above. The leaf samples of the tested cultivars were collected in the spring at Feekes growth stage 9 for WSMV titre analysis by RT-qPCR. RT-qPCR RNA was isolated as described above. qpcr was performed as described in Dráb et al. (2014) using primer pair WSMV-F ( nt AAGTGCAGAACAGCGTTG 9

5 6 *** et al. Journal of Integrative Agriculture 2017, 16(0): nt -3 )/WSMV-R ( nt AAACTGTGCGTGTTCTCC nt - 3 ) (Tatineni et al. 2010). A primer pair for wheat elongation factor 1α (eef1α) served as a positive control, enabling the assessment of RNA quality (Jarošová and Kundu 2010). The qpcr reaction was performed on a LightCycler 480 Real-Time PCR System (Switzerland). A 250 nmol L 1 primer concentration was used in the qpcr reaction mixture, and the primer annealing temperature was 60 C. The total cdna concentration in the reaction mixture was 3 ng ml 1. The amplification protocol was as follows: denaturation at 95 C for 10 min, followed by 40 cycles of 95 C for 5 s, 60 C for 30 s and 72 C for 10 s. Finally, melting analysis of the PCR products was performed. qpcr data analysis The titre of WSMV in the tested samples was calculated according to a ten-fold standard dilution curve constructed using the PCR product of a positive WSMV sample. Calculations were made using LightCycler 480 Real-Time PCR System software. The PCR product quantity in µg was converted to pmol using the average molecular weight of a ribonucleotide (340 Da) and the number of bases of the transcript (Nb). The following mathematical formula was applied: pmol of dsdna=μg of dsdna) 10 6 pg μg 1 /660 pmol pg -1 /Nb. Avogadro s constant ( molecules mol 1 ) was used to estimate the number of transcripts. A graphical representation of the data was constructed using the programme Microsoft Excel. 3. Results 3.1. Incidence of WSMV in crops were tested after mechanical inoculation with WSMV. The virus was detected in eight species, including Agrostis capillaris, A. odoratum, L. multiflorum, B. japonicas, A. elatius, E. crus-galli, H. lanatus and H. mollis (Table 3 and Fig. 2). WSMV was generally detectable by both TAS-ELISA and RT-PCR, except for in A. capillaris and H. lanatus, in which WSMV was detected solely by RT-PCR Differences in virus uptake among wheat cultivars WSMV uptake in commonly grown winter wheat cultivars was tested by analysis of virus titre by RT-qPCR. Ten cul- Fig. 1 Map of Wheat streak mosaic virus (WSMV) occurrence in the fields of the Czech Republic. WSMV infections are indicated as stars: black stars, fields with individual infected plants; red stars, fields with severe infections. WSMV incidence was surveyed from the years 2013 to Sampling was performed in a random manner in a total of 134 fields; the fields included winter wheat and barley, spring barley and volunteer wheat plants. In total, 876 samples were tested, and the infection rate varied among years and crops. WSMV was detected solely in winter wheat, in both crop and voluntary plants. The average rate of WS- MV-infected samples was 6.4% (56 samples) in total, and among the 94 wheat fields and four wheat volunteer fields tested, the virus was detected in 19 wheat fields and one wheat volunteer field (Table 2). These results indicate that only a few individual infected plants were detected in most of the fields. However, in six fields, the virus was found at a high incidence and was widely distributed; these included two fields sampled in 2013, one field sampled in 2015 and three fields sampled in 2016 (the locations of these fields are indicated in red on the map in Fig. 1) Experimental hosts within the grass species Nineteen commonly grown grass species, including weeds, Table 3 Detection of WSMV in grass species after artificial inoculation with WSMV Number of WSMV-positive plants/ Grass species Number of tested plants TAS-ELISA RT-PCR Aera spica-venti 0/2 0/2 A. capillaris 0/7 2/7 Agrostis stolonifera 0/7 0/7 A. odoratum 1/7 1/7 A. elatius 2/7 2/7 Bromus erectus 0/4 0/4 B. japonicus 4/7 4/7 Bromus sterilis 0/4 0/4 Cynosurus cristatus 0/7 0/7 Dactylis glomerata 0/5 0/5 E. crus-galli 5/7 5/7 Holcus lanatus 0/5 1/5 H. mollis 1/5 1/5 Hordeum murinum 0/5 0/5 L. multiflorum 2/6 2/6 P. pratense 0/7 0/7 Poa annua 0/5 0/5 Poa trivialis 0/6 0/6 Trisetum flavescens 0/7 0/7

6 *** et al. Journal of Integrative Agriculture 2017, 16(0): tivars were tested in field experiments, including a triticale cultivar. Significant differences in virus titre were detected in the tested cultivars (Fig. 3). The WSMV uptake levels that were recorded in the tested cultivars were grouped as follows: I) low: Caldwell, Cubus, Florida, Matchball and Cim rana; II) medium: Rocky, Vláda, Alcedo, Muszelka and Manager; and III) high: Ludwig, Bohemia, Asano, Tobak and Genius. Notably, WSMV was undetectable in the triticale cultivar Koler (Fig. 3). 4. Discussion The results of the current survey of the incidence of Wheat streak mosaic virus (WSMV) in the Czech Republic showed a low occurrence of the virus and demonstrated that the virus was present only in wheat. Winter wheat is the main host of WSMV and the most commonly cultivated cereal crop in the Czech Republic. In our study, the majority of tested samples came from wheat crops rather than from minor barley, in which WSMV was not detected (see Table 2). 358 bp M Fig. 2 Electrophoresis of RT-PCR products for the detection of WSMV in grass species after artificial inoculation with WSMV. SYBR Green-stained 1% agarose gel showing a PCR product of 358 bp. Lanes 1 19, A. spica-venti, A. odoratum, T. flavescens, L. multiflorum, D. glomerata, C. cristatus, B. japonicus, B. sterilis, B. erectus, A. elatius, A. pratensis, A. capillaris, A. stolonifera, E. crus-galli, P. annua, P. trivialis, H. lanatus, H. mollis, and H. murinum; lane M, GeneRuler 100 bp Plus DNA Ladder (Thermo Scientific, USA). We previously found that WSMV occurs very occasionally and that only individual plants within a field are affected in general. In at least six winter wheat fields (early sowing), we found a high incidence of WSMV, and the virus was spread throughout the fields (see the WSMV symptoms in wheat cultivars in Fig. 4-A nad B). These results suggest that there is significant potential for WSMV infection to increase in crops. The warmer autumns and winters experienced by Central Europe in recent years have created favourable preconditions for the life cycle of the virus vector, namely, wheat curl mites (WCMs). WCMs have been reported to survive for months at near-freezing temperatures, including for several days at approximately 18 C (Townsend and Johnson 1996). No report on the occurrence of WCMs in the Czech Republic is currently available, and several attempts to identify WCMs in infected wheat crops were unsuccessful in our hands. However, WCMs have been reported to be abundant in neighbouring countries (Skoracka et al. 2014). The incidence of WSMV in natural grass species (Dráb et al. 2014) indicates the presence of the vector in the agro-ecosystem and thereby the introduction of the virus into crops. Another possibility for WSMV introduction is through infected seed, which may have occurred at a low level; this type of dissemination of the virus was reported in New Zealand (Lebas et al. 2009). The transmission rate of WSMV via seed ranges up to 1.5% (Jones et al. 2005), and seeds are likely an important source of virus inoculum when WCMs are also present (Lanoiselet et al. 2008). WSMV may cause significant yield losses in wheat, which may reach over 90% (Hadi et al. 2011) depending on weather conditions, cultivars and growth stage affected by virus infection. Generally, infections during the early stages of plant growth result in higher yield losses (Hunger et al. 1992; Baley et al. 2001). WSMV infections are also associated with reductions in root biomass and the efficiency of water uptake (Price WSMV copy number 1.40E E E E E E E E+00 WSMV titre analysis by RT-qPCR Kolor Caldwell Cubus Florida Matchball Cim rana Rocky Vláda Alcedo Muszelka Manager Ludwig Bohemia Asano Tobak Genius Cultivar Fig. 3 WSMV titre (copy number) in wheat cultivars and triticale cultivar Koler. One sample from each cultivar was tested.

7 8 *** et al. Journal of Integrative Agriculture 2017, 16(0): A B Fig. 4 WSMV symptoms in a naturally infected field growing wheat cultivars Hymack (A) Bodyček (B). Symptoms appear as small chlorotic lines, yellow and green streaks and a mosaic pattern in the leaves. The symptomatic leaves later become necrotic and dried out. et al. 2010), creating serious concerns with regard to climate change. In addition to crops, grass species are major hosts for both WSMV and WCMs, and a good number of them are common hosts (reviewed in Navia et al. 2013). In the Czech Republic, we observed the natural occurrence of WSMV in several grass species, including E. repens, A. pratensis, A. elatius, P. pratense and P. pratensis (Dráb et al. 2014). Several other species, including A. fatua, D. sanguinalis, L. multiflorum and P. miliaceum, were also reported by Vacke et al. (1986). Hence, grass species can serve as reservoirs of the virus and a source of virus introduction into field crops. The grass host species of WSMV are shown in Table 1. In the present report, we describe five species, namely, A. capillaris, A. odoratum, B. sterilis, H. lanatus and H. mollis, as new hosts of WSMV, and several of the other species identified (L. multiflorum, B. japonicus, A. elatius and E. crus-galli) were confirmed to be hosts in earlier reports (Vacke et al. 1986; Coutts et al. 2008b). The broad host range of WSMV and WCMs among Poaceae species creates the potential threat of virus invasion in cereal crops, in particular winter wheat. Some of these grass species are important weeds of cereal crops, including E. crus-galli, E. repens, L. multiflorum, B. japonicas, and P. pratensis. These weeds may act as reservoirs for WSMV, facilitating its introduction into wheat crops. In our survey, WSMV was detected solely in winter wheat, and its incidence was recorded as approximately 16% in the tested field. However, no evidence exists for the Czech Republic regarding whether such restriction of the virus in crops occurs through seed transmission, as was reported in New Zealand (Lebas et al. 2009). Host resistance to WSMV infection might be an effective method of disease control. The sources of resistance to WSMV are temperature-sensitive (Fahim et al. 2012). Cultivars derived from Wsm2, including RonL (Seifers et al. 2007), Snowmass (Haley et al. 2011), Clara CL (Martin et al. 2014) and Oakley CL (Zhang et al. 2015a), were reported to be resistant to WSMV isolates from the USA. The cultivars Mace, Millennium and Pronghorn were shown to be cultivated to a certain level of tolerance to WSMV in Nebraska, USA (Wegulo et al. 2008). Thus far, no evidence of resistance in commonly grown wheat cultivars in Central Europe is available. Quantitative analysis of virus titre using real-time qpcr (Balaji et al. 2003) seems to be very effective for characterising the level of resistance and provides significant enhancement in addition to biological assays (Jarošová et al. 2013). Field experiments involving mechanical inoculation of WSMV showed a low level of WSMV uptake in some winter cultivars, such as Caldwell, Cubus, Florida, Matchball and Cim rana. We previously showed that virus titre (copy number) is closely correlated with a high level of cereal (wheat and barley) resistance to Barley yellow dwarf virus (Jarošová et al. 2013). The low WSMV uptake in the above-mentioned cultivars may also be associated with potentially significant resistance to the virus under field conditions (Fig. 4). However, for more thorough evaluation of the resistance of the tested cultivars, multiple traits and characteristics need to be considered. Furthermore, host resistance to WSMV in wheat has been reported to be temperature-sensitive (Seifers et al. 2013), which is a major concern for the development of new cultivars with stable resistance against virus-host interactions under field conditions. Hence, environmental conditions (i.e., temperature) during the growing session play a significant role in the stability of wheat resistance to WSMV in the field. 5. Conclusion Our results provide significant evidence that the presence of WSMV in winter wheat crops, together with Wheat dwarf virus and Barley yellow dwarf virus, may cause serious problems with respect to crop protection. Grass species, in particular the weed hosts described here, act as reservoirs of WSMV and are possibly the key source of the introduction of WSMV into winter wheat (cereal crops). Quantitative analysis of virus uptake in wheat cultivars and one cultivar of triticale showed that some cultivars, including Caldwell, Cubus, Florida, Matchball and Cim rana, had a low virus titre. Our results suggest that the low virus titre detected in these cultivars may be associated with a significant level of resistance to WSMV under field conditions. However, further analysis based on multiple resistance traits associated with yield loss should be performed to more thoroughly evaluate the resistance status of the cultivars. Acknowledgements We thank Mrs. Zuzana Červená (Division of Crop Protection and Plant Health, Crop Research Institute, Czech Republic) for her technical assistance and Dr. Fousek and Dr. Neubau-

8 *** et al. Journal of Integrative Agriculture 2017, 16(0): erová (Division of Crop Protection and Plant Health, Crop Research Institute, Czech Republic) for their help with some experiments. This work was supported by the grants from the Ministry of Agriculture, Czech Republic from projects QJ (50%) and RO0415 (50%). References Atkinson T G, Grant M N An evaluation of streak mosaic losses in winter wheat. Phytopathology, 57, Balaji B, Bucholtz D B, Anderson J M Barley yellow dwarf virus and Cereal yellow dwarf virus quantification by realtime polymerase chain reaction in resistant and susceptible plants. Phytopathology, 93, Baley G J, Talbert L E, Martin J M, Young M J, Habernicht D K, Kushnak G D, Berg J E, Lanning S P, Bruckner P L Agronomic and end-use qualities of Wheat streak mosaic virus resistant spring wheat. Crop Science, 41, Brakke M K Wheat streak mosaic virus. CMI/AAB Descriptions of Plant Viruses. No. 48. Association of Applied Biologists, Wellesbourne, UK. showdpv.php?dpv no=48 Christian M L, Willis W G Survival of Wheat streak mosaic virus in grass hosts in Kansas from what harvest to fall wheat emergence. Plant Disease, 77, Connin R V The host range of the wheat curl mite, vector of wheat streak mosaic. Journal of Economic Entomology, 48, 1 4. Coutts B A, Banovic M, Kehoe M A, Severtson D L, Jones R A C Epidemiology of Wheat streak mosaic virus in wheat in a Mediterranean-type environment. European Journal of Plant Pathology, 140, Coutts B A, Hammond N E B, Kehoe M A, Jones R A C. 2008a. Finding Wheat streak mosaic virus in southwest Australia. Australian Journal of Agricultural Research, 59, Coutts B A, Strickland G R, Kehoe M A, Severtson D L, Jones R A C. 2008b. The epidemiology of Wheat streak mosaic virus in Australia: Case histories, gradients, mite vectors, and alternative hosts. Australian Journal of Agricultural Research, 59, Dráb T, Svobodová E, Ripl J, Jarošová J, Rabenstein F, Melcher U, Kundu J K SYBR Green I based RT-qPCR assays for the detection of RNA viruses of cereals and grasses. Crop and Pasture Science, 65, Dráb T, Svobodová E, Ripl J, Slavíková L, Kumar J Reservoirs of viral pathogens in wild grasses. Úroda, 63, (in Czech) Ellis M H, Rebetzke G J, Kelman W M, Moore C S, Hyles J E Detection of Wheat streak mosaic virus in four pasture grass species in Australia. Plant Pathology, 53, 239. Fahim M, Larkin P J, Haber S, Shorter S, Lonergan P F, Rosewarne G M Effectiveness of three potential sources of resistance in wheat against Wheat streak mosaic virus under field conditions. Australas Plant Pathology, 41, French R, Stenger D C Wheat streak mosaic virus. CMI/ AAB Descriptions of Plant Viruses. No Association of Applied Biologists, Wellesbourne, UK. net/dpv/showdpv.php?dpv no=393 Gadiou S, Kúdela O, Ripl J, Rabenstein F, Kundu J K, Glasa M An amino acid deletion in Wheat streak mosaic virus capsid protein distinguishes a homogeneous group of European isolates and facilitates their specific detection. Plant Disease, 93, Hadi B A R, Langham M A C, Osborne L, Tilmon K J Wheat streak mosaic virus on wheat: Biology and management. Journal of Integrated Pest Management, 2, doi: /IPM10017 Haley S D, Johnson J J, Peairs F B, Stromberger J A, Heaton E E, Seifert S A, Kottke R A, Rudolph J B, Martin T J, Bai G, Chen X, Bowden R, Jin Y, Kolmer J A, Seifers D L, Chen M, Seabourn B W Registration of Snowmass wheat. Journal of Plant Registrations, 5, Hunger R M, Sherwood J L, Evans C K, Montana J R Effects of planting date and inoculation date on severity of wheat streak mosaic in hard red winter wheat cultivars. Plant Disease, 76, Ito D, Miller Z, Menalled F, Moffet M, Burrows M Relative susceptibility among alternative host species prevalent in the Great Plains to Wheat streak mosaic virus. Plant Disease, 96, Jarošová J, Chrpová J, Šíp V, Kundu J K A comparative study of the Barley yellow dwarf virus species PAV and PAS: Distribution, accumulation and host resistance. Plant Pathology, 62, Jarošová J, Kundu J K Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time PCR. BMC Plant Biology, 10, 146. Jones R A C, Coutts B A, Mackie A E, Dwyer G I Seed transmission of Wheat streak mosaic virus shown unequivocally in wheat. Plant Disease, 89, Khadivar R S, Nasrolahnejad S Serological and molecular detection of Wheat streak mosaic virus (WSMV) in cereal fields of Golestan province, Northern Iran. J Plant Prod, 16, 4 Lebas B S M, Ochoa-Corona F M, Alexander B J R, Lister R A, Fletcher J D F, Bithel S L l, Burnip G M First report of Wheat streak mosaic virus on wheat in New Zealand. Plant Disease, 93, 430. Lanoiselet V M, Hind-Lanoiselet T L, Murray G M Studies on the seed transmission of Wheat streak mosaic virus. Australas Plant Pathology, 37, Martin T J, Zhang G, Fritz A K, Miller R, Chen M Registration of Clara CL Wheat. Journal of Plant Registrations, 8, Murray T D, Parry D W, Cattlin N D A Colour Handbook of Diseases of Small Grain Cereal Crops. Manson Publishing, London. Murray G M, Knihinicki D K, Wratten K, Edwards J Wheat Streak Mosaic and the Wheat Curl Mite. NSW Department of Primary Industries, Orange NSW Australia. Primefact 99.

9 10 *** et al. Journal of Integrative Agriculture 2017, 16(0): Navia D, de Mendonca R S, Skoracka A, Szydlo W, Knihinicki D, Hein G L, da Silva Pereira P R V, Truol G, Lau D Wheat curl mite, Aceria tosichella, and transmitted viruses: An expanding pest complex affecting cereal crops. Experimental and Applied Acarology, 59, Orlob G Feeding and transmission characteristics of Aceria tulipae Keifer as a vector of Wheat streak mosaic virus. Phytopathol Z, 55, Price J A, Workneh F, Evett S R, Jones D C, Arthur J, Rush C M Effects of Wheat streak mosaic virus on root development and water-use efficiency of hard red winter wheat. Plant Disease, 94, Rabenstein F, Stenger D C, French R Genus tritimovirus. In: Lapierre H, Signoret P A, eds., Viruses and Virus Diseases of Poaceae (Gramineae). INRA, France. pp Rabenstein F, Seifers D L, Schubert J, French R, Stenger D C Phylogenetic relationships, strain diversity and biogeography of tritimoviruses. Journal of General Virology, 83, Richardson K, Miller A D, Hoffmann A A, Larkin P Potential new sources of wheat curl mite resistence in wheat to prevent the spread of yield-reducing pathogens. Experimental and Applied Acarology, 64, Seifers D L, Harvey T L, Kofoid K D, Stegmeier W D Natural infection of pearl millet and sorghum by Wheat streak mosaic virus in Kansas. Plant Disease, 80, Seifers D L, Martin T J, Harvey T L, Haber S Temperature sensitive Wheat streak mosaic virus resistance identified in KS03HW12 wheat. Plant Disease, 91, Seifers D L, Martin T J, Harvey T L, Haber S, Haley S D Temperature sensitive and efficacy of Wheat streak mosaic virus resistance derived from CO wheat. Plant Disease, 90, Seifers D L, Haber S, Martin T J, Zhang G New sources of temperature sensitive resistance to Wheat streak mosaic virus in wheat. Plant Disease, 97, Sill Jr W H, Connin R V Summary of the known host range of Wheat streak mosaic virus. Transactions of the Kansas Academy of Science, 56, Somensen H W, Sill Jr W H The wheat curl mite, Aceria tulipae Keifer, in relation to epidemiology and control of wheat streak mosaic. Kansas State University, Agricultural Experiment Station, Research Publication, 162, Sill Jr W H, Agusiobo P C Host range studies of the Wheat streak mosaic virus. Transactions of the Kansas Academy of Science, 56, Skoracka A, Rector B, Kuczyński L, Szydło W, Hein G, French R Global spread of wheat curl mite by its most polyphagous and pestiferous lineages. Annals of Applied Biology, 165, Slykhuis J T Aceria tulipae keifer (Acarina: Eriophyidae) in relation to the spread of wheat streak mosaic. Phytopathology, 45, Tatineni S, Graybosch R A, Hein G L, Wegulo S N, French R Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus. Phytopathology, 100, Thomas J B, Conner R L, Graf R J Comparison of different sources of vector resistance for controlling wheat streak mosaic in winter wheat. Crop Science, 44, Townsend L, Johnson D Wheat streak mosaic virus and the wheat curl mite. University of Kentucky, ENTFACT-117. [ ]. ef117.asp Truol G, Sagadin M, Rodriguez M Fox tail millet (Setaria italica L.): a new reservoir species of the Wheat streak mosaic virus (WSMV) in the province of Buenos Aires. Biocell, 34, A135. Vacke J, Zacha V, Jokeš M Identification of virus in wheat new to Czechoslovakia. In: Proceeding X Czechoslovak Plant Protection. Conference, Brno. pp Vincent S J, Coutts B A, Jones R A C Effects of introduced and indigenous viruses on native plants: Exploring their disease causing potential at the agro-ecological interface. PLOS ONE, 9, e Wegulo S N, Hein G L, Klein R N, French R C Managing Wheat Streak Mosaic. University of Nebraska, Lincoln (Extension EC1871). Zhang G, Martin T J, Fritz A K, Miller R, Chen M, Bowden R L, Johnson J. 2015a. Registration of Oakley CL wheat. Journal of Plant Registrations, 9, Zhang G, Seifers D L, Martin T J. 2015b. Inheritance of Wheat streak mosaic virus resistance in KS03HW12. Austin Journal of Plant Biology, 1, (Managing editor ZHANG Juan)

A Partial Host Range of the High Plains Virus of Corn and Wheat

A Partial Host Range of the High Plains Virus of Corn and Wheat A Partial Host Range of the High Plains Virus of Corn and Wheat Dallas L. Seifers, Associate Professor, Kansas State University, Agricultural Research Center-Hays, Hays 67601-9228; Tom L. Harvey, Professor,

More information

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. EPA Reg. No. 59639-132 (For North Carolina Only) APPLICATION OF SELECT MAX HERBICIDE WITH INSIDE TECHNOLOGY IN STEVIA, DRIED LEAVES. This supplemental label expires May 2, 2019 and must not be used or

More information

AGRICULTURAL CROP ROTATION ACT GENERAL REGULATIONS

AGRICULTURAL CROP ROTATION ACT GENERAL REGULATIONS c t AGRICULTURAL CROP ROTATION ACT GENERAL REGULATIONS PLEASE NOTE This document, prepared by the Legislative Counsel Office, is an office consolidation of this regulation, current to May 30, 2012. It

More information

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. EPA Reg. No. 59639-132 (Except California and New York) APPLICATION OF SELECT MAX HERBICIDE WITH INSIDE TECHNOLOGY IN OKRA AND TREE NUTS CROP GROUP 14-12 This supplemental label expires May 23, 2021 and

More information

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. EPA Reg. No. 59639-132 (Except California and New York) APPLICATION OF SELECT MAX HERBICIDE WITH INSIDE TECHNOLOGY IN OKRA AND TREE NUTS CROP GROUP 14-12 This supplemental label expires May 23, 2021 and

More information

Yield Impacts and Management Strategies for Wheat Diseases that Fungicides Don t Control (BYD and BLS) Dr. Madeleine Smith and Dr.

Yield Impacts and Management Strategies for Wheat Diseases that Fungicides Don t Control (BYD and BLS) Dr. Madeleine Smith and Dr. Yield Impacts and Management Strategies for Wheat Diseases that Fungicides Don t Control (BYD and BLS) Dr. Madeleine Smith and Dr. Ruth Dill-Macky Wheat Pathology Collaboration - BLS Bacterial Leaf Streak

More information

TECHNICAL SHEET No. 23. Virus Detection: Potato virus Y (PVY) and PVY N

TECHNICAL SHEET No. 23. Virus Detection: Potato virus Y (PVY) and PVY N TECHNICAL SHEET No. 23 Virus Detection: Potato virus Y (PVY) and PVY N Method: RT-PCR General Virus detected: PVY from potato tubers and leaf. General method is reverse transcription PCR (RT-PCR). Developed

More information

Diagnosis and Quantification of Strawberry Vein Banding Virus Using Molecular Approaches

Diagnosis and Quantification of Strawberry Vein Banding Virus Using Molecular Approaches Diagnosis and Quantification of Strawberry Vein Banding Virus Using Molecular Approaches Ali Mahmoudpour Department of Plant Pathology, University of California, Davis, CA, 95616, USA Current Address:

More information

TECHNICAL SHEET No. 21. Virus Detection: Potato virus Y (PVY)

TECHNICAL SHEET No. 21. Virus Detection: Potato virus Y (PVY) TECHNICAL SHEET No. 21 Virus Detection: Potato virus Y (PVY) Method: Immunocapture RT-PCR, RFLP Immunocapture RT-PCR General Virus detected: PVY from potato General method: IC-RT-PCR, RFLP-IC-RT-PCR Developed

More information

38 th Alfalfa Symposium Annual Grass Control Strategies for Alfalfa UCD Alfalfa. Workgroup. Mick Canevari UCCE San Joaquin County

38 th Alfalfa Symposium Annual Grass Control Strategies for Alfalfa UCD Alfalfa. Workgroup. Mick Canevari UCCE San Joaquin County 38 th Alfalfa Symposium Annual Grass Control Strategies for Alfalfa Mick Canevari UCCE San Joaquin County Topics Common grass weeds of alfalfa- know your grasses Strategies to control grasses in alfalfa

More information

INHERITANCE OF RESISTANCE TO WHEAT STREAK MOSAIC VIRUS IN WHEAT LINE KS06HW79 JOHN CURATO

INHERITANCE OF RESISTANCE TO WHEAT STREAK MOSAIC VIRUS IN WHEAT LINE KS06HW79 JOHN CURATO INHERITANCE OF RESISTANCE TO WHEAT STREAK MOSAIC VIRUS IN WHEAT LINE KS06HW79 by JOHN CURATO A.A., Shasta College, 2009 B.S., University of California at Davis, 2012 A THESIS submitted in partial fulfillment

More information

THUNDERBIRD SYBR qpcr Mix

THUNDERBIRD SYBR qpcr Mix Instruction manual THUNDERBIRD SYBR qpcr Mix 1304 A4251K THUNDERBIRD SYBR qpcr Mix QPS-201T 1 ml x 1 QPS-201 1.67 ml x 3 Contents [1] Introduction [2] Components [3] Primer design [4] Template DNA [5]

More information

Sensitivity vs Specificity

Sensitivity vs Specificity Viral Detection Animal Inoculation Culturing the Virus Definitive Length of time Serology Detecting antibodies to the infectious agent Detecting Viral Proteins Western Blot ELISA Detecting the Viral Genome

More information

Quant One Step RT-PCR Kit

Quant One Step RT-PCR Kit 1. Quant One Step RT-PCR Kit For fast and sensitive one-step RT-PCR www.tiangen.com/en RT121221 Quant One Step RT-PCR Kit Kit Contents Cat. no. KR113 Contents Hotmaster Taq Polymerase (2.5 U/μl) Quant

More information

Labeling Protocol for mytags Immortal Libraries

Labeling Protocol for mytags Immortal Libraries 5840 Interface Drive, Suite 101 Ann Arbor MI 48103 1 (734) 998 0751 techsupport@arborbiosci.com Labeling Protocol for mytags Immortal Libraries March 2018 Version 1.5 Contents Reagents and Equipment...

More information

SuperiorScript III cdna Synthesis Kit Instruction Manual

SuperiorScript III cdna Synthesis Kit Instruction Manual SuperiorScript III cdna Synthesis Kit Instruction Manual Cat.# EZ405S, EZ405M SuperiorScript III cdna Synthesis Kit Table of Contents I. Description... 3 II. Kit... 4 III. Procedure... 5 IV. Control Experiment

More information

HiPer RT-PCR Teaching Kit

HiPer RT-PCR Teaching Kit HiPer RT-PCR Teaching Kit Product Code: HTBM024 Number of experiments that can be performed: 5 Duration of Experiment: Protocol: 4 hours Agarose Gel Electrophoresis: 45 minutes Storage Instructions: The

More information

SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes

SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes WHITE PAPER SuperScript IV Reverse Transcriptase SuperScript IV Reverse Transcriptase as a better alternative to AMV-based enzymes Abstract Reverse transcriptases (RTs) from avian myeloblastosis virus

More information

Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio

Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio 2013 Plant Management Network. Accepted for publication 21 December 2012. Published. Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio

More information

Knockdown Herbicide Resistance

Knockdown Herbicide Resistance Knockdown Herbicide Resistance Increase in glyphosate resistance in 7 years Country Number of species Country Number of species 2011 2018 2011 2018 USA 11 17 Australia 5 17 Canada 1 6 Czech 1 1 Republic

More information

HCV Genotype Primer Kit

HCV Genotype Primer Kit Instruction Manual for HCV Genotype Primer Kit HCV Genotype Determination Kit for Research Purpose Thoroughly read this instruction manual before use of this kit Background Study of nucleotide sequence

More information

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS

P HENIX. PHENIX PCR Enzyme Guide Tools For Life Science Discovery RESEARCH PRODUCTS PHENIX PCR Enzyme Guide PHENIX offers a broad line of premium quality PCR Enzymes. This PCR Enzyme Guide will help simplify your polymerase selection process. Each DNA Polymerase has different characteristics

More information

Rapid amplification of cdna ends (RACE)

Rapid amplification of cdna ends (RACE) Rapid amplification of cdna ends (RACE) Rapid amplification of cdna ends (RACE) is a technique used in molecular biology to obtain the full length sequence of an RNA transcript found within a cell. RACE

More information

Rapid Method for the Purification of Total RNA from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Samples

Rapid Method for the Purification of Total RNA from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Samples Application Note 17 RNA Sample Preparation Rapid Method for the Purification of Total RNA from Formalin-Fixed Paraffin-Embedded (FFPE) Tissue Samples M. Melmogy 1, V. Misic 1, B. Lam, PhD 1, C. Dobbin,

More information

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist

INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist INTRODUCTION TO REVERSE TRANSCRIPTION PCR (RT-PCR) ABCF 2016 BecA-ILRI Hub, Nairobi 21 st September 2016 Roger Pelle Principal Scientist Objective of PCR To provide a solution to one of the most pressing

More information

Correlation of Low Level Wheat Streak Mosaic Virus Resistance in Triumph 64 Wheat with Low Virus Titer

Correlation of Low Level Wheat Streak Mosaic Virus Resistance in Triumph 64 Wheat with Low Virus Titer Resistance Correlation of Low Level Wheat Streak Mosaic Virus Resistance in Wheat with Low Virus Titer D. L. Seifers and T. J. Martin Plant pathologist and wheat breeder, respectively, Fort Hays Branch

More information

Rapid Method for the Purification of Total RNA from Formalin- Fixed Paraffin-Embedded (FFPE) Tissue Samples

Rapid Method for the Purification of Total RNA from Formalin- Fixed Paraffin-Embedded (FFPE) Tissue Samples Application Note 17 RNA Sample Preparation Rapid Method for the Purification of Total RNA from Formalin- Fixed Paraffin-Embedded (FFPE) Tissue Samples M. Melmogy 1, V. Misic 1, B. Lam, PhD 1, C. Dobbin,

More information

Maize Chlorotic Mottle Virus

Maize Chlorotic Mottle Virus TM Primerdesign Ltd Maize Chlorotic Mottle Virus Coat Protein Gene genesig Standard Kit 150 tests For general laboratory and research use only 1 Introduction to Maize Chlorotic Mottle Virus Maize chlorotic

More information

AMV First Strand cdna Synthesis Kit

AMV First Strand cdna Synthesis Kit DNA AMPLIFICATION & PCR AMV First Strand cdna Synthesis Kit Instruction Manual NEB #E6550S Store at 20 C ISO 9001 Registered Quality Management ISO 14001 Registered Environmental Management ISO 13485 Registered

More information

Telomerase Activity Quantification qpcr Assay Kit (TAQ) Catalog # reactions

Telomerase Activity Quantification qpcr Assay Kit (TAQ) Catalog # reactions Telomerase Activity Quantification qpcr Assay Kit (TAQ) Catalog #8928 100 reactions Product Description Telomeres are repetitive nucleotide elements at the ends of chromosomes that protect chromosomes

More information

Technical Review. Real time PCR

Technical Review. Real time PCR Technical Review Real time PCR Normal PCR: Analyze with agarose gel Normal PCR vs Real time PCR Real-time PCR, also known as quantitative PCR (qpcr) or kinetic PCR Key feature: Used to amplify and simultaneously

More information

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio 2013 Plant Management Network. Accepted for publication 18 December 2012. Published. Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio John

More information

Product Insert 1 1 Quantified RNA Standards are provided as 100 ng/µl, 10 ng/µl, 1 ng/µl, 100 pg/µl, 10 pg/µl and 1 pg/µl

Product Insert 1 1 Quantified RNA Standards are provided as 100 ng/µl, 10 ng/µl, 1 ng/µl, 100 pg/µl, 10 pg/µl and 1 pg/µl 3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 (905) 227-8848 Fax: (905) 227-1061 Email: techsupport@norgenbiotek.com Low Abundance RNA Quantification Kit Product # 58900 Product Insert

More information

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

DIRECTIONS FOR USE It is a violation of Federal law to use this product in a manner inconsistent with its labeling. EPA Reg. No. 59639-132 (For California Only) APPLICATION OF SELECT MAX HERBICIDE WITH INSIDE TECHNOLOGY IN BERRY LOW GROWING (EXCEPT CRANBERRY AND STRAWBERRY SUBGROUP 13-07G); POME FRUIT (CROP GROUP 11-10);

More information

mmu-mir-200a-3p Real-time RT-PCR Detection and U6 Calibration Kit User Manual MyBioSource.com Catalog # MBS826230

mmu-mir-200a-3p Real-time RT-PCR Detection and U6 Calibration Kit User Manual MyBioSource.com Catalog # MBS826230 mmu-mir-200a-3p Real-time RT-PCR Detection and U6 Calibration Kit User Manual Catalog # MBS826230 For the detection and quantification of mirnas mmu-mir-200a-3p normalized by U6 snrna using Real-time RT-PCR

More information

5 min dsrna Extraction Kit

5 min dsrna Extraction Kit 5 min dsrna Extraction Kit Most plant viruses have RNA genomes that can be single stranded or double stranded. During replication of viruses in plant, high molecular weight double-stranded ribonucleic

More information

Human TNF qpcr primer pair

Human TNF qpcr primer pair Shipping and Storage information Catalog No. Amount Reaction number of 25-μl volume Shipping and Storage Package tube 2 nmol 200 lyophilized powder 1 Information of the target gene and primers Species

More information

SOP: SYBR Green-based real-time RT-PCR

SOP: SYBR Green-based real-time RT-PCR SOP: SYBR Green-based real-time RT-PCR By Richard Yu Research fellow Centre for Marine Environmental Research and Innovative Technology (MERIT) Department of Biology and Chemistry City University of Hong

More information

HELINI Hepatitis B virus [HBV] Real-time PCR Kit (Genotype A to H)

HELINI Hepatitis B virus [HBV] Real-time PCR Kit (Genotype A to H) HELINI Hepatitis B virus [HBV] Real-time PCR Kit (Genotype A to H) Quantitative In vitro diagnostics Instruction manual Cat. No: 8001-25/50/100 tests Compatible with: Agilent, Bio-Rad, Applied Bio systems

More information

RealHelix TM qrt-pcr Kit [Intercalator type]

RealHelix TM qrt-pcr Kit [Intercalator type] RealHelix TM qrt-pcr Kit [Intercalator type] CERTIFICATE OF ANALYSIS (1603-V01R03) Kit contents RealHelix TM qrt-pcr Kit [Intercalator type] Cat. No. QRT-S100 (100 rxns) QRT-S500 (500 rxns) qrt-pcr Enzyme

More information

Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami

Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami Reverse transcription-pcr (rt-pcr) Dr. Hani Alhadrami hanialhadrami@kau.edu.sa www.hanialhadrami.kau.edu.sa Overview Several techniques are available to detect and analyse RNA. Examples of these techniques

More information

Quant Reverse Transcriptase

Quant Reverse Transcriptase 1. Quant Reverse Transcriptase For first-strand cdna synthesis and two-step RT-PCR www.tiangen.com RT080530 Kit Contents Quant Reverse Transcriptase Contents Cat. no. ER103 ER103-02 25 rxns ER103-03 50

More information

ReverTra Ace qpcr RT Master Mix

ReverTra Ace qpcr RT Master Mix Instruction manual ReverTra Ace qpcr RT Master Mix 1203 F1173K ReverTra Ace qpcr RT Master Mix FSQ-201 200 reactions Store at -20 C Contents [1] Introduction [2] Components [3] Protocol 1. RNA template

More information

SYBR Green Realtime PCR Master Mix -Plus-

SYBR Green Realtime PCR Master Mix -Plus- Instruction manual SYBR Green Realtime PCR Master Mix -Plus- 0803 F0925K SYBR Green Realtime PCR Master Mix -Plus- Contents QPK-212 1mLx5 Store at -20 C, protected from light [1] Introduction [2] Components

More information

NEW REAL-TIME RT-PCR ASSAYS FOR DETECTION OF TYMV (TURNIP YELLOW MOSAIC VIRUS) AND EVALUATION OF REACTION OF CABBAGES TO TYMV INFECTION

NEW REAL-TIME RT-PCR ASSAYS FOR DETECTION OF TYMV (TURNIP YELLOW MOSAIC VIRUS) AND EVALUATION OF REACTION OF CABBAGES TO TYMV INFECTION NEW REAL-TIME RT-PCR ASSAYS FOR DETECTION OF TYMV (TURNIP YELLOW MOSAIC VIRUS) AND EVALUATION OF REACTION OF CABBAGES TO TYMV INFECTION ELISKA PENAZOVA 1, ALES EICHMEIER 2, ROBERT POKLUDA 1 1 Department

More information

Quantitation of mrna Using Real-Time Reverse Transcription PCR (RT-PCR)

Quantitation of mrna Using Real-Time Reverse Transcription PCR (RT-PCR) Quantitation of mrna Using Real-Time Reverse Transcription PCR (RT-PCR) Quantitative Real-Time RT-PCR Versus RT-PCR In Real-Time RT- PCR, DNA amplification monitored at each cycle but RT-PCR measures the

More information

SideStep Lysis and Stabilization Buffer

SideStep Lysis and Stabilization Buffer SideStep Lysis and Stabilization Buffer INSTRUCTION MANUAL Catalog #400900 Revision B.0 For Research Use Only. Not for use in diagnostic procedures. 400900-12 LIMITED PRODUCT WARRANTY This warranty limits

More information

PRODUCT INFORMATION Thermo Scientific Luminaris Probe Low ROX qpcr Master Mix #K0944 For 5000 rxns Lot Expiry Date Store at -20 C in the dark CERTIFICATE OF ANALYSIS The absence of endo-, exodeoxyribonucleases

More information

mmu-mir-34a Real-time RT-PCR Detection Kit User Manual

mmu-mir-34a Real-time RT-PCR Detection Kit User Manual mmu-mir-34a Real-time RT-PCR Detection Kit User Manual Catalog # CPK1272 For the detection and quantification of mirna mmu-mir-34a using Real-Time RT-PCR detection instruments. For research use only. Not

More information

ALTERNATE FORAGE CROPS WHEN IRRIGATION WATER IS LIMITED

ALTERNATE FORAGE CROPS WHEN IRRIGATION WATER IS LIMITED Drought Management Drought Management Factsheet - No. 6 in Series Order No. 665.000-6 Revised June 2015 ALTERNATE FORAGE CROPS WHEN IRRIGATION WATER IS LIMITED Key Points 1. Choosing annuals versus perennial

More information

winter savings one place High Quality Costs Less Look inside to find great deals on Thermo Scientific products for all your molecular biology needs

winter savings one place High Quality Costs Less Look inside to find great deals on Thermo Scientific products for all your molecular biology needs A quarterly publication containing special offers for significant savings on a variety of molecular biology products CDA winter savings High Quality Costs Less RNAi PCR / qpcr Look inside to find great

More information

DM. Mathews, J.A. Heick, and J.A. Dodds Department of Plant Pathology, University of California, Riverside, CA 92521

DM. Mathews, J.A. Heick, and J.A. Dodds Department of Plant Pathology, University of California, Riverside, CA 92521 California Avocado Society 1997 Yearbook 81: 91-96 DETECTION OF AVOCADO SUNBLOTCH VIROID BY POLYMERASE CHAIN REACTION (PCR) DM. Mathews, J.A. Heick, and J.A. Dodds Department of Plant Pathology, University

More information

SunScript TM One Step RT-qPCR Kit

SunScript TM One Step RT-qPCR Kit INDEX Ordering Information...3 Kit Contents...3 Shipping and Storage...3 Handling...3 Quality Control...3 Reagents and Equipment to be Supplied by the User...3 Description...4 Protocol...4 Troubleshooting

More information

Wheat Science News. MANAGING VOLUNTEER CORN IN ORDER TO BREAK THE GREEN BRIDGE IN WHEAT James R. Martin Extension Professor of Wheat Science

Wheat Science News. MANAGING VOLUNTEER CORN IN ORDER TO BREAK THE GREEN BRIDGE IN WHEAT James R. Martin Extension Professor of Wheat Science Wheat Science News Research & Education Center, Princeton, KY 42445 October 10, 2013 Volume 17, Issue 2 In This Issue: Managing Volunteer Corn in Order to Break the Green Bridge in Wheat ALS Resistant

More information

Thermo Scientific Maxima H Minus Double-Stranded cdna Synthesis Kit #K2561

Thermo Scientific Maxima H Minus Double-Stranded cdna Synthesis Kit #K2561 PRODUCT INFORMATION Thermo Scientific Maxima H Minus Double-Stranded cdna Synthesis Kit #K2561 www.thermoscientific.com/onebio #K2561 Lot CERTIFICATE OF ANALYSIS First and second strand cdna synthesis

More information

ProtoScript. First Strand cdna Synthesis Kit DNA AMPLIFICATION & PCR. Instruction Manual. NEB #E6300S/L 30/150 reactions Version 2.

ProtoScript. First Strand cdna Synthesis Kit DNA AMPLIFICATION & PCR. Instruction Manual. NEB #E6300S/L 30/150 reactions Version 2. DNA AMPLIFICATION & PCR ProtoScript First Strand cdna Synthesis Kit Instruction Manual NEB #E6300S/L 30/150 reactions Version 2.2 11/16 be INSPIRED drive DISCOVERY stay GENUINE This product is intended

More information

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE.

FOR RESEARCH USE ONLY. NOT FOR HUMAN OR DIAGNOSTIC USE. Instruction manual RNA-direct SYBR Green Realtime PCR Master Mix 0810 F0930K RNA-direct SYBR Green Realtime PCR Master Mix Contents QRT-201T QRT-201 0.5mLx2 0.5mLx5 Store at -20 C, protected from light

More information

SYBR Green Realtime PCR Master Mix

SYBR Green Realtime PCR Master Mix Instruction manual SYBR Green Realtime PCR Master Mix 0810 F0924K SYBR Green Realtime PCR Master Mix QPK-201T 1 ml x 1 QPK-201 1 ml x 5 Contents [1] Introduction [2] Components [3] Primer design [4] Detection

More information

GeneCopoeia TM. All-in-One qpcr Mix For universal quantitative real-time PCR. User Manual

GeneCopoeia TM. All-in-One qpcr Mix For universal quantitative real-time PCR. User Manual GeneCopoeia TM Expressway to Discovery All-in-One qpcr Mix For universal quantitative real-time PCR Cat. No. AOPR-0200 (200 qpcr reactions) Cat. No. AOPR-0600 (600 qpcr reactions) Cat. No. AOPR-1000 (1000

More information

Phosphate buffered saline (PBS) for washing the cells TE buffer (nuclease-free) ph 7.5 for resuspending the SingleShot RNA control template

Phosphate buffered saline (PBS) for washing the cells TE buffer (nuclease-free) ph 7.5 for resuspending the SingleShot RNA control template Catalog # Description 172-5085 SingleShot SYBR Green Kit, 100 x 50 µl reactions For research purposes only. Introduction The SingleShot SYBR Green Kit prepares genomic DNA (gdna) free RNA directly from

More information

User Manual. Version 5. Published February Catalog No. K1021 ~

User Manual. Version 5. Published February Catalog No. K1021 ~ GeneFishing TM DEG Premix Kit User Manual Version 5 Published February 2005 Catalog No. K1021 ~ 1026 Table of Contents 1. Notices to Customers 1.1 Product Warranty and Liability------------------------------------

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

Rapid and Efficient RNA Isolation Protocol from Various Recalcitrant Tissues of Mango (Mangifera indica L.)

Rapid and Efficient RNA Isolation Protocol from Various Recalcitrant Tissues of Mango (Mangifera indica L.) Rapid and Efficient RNA Isolation Protocol from Various Recalcitrant Tissues of Mango (Mangifera indica L.) R.R. Sharma and S. V. R. Reddy Division of Food Science and Postharvest Technology, ICAR-Indian

More information

One Step SYBR PrimeScript RT-PCR Kit II (Perfect Real Time)

One Step SYBR PrimeScript RT-PCR Kit II (Perfect Real Time) Cat. # RR086A For Research Use One Step SYBR PrimeScript RT-PCR Kit II Product Manual Table of Contents I. Description...3 II. III. IV. Principle...3 Components...5 Storage...6 V. Features...6 VI. VII.

More information

AccuScript High Fidelity 1 st Strand cdna Synthesis Kit

AccuScript High Fidelity 1 st Strand cdna Synthesis Kit AccuScript High Fidelity 1 st Strand cdna Synthesis Kit INSTRUCTION MANUAL Catalog #200820 Revision B.01 For In Vitro Use Only 200820-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement

More information

A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance

A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance Doi: 10.1111/j.1365-3059.2012.02644.x A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance J. Jarošová a, J. Chrpová b,v.šíp b and J.

More information

SuperReal PreMix Plus (SYBR Green)

SuperReal PreMix Plus (SYBR Green) SuperReal PreMix Plus (SYBR Green) For fast, quantitative, real-time PCR using SYBR Green www.tiangen.com/en QP120627 SuperReal PreMix Plus (SYBR Green) Cat. no. FP205 Kit Contents Contents 2 SuperReal

More information

II First Strand cdna Synthesis Kit

II First Strand cdna Synthesis Kit DNA AMPLIFICATION & PCR ProtoScript II First Strand cdna Synthesis Kit Instruction Manual NEB #E6560S/L 30/150 reactions Version 1.5 12/17 be INSPIRED drive DISCOVERY stay GENUINE This product is intended

More information

Total Arrest RNA. For Isolation of DNA free RNA for RT PCR. (Cat. # , ) think proteins! think G-Biosciences

Total Arrest RNA. For Isolation of DNA free RNA for RT PCR. (Cat. # , ) think proteins! think G-Biosciences 445PR 01 G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences. com A Geno Technology, Inc. (USA) brand name Total Arrest RNA For Isolation of DNA free RNA for RT PCR (Cat. #786 130, 786 131)

More information

Simple, Complete Workflows for Gene Expression Analysis without RNA Purification

Simple, Complete Workflows for Gene Expression Analysis without RNA Purification Product Bulletin SYBR Green Cells-to-Ct Kits SYBR Green Cells-to-Ct Kits Simple, Complete Workflows for Gene Expression Analysis without RNA Purification 7 10 min total 5x 5' 5' 3' 3' 3' mrna 5' RT primer

More information

Premix Ex Taq (Probe qpcr)

Premix Ex Taq (Probe qpcr) For Research Use Premix Ex Taq (Probe qpcr) Product Manual Table of Contents I. Description... 3 II. Principle... 4 III. Components... 5 IV. Materials Required but not Provided... 5 V. Storage... 5 VI.

More information

mirna Purification from Plant Tissues: Corn, Soybean and Arabidopsis

mirna Purification from Plant Tissues: Corn, Soybean and Arabidopsis mirna Purification from Plant Tissues: Corn, Soybean and Arabidopsis A Maxwell RSC mirna Tissue Kit Application Note Materials Required: Maxwell RSC mirna Tissue Kit (Cat.# AS1480) QuantiFluor RNA System

More information

Winter Annual Grasses. Bob Hammon George Beck Will Hutchins

Winter Annual Grasses. Bob Hammon George Beck Will Hutchins Winter Annual Grasses Bob Hammon George Beck Will Hutchins Winter Annual Grasses Downy brome/cheatgrass Bromus tectorum, B. secalinus, B. japonicus Hare barley Hordeum murinum ssp. leporinum Annual wheatgrass

More information

PrimeSTAR Max DNA Polymerase

PrimeSTAR Max DNA Polymerase Cat. # R045A For Research Use PrimeSTAR Max DNA Polymerase Product Manual Table of Contents I. Description...3 II. III. IV. Components...3 Storage...3 General Composition of PCR Reaction Mixture...3 V.

More information

MonsterScript Reverse Transcriptase

MonsterScript Reverse Transcriptase MonsterScript Reverse Transcriptase Cat. Nos. MSTA5110, and MSTA5124 Connect with Epicentre on our blog (epicentral.blogspot.com), Facebook (facebook.com/epicentrebio), and Twitter (@EpicentreBio). www.epicentre.com

More information

All-in-One mirna qpcr Primer

All-in-One mirna qpcr Primer All-in-One mirna qpcr Primer Catalog number: HmiRQP0316 User Manual and Primer Validation Report GeneCopoeia, Inc. 9620 Medical Center Drive, #101 Rockville, MD 20850 USA 301-762-0888 866-360-9531 inquiry@genecopoeia.com

More information

Short communication. Colony Establishment and Maintenance of the Eriophyid Wheat Curl Mite Aceria. and H.B. Scholthof 1,2

Short communication. Colony Establishment and Maintenance of the Eriophyid Wheat Curl Mite Aceria. and H.B. Scholthof 1,2 Skare et al., page 1 Short communication Colony Establishment and Maintenance of the Eriophyid Wheat Curl Mite Aceria tosichella for Controlled Transmission Studies on a New Virus-like Pathogen J.M. Skare

More information

The detection of Spongospora subterranea by bioassays, molecular and serological methods

The detection of Spongospora subterranea by bioassays, molecular and serological methods The detection of Spongospora subterranea by bioassays, molecular and serological methods K. Bouchek-Mechiche, D. Ruer, D. Andrivon and B. Jouan, INRA, UMR BIO3P, Domaine de la Motte, Bp35F- 35653 Le Rheu

More information

AMV LongAmp Taq RT-PCR Kit

AMV LongAmp Taq RT-PCR Kit DNA AMPLIFICATION & PCR AMV LongAmp Taq RT-PCR Kit Instruction Manual NEB #E5300S Store at 20 C ISO 9001 Registered Quality Management ISO 14001 Registered Environmental Management ISO 13485 Registered

More information

Reverse Transcription & RT-PCR

Reverse Transcription & RT-PCR Creating Gene Expression Solutions Reverse Transcription & RT-PCR Reverse transcription, a process that involves a reverse transcriptase (RTase) which uses RNA as the template to make complementary DNA

More information

Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit

Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit Application Note 13 RNA Sample Preparation Non-Organic-Based Isolation of Mammalian microrna using Norgen s microrna Purification Kit B. Lam, PhD 1, P. Roberts, MSc 1 Y. Haj-Ahmad, M.Sc., Ph.D 1,2 1 Norgen

More information

Table of Contents. I. Kit Components...2. Storage...2. Principle...2. IV. Precautions for operation...3. V. Protocol : reverse transcription...

Table of Contents. I. Kit Components...2. Storage...2. Principle...2. IV. Precautions for operation...3. V. Protocol : reverse transcription... Table of Contents I. Kit Components...2 II. III. Storage...2 Principle...2 IV. Precautions for operation...3 V. Protocol : reverse transcription...3 VI. Protocol : Real-time PCR...5 VII. Appendix...7 VIII.

More information

QPCR-S100 (100 rxns) Store -20. Functional analysis RealHelix qpcr Kit was evaluated by real-time PCR using the 10-fold serial-diluted human

QPCR-S100 (100 rxns) Store -20. Functional analysis RealHelix qpcr Kit was evaluated by real-time PCR using the 10-fold serial-diluted human RealHelix TM qpcr Kit [Intercalator type] CERTIFICATE OF ANALYSIS (1603-V01R03) Kit contents RealHelix TM qpcr Kit [Intercalator type] Cat. No. QPCR-S100 (100 rxns) QPCR-S500 (500 rxns) 2x qpcr PreMix

More information

3. How can you test a food to find out if it contains materials derived from a GMO?

3. How can you test a food to find out if it contains materials derived from a GMO? GMO Investigator LAB Name Introduction With the world population exploding and farmable land disappearing, agricultural specialists are concerned about the world's ability to produce enough food to feed

More information

Percent survival. Supplementary fig. S3 A.

Percent survival. Supplementary fig. S3 A. Supplementary fig. S3 A. B. 100 Percent survival 80 60 40 20 Ml 0 0 100 C. Fig. S3 Comparison of leukaemia incidence rate in the triple targeted chimaeric mice and germline-transmission translocator mice

More information

Human T-lymphotropic Virus 2

Human T-lymphotropic Virus 2 TM Primerdesign Ltd Human T-lymphotropic Virus 2 Polymerase gene (POL) genesig Standard Kit 150 tests For general laboratory and research use only 1 Introduction to Human T-lymphotropic Virus 2 Human T-lymphotropic

More information

Functional Genomics Research Stream. Research Meeting: November 8, 2011 cdna Library Construction for RNA-Seq

Functional Genomics Research Stream. Research Meeting: November 8, 2011 cdna Library Construction for RNA-Seq Functional Genomics Research Stream Research Meeting: November 8, 2011 cdna Library Construction for RNA-Seq Lab Issues Don t leave out boxes of water + ethidium bromide Minimize tip boxes in phenol waste

More information

For in vitro Veterinary Diagnostics only. Real-Time RT-PCR Detection Kit for Reticuloendotheliosis Virus

For in vitro Veterinary Diagnostics only. Real-Time RT-PCR Detection Kit for Reticuloendotheliosis Virus For in vitro Veterinary Diagnostics only. Real-Time RT-PCR Detection Kit for Reticuloendotheliosis Virus DIRECTION FOR USE Art. No. 31424 / 31425 Kylt REV Real-Time RT-PCR Detection Kit for Reticuloendotheliosis

More information

CHAPTER 3 DEVELOPMENT OF DENV GROUP SPECIFIC REAL TIME RT-PCR

CHAPTER 3 DEVELOPMENT OF DENV GROUP SPECIFIC REAL TIME RT-PCR CHAPTER 3 DEVELOPMENT OF DENV GROUP SPECIFIC REAL TIME RT-PCR 28 Dengue is diagnosed by either detecting virus or antibody to the virus in blood. Isolation of virus in cell culture or in infant mouse brain

More information

Efficient Method for Isolation of High Quality Concentrated Cellular RNA with Extremely Low Levels of Genomic DNA Contamination Application

Efficient Method for Isolation of High Quality Concentrated Cellular RNA with Extremely Low Levels of Genomic DNA Contamination Application Efficient Method for Isolation of High Quality Concentrated Cellular RNA with Extremely Low Levels of Genomic DNA Contamination Application Gene Expression Authors Ilgar Abbaszade, Claudia Robbins, John

More information

SunScript One Step RT-PCR Kit

SunScript One Step RT-PCR Kit SunScript ONE STEP R T-PCR KIT HANDBOOK SunScript One Step RT-PCR Kit INDEX Legal... 4 Intended use... 4 Kit contents... 5 Shipping and storage... 5 Handling... 6 Quality control... 6 Reagents and equipment...

More information

Cereal Killers. What we saw in 2007 What we should be aware of. Dr. Mary Burrows Montana State University i Bozeman, MT

Cereal Killers. What we saw in 2007 What we should be aware of. Dr. Mary Burrows Montana State University i Bozeman, MT Cereal Killers What we saw in 2007 What we should be aware of 2008 Dr. Mary Burrows Montana State University i Bozeman, MT Pesticide update: 2008 Folicur (tebuconazole) registration for control of head

More information

SpeAmp n cdna Pre-amplification Kits User Guide

SpeAmp n cdna Pre-amplification Kits User Guide SpeAmp n cdna Pre-amplification Kits User Guide Cat # SpeAmp n -10 Cat # SpeAmp n -25 Cat # SpeAmp n -50 To use with our range of pathway-specific primer pools : Cat # Prim nx -10 XXXX Cat # Prim nx -25

More information

T7-Based RNA Amplification Protocol (in progress)

T7-Based RNA Amplification Protocol (in progress) T7-Based RNA Amplification Protocol (in progress) Jacqueline Ann Lopez (modifications) Amy Cash & Justen Andrews INTRODUCTION T7 RNA Amplification, a technique originally developed in the laboratory of

More information

Molekulargenetische Reagenzien. Raumtemperaturstabile PCR und qpcr Reagenzien

Molekulargenetische Reagenzien. Raumtemperaturstabile PCR und qpcr Reagenzien Molekulargenetische Reagenzien Raumtemperaturstabile PCR und qpcr Reagenzien Polypeptide Stabilization Technology: Stability TAG Ice-free reaction set-up Our temperature stable enzymes allow you to change

More information

FMF NIRCA PROTOCOL STEP 1.

FMF NIRCA PROTOCOL STEP 1. FMF NIRCA PROTOCOL STEP 1. After you have isolated patient s DNA and DNA from a healthy donor (wild type), you perform a nested PCR. The primers used to amplify exon 2 and exon 10 of the mefv gene are

More information

For in vitro Veterinary Diagnostics only. Kylt Influenza A - H9. Real-Time RT-PCR Detection.

For in vitro Veterinary Diagnostics only. Kylt Influenza A - H9. Real-Time RT-PCR Detection. For in vitro Veterinary Diagnostics only. Kylt Influenza A - H9 Real-Time RT-PCR Detection www.kylt.eu DIRECTION FOR USE Kylt Influenza A - H9 Real-Time RT-PCR Detection A. General Kylt Influenza A - H9

More information

Low-cost DNA extraction for use in TILLING and Ecotilling assays

Low-cost DNA extraction for use in TILLING and Ecotilling assays Low-cost DNA extraction for use in TILLING and Ecotilling assays Version 1.3 (January 31, 2013) Plant Breeding and Genetics Laboratory Prepared by Bernhard Hofinger and Bradley Till 1. MATERIALS Company

More information