Biochemistry 302, February 11, 2004 Exam 1 (100 points) 1. What form of DNA is shown on this Nature Genetics cover? Z-DNA or left-handed DNA

Size: px
Start display at page:

Download "Biochemistry 302, February 11, 2004 Exam 1 (100 points) 1. What form of DNA is shown on this Nature Genetics cover? Z-DNA or left-handed DNA"

Transcription

1 1 Biochemistry 302, February 11, 2004 Exam 1 (100 points) Name I. Structural recognition (very short answer, 2 points each) 1. What form of DNA is shown on this Nature Genetics cover? Z-DNA or left-handed DNA 2. Name the bases (full names, not just single letters) that make-up this mismatched base-pair. guanine thymine 3. This modified base is typically found in CpG islands in eukaryotes. What is it? 5-methylcytosine 4. During what molecular process would one expect to find DNA in this configuration? DNA recombination

2 2 II. Short Answer (3 points each) 1. Why is radiolabeled thymidine the best substrate to use in experiments designed to determine the rate of cell proliferation in vitro? Thymidine will be incorporated into replicating DNA but not RNA. 2. Provide a biochemical rationale for why AT-rich sequences are commonly found in zones of initiation of DNA replication and near sites of transcriptional termination. Only two hydrogen bonds needed for base-pairing between adenine and thymine versus three for guanine and cytosine. As such, AT or AU-rich sequences are more susceptible to strand separation or melting. 3. What is the difference between an exonuclease and an endonuclease. An endonuclease cleaves phosphodiester bonds at sites within a polynucleotide chain while exonucleases remove nucleotides from either the 5 or 3 end. 4. How is the active site of RNA polymerase biochemically converted to that of a ribonuclease? Binding of accessory factors (such as GreA, GreB, TFIIS) donate additional amino acid residues and a metal ion to the active site. 5. List the type of DNA damage created by cisplatinin and the repair system(s) that are able to fix such lesions (complete spelling please, no abbreviations). Inter- and intrastrand crosslinks via guanine bases, nucleotide excision repair or recombinatorial repair. III. T/F (2 points each) 1. F The ability of DNA to adopt a Z-form configuration is completely independent of nucleotide sequence. 2. F DNA is positively charged at ph T 3 -deoxyadenosine is an inhibitor of RNA synthesis. 4. F Acetylation of histone proteins enhances their DNA-binding affinity. 5. F RNA primer excision during DNA replication is catalyzed by the ε subunit of the DNA polymerase III holoenzyme. 6. F Loading of the DNA polymerase III sliding clamp (β subunit) onto the lagging strand need only occur ONCE during DNA replication. 7. T Chemical agents that chelate divalent metal ions inhibit the polynucleotide synthetic activities of DNA and RNA polymerases.

3 3 IV. Multiple choice (3 points each): 1. A TFIIIA is a general transcription factor responsible for promoter recognition and transcriptional initiation of genes encoding: A. 5S rrna B. trna C. 45S rrna E. A and B only 2. F Conversion of uridylate to thymidylate requires: A. Ribosylation B. Methylation C. Reduction D. Oxidation E. Both A and D F. Both B and C 3. B The principal thermodynamic parameter that accounts for the overall stability of the DNA double helix is: A. Entropy B. Enthalpy C. Temperature D. ph E. Ionic strength 4. D Core histone proteins comprising the nucleosome possess which of the following biochemical properties: A. High arginine content B. Dimerization ability C. Substrate for acetylation E. None of the above 5. A Nitrate-induced deamination of cytosine produces which of the following mutagenic bases in DNA? A. Uracil B. Thymine C. Hypoxanthine D. 5-azacytosine

4 4 6. B The following activity is absent in all core eukaryotic DNA polymerases: A. 3 -exonuclease B. 5 -exonuclease C. leading strand polynucleotide synthesis D. lagging strand polynucleotide synthesis 7. A Which of the following proteins is principally responsible for stabilization of template strands in a non-base-paired conformation during DNA replication? A. SSB B. DNA Helicase C. Primase D. Topoisomerase 8. C One of the activities below is NOT required for base excision repair. A. DNA N-glycosylase B. Abasic endonuclease C. DNA helicase D. DNA polymerase E. DNA ligase 9. C The first line of defense in correction of a mismatched base-pair that is formed during the course of DNA replication in E. coli is: A. Base excision repair B. Nucleotide excision repair C. 3 -exonuclease activity of DNA polymerase I D. 5 -exonuclease activity of DNA polymerase I 10. A DNA would be predicted to be in an A-form configuration under conditions of: A. Low water content B. Absence of protein C. High temperature D. None of the above 11. D RecA exhibits all of the following activities EXCEPT: A. Single-stranded DNA-binding affinity B. Strand exchange C. ATPase D. Helicase

5 5 12. B Which of the following enzymes is inhibited by low concentrations of α-amanitin? A. RNA polymerase I B. RNA polymerase II C. RNA polymerase III 13. A DNA polymerase, DNA ligase, and RNA polymerase are related because each enzyme: A. Catalyzes 3-5 phosphodiester bond formation. B. Uses nucleoside triphosphate as substrates. C. Is expressed at a limiting concentration in cells. D. Requires two metal ions at the active site. 14. D TATA-binding protein (TBP) is best described as a: A. DNA-bending protein B. Initiation factor for eukaryotic transcription C. Recruitment factor for other components of the general transcription machinery E. None of the above 15. A Mediator proteins such as Rad54 assist Rad51 (the eukaryotic homolog of RecA) in initiating homologous recombination/strand exchange by: A. Enhancing recruitment of Rad51 to single-stranded DNA B. Sequestering RPA (SSB) via protein-protein interaction C. Activating the ATPase activity of Rad51 E. None of the above 16. B Depurination of DNA is induced by: A. High ph B. Low ph C. High ionic strength D. Low ionic strength 17. B Mismatch repair in E. coli is dependent on the following DNA modification: A. Purine alkylation B. Adenine methylation C. Guanine oxidation D. Depyrimidination

6 6 V. Structural biology (12 points) The proteins, 8-oxo-guanine DNA-N-glycosylase (OGG) and integration host factor (IHF), are related by their ability to distort the structure of DNA but each protein does so in a different way. Briefly describe/list 1) the biological function of each protein 2) the type of DNA alteration induced or stabilized by each protein, and 3) how each protein mediates the structural change in DNA at the molecular level (I m looking for a biochemical explanation here). OGG 1) Base excision repair enzyme or removes 8-oxoG from DNA by glycosidic bond cleavage 2) Flipping 8-oxoG out of the DNA helix (to facilitate catalysis) 3) Replacement of flipped 8-oxoG with an arginine residue to hydrogen bond with the estranged cytosine, van der Waals forces and H-bonding between 8-oxoG and other active site amino acids keep 8-oxoG in its flipped out state (in position for catalytic attack) IHF 1) initiation factor in DNA replication and/or site-specific recombination 2) site-specific DNA-bending 3) disruption of base-stacking by intercalation of amino acid residues (proline) between certain base-pairs in the DNA minor groove

Spring 2006 Biochemistry 302 Exam 1

Spring 2006 Biochemistry 302 Exam 1 1 Name Spring 2006 Biochemistry 302 Exam 1 Directions: This exam has 36 questions/problems totaling 90 points. Check to make sure you have all six pages. Some questions have multiple parts so read each

More information

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions.

Feedback D. Incorrect! No, although this is a correct characteristic of RNA, this is not the best response to the questions. Biochemistry - Problem Drill 23: RNA No. 1 of 10 1. Which of the following statements best describes the structural highlights of RNA? (A) RNA can be single or double stranded. (B) G-C pairs have 3 hydrogen

More information

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides.

DNA replication. - proteins for initiation of replication; - proteins for polymerization of nucleotides. DNA replication Replication represents the duplication of the genetic information encoded in DNA that is the crucial step in the reproduction of living organisms and the growth of multicellular organisms.

More information

Bio 366: Biological Chemistry II Test #3, 100 points

Bio 366: Biological Chemistry II Test #3, 100 points Bio 366: Biological Chemistry II Test #3, 100 points READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the back of the

More information

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! Page 1 of 5 Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! 1. A mutation in which parts of two nonhomologous chromosomes change places is called a(n) A. translocation. B. transition.

More information

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm

RNA synthesis/transcription I Biochemistry 302. February 6, 2004 Bob Kelm RNA synthesis/transcription I Biochemistry 302 February 6, 2004 Bob Kelm Overview of RNA classes Messenger RNA (mrna) Encodes protein Relatively short half-life ( 3 min in E. coli, 30 min in eukaryotic

More information

Proofreading, post-replication modification of DNA. Mitesh Shrestha

Proofreading, post-replication modification of DNA. Mitesh Shrestha Proofreading, post-replication modification of DNA Mitesh Shrestha Proofreading During DNA replication (copying), most DNA polymerases can check their work with each base that they add. This process is

More information

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 - Microbial Genetics Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Genetics Genome (The sum total of genetic material of a cell is referred to as the genome.) Chromosome

More information

The replication of DNA Kornberg 1957 Meselson and Stahl 1958 Cairns 1963 Okazaki 1968 DNA Replication The driving force for DNA synthesis. The addition of a nucleotide to a growing polynucleotide

More information

Principle 2. Overview of Central. 3. Nucleic Acid Structure 4. The Organization of

Principle 2. Overview of Central. 3. Nucleic Acid Structure 4. The Organization of Central dogma I and II the flow of genetic information 1. The Transforming Principle 2. Overview of Central Dogma 3. Nucleic Acid Structure 4. The Organization of DNA in Cells 5. DNA Replication 6. Gene

More information

7.05 Recitation Schedule

7.05 Recitation Schedule 7.05 Spring 004 February 13, 004 7.05 Recitation Schedule Contact Information TA: Victor Sai Recitation: Friday, 3-4pm, -13 E-mail: sai@mit.edu ffice ours: Friday, 4-5pm, -13 Spring 004 Calendar Sun Monday

More information

DNA replication. DNA replication. replication model. replication fork. chapter 6

DNA replication. DNA replication. replication model. replication fork. chapter 6 DN chapter 6 DN two complementary s bases joined by hydrogen bonds separation of s each - template determines order of nucleotides in duplicate parent DN s separate two identical daughter s model dispersive

More information

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

Gene Expression: Transcription, Translation, RNAs and the Genetic Code Lecture 28-29 Gene Expression: Transcription, Translation, RNAs and the Genetic Code Central dogma of molecular biology During transcription, the information in a DNA sequence (a gene) is copied into a

More information

The flow of Genetic information

The flow of Genetic information The flow of Genetic information http://highered.mcgrawhill.com/sites/0072507470/student_view0/chapter3/animation dna_replication quiz_1_.html 1 DNA Replication DNA is a double-helical molecule Watson and

More information

Chapter 11. Transcription. The biochemistry and molecular biology department of CMU

Chapter 11. Transcription. The biochemistry and molecular biology department of CMU Chapter 11 Transcription The biochemistry and molecular biology department of CMU Transcription The synthesis of RNA molecules using DNA strands as the templates so that the genetic information can be

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 11 DNA Replication

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 11 DNA Replication BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 11 DNA Replication 2 3 4 5 6 7 8 9 Are You Getting It?? Which characteristics will be part of semi-conservative replication? (multiple answers) a) The

More information

MIDTERM I NAME: Student ID Number:

MIDTERM I NAME: Student ID Number: MIDTERM I NAME: Student ID Number: Question Maximum Points Your Points I 35 II 29 III 30 IV 32 V 24 150 Please write your name/student ID number on each of the following five pages. This exam must be written

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 12 Transcription

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 12 Transcription BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 12 Transcription 2 3 4 5 Are You Getting It?? Which are general characteristics of transcription? (multiple answers) a) An entire DNA molecule is transcribed

More information

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2013-2014 MOLECULAR BIOLOGY BIO-2B02 Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question

More information

Enzymes used in DNA Replication

Enzymes used in DNA Replication Enzymes used in DNA Replication This document holds the enzymes used in DNA replication, their pictorial representation and functioning. DNA polymerase: DNA polymerase is the chief enzyme of DNA replication.

More information

Chapter 8. Microbial Genetics. Lectures prepared by Christine L. Case. Copyright 2010 Pearson Education, Inc.

Chapter 8. Microbial Genetics. Lectures prepared by Christine L. Case. Copyright 2010 Pearson Education, Inc. Chapter 8 Microbial Genetics Lectures prepared by Christine L. Case Structure and Function of Genetic Material Learning Objectives 8-1 Define genetics, genome, chromosome, gene, genetic code, genotype,

More information

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm

Fig. 16-7a. 5 end Hydrogen bond 3 end. 1 nm. 3.4 nm nm Fig. 16-7a end Hydrogen bond end 1 nm 3.4 nm 0.34 nm (a) Key features of DNA structure end (b) Partial chemical structure end Fig. 16-8 Adenine (A) Thymine (T) Guanine (G) Cytosine (C) Concept 16.2: Many

More information

DNA replication. DNA replication. replication model. replication fork. chapter 6

DNA replication. DNA replication. replication model. replication fork. chapter 6 DN chapter 6 DN two complementary s bases joined by hydrogen bonds separation of s each - template determines order of nucleotides in duplicate parent DN s separate two identical daughter s model dispersive

More information

Nucleic Acid Structure:

Nucleic Acid Structure: Nucleic Acid Structure: Purine and Pyrimidine nucleotides can be combined to form nucleic acids: 1. Deoxyribonucliec acid (DNA) is composed of deoxyribonucleosides of! Adenine! Guanine! Cytosine! Thymine

More information

Welcome to Class 18! Lecture 18: Outline and Objectives. Replication is semiconservative! Replication: DNA DNA! Introductory Biochemistry!

Welcome to Class 18! Lecture 18: Outline and Objectives. Replication is semiconservative! Replication: DNA DNA! Introductory Biochemistry! Lecture 18: Outline and Objectives Welcome to Class 18! Introductory Biochemistry! l DNA Replication! l DNA polymerase! l the enzymatic reaction! l proofreading and accuracy! l DNA synthesis! l origins

More information

BS GENOMES. DNA replication and repair

BS GENOMES. DNA replication and repair BS2009 - GENOMES DNA replication and repair REPLICATION GENERAL PRINCIPLES START Must be ready Must know where to start FINISH Must all finish Must ensure that each piece of DNA is replicated only once

More information

Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins

Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins Chapter 11 Part A: Metabolism: The synthesis of nucleic acids and proteins I. Synthesis of DNA = REPLICATION A. Components of DNA (Fig. 11-1) 1. Composed of 4 different nucleotides that are joined by the

More information

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology

Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology Unit IX Problem 3 Genetics: Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated to synthesize

More information

Chapter 11 DNA Replication and Recombination

Chapter 11 DNA Replication and Recombination Chapter 11 DNA Replication and Recombination Copyright Copyright 2009 Pearson 2009 Pearson Education, Education, Inc. Inc. 11.1 DNA is reproduced by Semiconservative Replication The complementarity of

More information

All This For Four Letters!?! DNA and Its Role in Heredity

All This For Four Letters!?! DNA and Its Role in Heredity All This For Four Letters!?! DNA and Its Role in Heredity What Is the Evidence that the Gene Is DNA? By the 1920s, it was known that chromosomes consisted of DNA and proteins. A new dye stained DNA and

More information

BIOL 5304 Molecular Biology Fall 2018 Name. Homework #1 Due Monday, September 10 at 10:00 AM. 80 points - 1 -

BIOL 5304 Molecular Biology Fall 2018 Name. Homework #1 Due Monday, September 10 at 10:00 AM. 80 points - 1 - BIOL 5304 Molecular Biology Fall 2018 ame omework #1 Due Monday, September 10 at 10:00 AM 80 points - 1 - 1. (20 points-maximum) For each item at the left, find all the descriptions on the right that apply

More information

Nucleic Acids. Information specifying protein structure

Nucleic Acids. Information specifying protein structure Nucleic Acids Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats) Genome - the genetic information of an organism Information

More information

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids

Information specifying protein structure. Chapter 19 Nucleic Acids Nucleotides Are the Building Blocks of Nucleic Acids Chapter 19 Nucleic Acids Information specifying protein structure Nucleic acids represent the fourth major class of biomolecules (other major classes of biomolecules are proteins, carbohydrates, fats)

More information

Transcription. The sugar molecule found in RNA is ribose, rather than the deoxyribose found in DNA.

Transcription. The sugar molecule found in RNA is ribose, rather than the deoxyribose found in DNA. Transcription RNA (ribonucleic acid) is a key intermediary between a DNA sequence and a polypeptide. RNA is an informational polynucleotide similar to DNA, but it differs from DNA in three ways: RNA generally

More information

Figure A summary of spontaneous alterations likely to require DNA repair.

Figure A summary of spontaneous alterations likely to require DNA repair. DNA Damage Figure 5-46. A summary of spontaneous alterations likely to require DNA repair. The sites on each nucleotide that are known to be modified by spontaneous oxidative damage (red arrows), hydrolytic

More information

We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA

We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA 1 We can now identify three major pathways of information flow in the cell (in replication, information passes from one DNA molecule to other DNA molecules; in transcription, information passes from DNA

More information

RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA

RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA RNA Expression of the information in a gene generally involves production of an RNA molecule transcribed from a DNA template. RNA differs from DNA that it has a hydroxyl group at the 2 position of the

More information

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses)

NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) NUCLEIC ACIDS Genetic material of all known organisms DNA: deoxyribonucleic acid RNA: ribonucleic acid (e.g., some viruses) Consist of chemically linked sequences of nucleotides Nitrogenous base Pentose-

More information

RNA: Structure & Synthesis. Amr S. Moustafa, M.D.; Ph.D.

RNA: Structure & Synthesis. Amr S. Moustafa, M.D.; Ph.D. RNA: Structure & Synthesis By Amr S. Moustafa, M.D.; Ph.D. Objectives The differences between DNA and RNA The structure and functions of RNAs RNA synthesis (Transcription) Post-transcriptional events (modifications)

More information

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology

Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology Unit II Problem 3 Genetics: Summary of Basic Concepts in Molecular Biology - The central dogma (principle) of molecular biology: Information from DNA are transcribed to mrna which will be further translated

More information

Molecular Biology: General Theory

Molecular Biology: General Theory Molecular Biology: General Theory Author: Dr Darshana Morar Licensed under a Creative Commons Attribution license. DNA REPLICATION DNA replication is the process of duplicating the DNA sequence in the

More information

Molecular Biology: General Theory

Molecular Biology: General Theory Molecular Biology: General Theory Author: Dr Darshana Morar Licensed under a Creative Commons Attribution license. DNA REPLICATION DNA replication is the process of duplicating the DNA sequence in the

More information

DNA and RNA: Structure and Function. 阮雪芬 May 14, 2004

DNA and RNA: Structure and Function. 阮雪芬 May 14, 2004 DNA and RNA: Structure and Function 阮雪芬 May 14, 2004 Two Fundamental types of nucleic acids participate as genetic molecules DNA: deoxyribonucleic acid Found in the chromosome form in the cell s nucleus

More information

MIDTERM I NAME: Student ID Number: I 32 II 33 III 24 IV 30 V

MIDTERM I NAME: Student ID Number: I 32 II 33 III 24 IV 30 V MIDTERM I NAME: Student ID Number: Question Maximum Points Your Points I 32 II 33 III 24 IV 30 V 31 150 Please write your name/student ID number on each of the following five pages. This exam must be written

More information

Enter Legible BANNER ID: B 0 0

Enter Legible BANNER ID: B 0 0 INTRODUCTORY BIOCHEMISTRY BIOL0280 Third Midterm Examination May 1, 2012 Enter Legible BANNER ID: B 0 0 Make sure that your Banner ID is on every page. This is the only way we have of matching you with

More information

Molecular Biology (2)

Molecular Biology (2) Molecular Biology (2) DNA replication Mamoun Ahram, PhD Second semester, 2018-2019 Resources This lecture Cooper, pp. 191-207 2 Some basic information The entire DNA content of the cell is known as genome.

More information

DNA REPLICATION. DNA structure. Semiconservative replication. DNA structure. Origin of replication. Replication bubbles and forks.

DNA REPLICATION. DNA structure. Semiconservative replication. DNA structure. Origin of replication. Replication bubbles and forks. DNA REPLICATION 5 4 Phosphate 3 DNA structure Nitrogenous base 1 Deoxyribose 2 Nucleotide DNA strand = DNA polynucleotide 2004 Biology Olympiad Preparation Program 2 2004 Biology Olympiad Preparation Program

More information

Genes found in the genome include protein-coding genes and non-coding RNA genes. Which nucleotide is not normally found in non-coding RNA genes?

Genes found in the genome include protein-coding genes and non-coding RNA genes. Which nucleotide is not normally found in non-coding RNA genes? Midterm Q Genes found in the genome include protein-coding genes and non-coding RNA genes Which nucleotide is not normally found in non-coding RNA genes? G T 3 A 4 C 5 U 00% Midterm Q Which of the following

More information

LECTURE 26. a) A light-independent repair mechanism that involves three steps:

LECTURE 26. a) A light-independent repair mechanism that involves three steps: LECTURE 26 DNA REPAIR A. The capability for repair of damaged DNA is found in one form or another in all organisms. Prokaryotes (e.g., E. coli) have five repair systems, whereas higher organisms (e.g.,

More information

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) These

More information

Please write your name or student ID number on every page.

Please write your name or student ID number on every page. MCB 110 First Exam A TOTAL OF SIX PAGES NAME: Student ID Number: Question Maximum Points Your Points I 36 II 35 III 27 IV 28 V 24 150 Please write your name or student ID number on every page. This exam

More information

DNA and RNA are both made of nucleotides. Proteins are made of amino acids. Transcription can be reversed but translation cannot.

DNA and RNA are both made of nucleotides. Proteins are made of amino acids. Transcription can be reversed but translation cannot. INFORMATION TRANSFER Information in cells Properties of information Information must be able to be stored, accessed, retrieved, transferred, read and used. Information is about order, it is basically the

More information

PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2)

PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2) PHYS 498 HW3 Solutions: 1. We have two equations: (1) (2) Where Conc is the initial concentration of [B] or [SA] Since [B] = [SA], the second equation simplifies to: (3) Using equation (1) and (3), we

More information

DNA Replication II Biochemistry 302. January 25, 2006

DNA Replication II Biochemistry 302. January 25, 2006 DNA Replication II Biochemistry 302 January 25, 2006 Following in Dad s footsteps Original A. Kornberg E. coli DNA Pol I is a lousy replicative enzyme. 400 molecules/cell but ~2 replication forks/cell

More information

DNA, RNA, Replication and Transcription

DNA, RNA, Replication and Transcription Harriet Wilson, Lecture Notes Bio. Sci. 4 - Microbiology Sierra College DNA, RNA, Replication and Transcription The metabolic processes described earlier (glycolysis, cellular respiration, photophosphorylation,

More information

DNA ORGANIZATION AND REPLICATION

DNA ORGANIZATION AND REPLICATION DNA ORGANIZATION AND REPLICATION THE CENTRAL DOGMA DNA Replication Transcription Translation STRUCTURAL ORGANIZATION OF DNA DNA is present in the nucleus as CHROMATIN. The basic unit of chromatin is NUCLEOSOME

More information

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization Overview & Recap of Molecular Biology before the last two sections MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription Gene Organization Joy Winuthayanon, PhD School of Molecular Biosciences

More information

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein

Chapter 16 DNA: The Genetic Material. The Nature of Genetic Material. Chemical Nature of Nucleic Acids. Chromosomes - DNA and protein Chapter 16 DNA: The Genetic Material The Nature of Genetic Material Chromosomes - DNA and protein Genes are subunits DNA = 4 similar nucleotides C(ytosine) A(denine) T(hymine) G(uanine) Proteins = 20 different

More information

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O NUCLEIC ACID METABOLISM Omidiwura, B.R.O Nucleic Acids Nucleic acids are molecules that store information for cellular growth and reproduction There are two types of nucleic acids: - deoxyribonucleic acid

More information

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are? 2 strands, has the 5-carbon sugar deoxyribose, and has the nitrogen base Thymine. The actual process of assembling the proteins on the ribosome is called? DNA translation Adenine pairs with Thymine, Thymine

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule.

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. 3. True

More information

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication. The difference between replication, transcription, and translation. How

More information

Tala Saleh. Tamer Barakat ... Anas Abu. Humaidan

Tala Saleh. Tamer Barakat ... Anas Abu. Humaidan 7 Tala Saleh Tamer Barakat... Anas Abu. Humaidan Some Information in this lecture may not be mentioned by the Dr. as thoroughly as this sheet. But they cannot be overlooked for a better understanding,

More information

Biochemistry 302. Exam 2. March 10, Answer Key

Biochemistry 302. Exam 2. March 10, Answer Key 1 Biochemistry 302 Exam 2 March 10, 2004 Answer Key 2 Biochemistry 302, Spring 2004 Exam 2 (100 points) Name I. Short answer 1. Identify the 5 end, 3 end, amino acid acceptor nucleoside, and bases comprising

More information

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses.

DNA. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Is a molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Genetic information is encoded as a sequence of nucleotides (guanine,

More information

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA.

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA. Molecular Genetics DNA Replication Two kinds of nucleic acids in cells: DNA and RNA. DNA function 1: DNA transmits genetic information from parents to offspring. DNA function 2: DNA controls the functions

More information

Bio 366: Biological Chemistry II Test #3, 100 points

Bio 366: Biological Chemistry II Test #3, 100 points Bio 366: Biological Chemistry II Test #3, 100 points READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the back of the

More information

DNA Transcription. Dr Aliwaini

DNA Transcription. Dr Aliwaini DNA Transcription 1 DNA Transcription-Introduction The synthesis of an RNA molecule from DNA is called Transcription. All eukaryotic cells have five major classes of RNA: ribosomal RNA (rrna), messenger

More information

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 22: Nucleic Acids & Protein Synthesis. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis General, rganic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 22: Nucleic Acids & Protein Synthesis Learning bjectives: q Nucleosides & Nucleo@des:

More information

DNA Replication AP Biology

DNA Replication AP Biology DNA Replication 2007-2008 Double helix structure of DNA It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 11 MICROBIAL GENETICS AND INFECTIOUS DISEASE WHY IS THIS IMPORTANT? Understanding genetic mechanisms lets us study how microorganisms can mutate and change in ways that allow them to defeat host

More information

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce Chromosomes Chromosomes Strands of DNA that contain all of the genes an organism needs to survive and reproduce Genes Segments of DNA that specify how to build a protein genes may specify more than one

More information

From Gene to Protein

From Gene to Protein 8.2 Structure of DNA From Gene to Protein deoxyribonucleic acid - (DNA) - the ultimate source of all information in a cell This information is used by the cell to produce the protein molecules which are

More information

DNA Replication II Biochemistry 302. Bob Kelm January 28, 2004

DNA Replication II Biochemistry 302. Bob Kelm January 28, 2004 DNA Replication II Biochemistry 302 Bob Kelm January 28, 2004 Conceptual model for proofreading based on kinetic considerations Fig. 24.44 stalling transient melting exonuclease site occupancy Following

More information

Road to the Double Helix

Road to the Double Helix Road to the Double Helix Watson and Crick Missing layer means alternating pattern (major & minor groove) Hydrogen bonding A pairs with T G pairs with C Double helix fits the data! Franklin and Wilkins

More information

MCB 110 Spring 2017 Exam 1 SIX PAGES

MCB 110 Spring 2017 Exam 1 SIX PAGES MCB 110 Spring 2017 Exam 1 SIX PAGES NAME: SID Number: Question Maximum Points Your Points I 28 II 32 III 32 IV 30 V 28 150 PLEASE WRITE your NAME or SID number on each page. This exam must be written

More information

Gene Mutation, DNA Repair, and Transposition

Gene Mutation, DNA Repair, and Transposition Gene Mutation, DNA Repair, and Transposition Mutations Are Classified in Various Ways Spontaneous mutations happen naturally and randomly and are usually linked to normal biological or chemical processes

More information

DNA - DEOXYRIBONUCLEIC ACID

DNA - DEOXYRIBONUCLEIC ACID DNA - DEOXYRIBONUCLEIC ACID blueprint of life (has the instructions for making an organism) established by James Watson and Francis Crick codes for your genes shape of a double helix made of repeating

More information

STRUCTURE OF A NUCLEOTIDE

STRUCTURE OF A NUCLEOTIDE STRUCTURE OF A NUCLEOTIDE Consists of three parts: Deoxyribose sugar, a phosphate group and a nitrogenous base. Adenine (purine), Cytosine, Guanine (purine), Thymine Purine: 2 carbon rings of nitrogen-containing

More information

DNA Metabolism. I. DNA Replication. A. Template concept: 1. How can you make a copy of a molecule? 2. Complementary Hydrogen bonding

DNA Metabolism. I. DNA Replication. A. Template concept: 1. How can you make a copy of a molecule? 2. Complementary Hydrogen bonding DNA Metabolism I. DNA Replication A. Template concept: 1. How can you make a copy of a molecule? 2. Complementary Hydrogen bonding B. DNA replication follows a set of fundamental rules 1. Semiconservative

More information

DNA: Structure & Replication

DNA: Structure & Replication DNA Form & Function DNA: Structure & Replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork

More information

DNA metabolism. DNA Replication DNA Repair DNA Recombination

DNA metabolism. DNA Replication DNA Repair DNA Recombination DNA metabolism DNA Replication DNA Repair DNA Recombination Chutima Talabnin Ph.D. School of Biochemistry,Institute of Science, Suranaree University of Technology Central Dogma or Flow of genetic information

More information

3.A.1 DNA and RNA: Structure and Replication

3.A.1 DNA and RNA: Structure and Replication 3.A.1 DNA and RNA: Structure and Replication Each DNA polymer is made of Nucleotides (monomer) which are made of: a) Phosphate group: Negatively charged and polar b) Sugar: deoxyribose- a 5 carbon sugar

More information

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Chapter 3 Nucleic Acids, Proteins, and Enzymes 3 Nucleic Acids, Proteins, and Enzymes Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts 3.1 Nucleic Acids Are Informational Macromolecules 3.2 Proteins Are Polymers with Important Structural

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

Chapter 8 Nucleotides & Nucleic Acids

Chapter 8 Nucleotides & Nucleic Acids Chapter 8 Nucleotides & Nucleic Acids We Need Nucleic Acids! RNA rrna DNA RNA mrna Protein Protein Trait Pol trna DNA contains genes, the information needed to synthesize functional proteins and RNAs DNA

More information

Questions from chapters in the textbook that are relevant for the final exam

Questions from chapters in the textbook that are relevant for the final exam Questions from chapters in the textbook that are relevant for the final exam Chapter 9 Replication of DNA Question 1. Name the two substrates for DNA synthesis. Explain why each is necessary for DNA synthesis.

More information

GENETICS - CLUTCH CH.8 DNA REPLICATION.

GENETICS - CLUTCH CH.8 DNA REPLICATION. !! www.clutchprep.com CONCEPT: SEMICONSERVATIVE REPLICATION Before replication was understood, there were three of how DNA is replicated Conservative replication states that after replication, there is

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

Structural Bioinformatics (C3210) DNA and RNA Structure

Structural Bioinformatics (C3210) DNA and RNA Structure Structural Bioinformatics (C3210) DNA and RNA Structure Importance of DNA/RNA 3D Structure Nucleic acids are essential materials found in all living organisms. Their main function is to maintain and transmit

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!!

What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! What happens after DNA Replication??? Transcription, translation, gene expression/protein synthesis!!!! Protein Synthesis/Gene Expression Why do we need to make proteins? To build parts for our body as

More information

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base

DNA Structure DNA Nucleotide 3 Parts: 1. Phosphate Group 2. Sugar 3. Nitrogen Base DNA,, RNA,, AND PROTEIN SYNTHESIS DNA Deoxyribonucleic Acid Enables cells to have different forms and perform different functions Primary functions of DNA: Store and transmit genetic information that tells

More information

BIO 311C Spring Lecture 34 Friday 23 Apr.

BIO 311C Spring Lecture 34 Friday 23 Apr. BIO 311C Spring 2010 1 Lecture 34 Friday 23 Apr. Summary of DNA Replication in Prokaryotes origin of replication initial double helix origin of replication new growing polynucleotide chains Circular molecule

More information

DNA. Chapter 1. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 1/29/2013. Copyright 2012 F.A.

DNA. Chapter 1. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 1/29/2013. Copyright 2012 F.A. DNA Chapter 1 1 Deoxyribonucleic acid (DNA) is a genetic information storage system. A T G C T A C G DNA is a polymer of nucleotides. Nucleotides are phosphorylated nucleosides. DNA Nucleosides comprise

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

}Nucleosides NUCLEIC ACIDS. Nucleic acids are polymers Monomer---nucleotides Nitrogenous bases Purines Pyrimidines Sugar Ribose Deoxyribose

}Nucleosides NUCLEIC ACIDS. Nucleic acids are polymers Monomer---nucleotides Nitrogenous bases Purines Pyrimidines Sugar Ribose Deoxyribose DNA STRUCTURE NUCLEIC ACIDS Nucleic acids are polymers Monomer---nucleotides Nitrogenous bases Purines Pyrimidines Sugar Ribose Deoxyribose Phosphates +nucleoside=nucleotide }Nucleosides The Sugars The

More information

What Are the Chemical Structures and Functions of Nucleic Acids?

What Are the Chemical Structures and Functions of Nucleic Acids? THE NUCLEIC ACIDS What Are the Chemical Structures and Functions of Nucleic Acids? Nucleic acids are polymers specialized for the storage, transmission, and use of genetic information. DNA = deoxyribonucleic

More information

Fidelity of DNA polymerase

Fidelity of DNA polymerase Fidelity of DNA polymerase Shape selectivity: DNA polymerase's conformational change for determination of fidelity for each nucleotide Induced fit: Structure determines function Matched nucleotide Fidelity

More information