Controlling Microbial Growth in the Environment

Size: px
Start display at page:

Download "Controlling Microbial Growth in the Environment"

Transcription

1 PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 9 Controlling Microbial Growth in the Environment Principles of Microbial Control Terminology of Microbial Control Death Rate Action of Anti-microbial agents Selection of Anti-microbial agents Factors affecting efficacy BioSafety Levels Methods of Microbial Control Physical Methods Chemical Methods How to Evaluate AntiMicrobial Agents Bacteristatic vs cidal vs sterilize? Strength and time? In what situation to use them? 1

2 Operation Room Aseptic (free of pathogens) Disinfection (most) Floor/non-living DeGerming (your hands) mechanical Sterilization(all) instruments Antisepsis (patient) Living tissue Sanitization (most) floor Public place Applies to Pathogens Microbicidal agents do not simultaneously kill all cells. They kill a constant percentage over time. Figure 9.1 A plot of microbial death rate. To evaluate the efficacy of an antimicrobial agent Constant percentage of the extant population is killed each minute Decimal Reduction Time (D) is the time it takes to kill 90% of the population All? Thermal Death Time = time it takes to completely sterilize The Selection of Microbial Control Methods Ideally, agents should be Inexpensive Fast-acting Stable during storage Capable of controlling microbial growth while being harmless to humans, animals, and objects 2

3 Basic Principles of Microbial Control Action of Antimicrobial Agents Alteration of cell walls and membranes (1/2) Cell wall maintains integrity of cell Cells burst due to osmotic effects when damaged Cytoplasmic membrane contains cytoplasm and controls passage of chemicals into and out of cell Cellular contents leak out when damaged Proof: Non-enveloped viruses have greater tolerance of harsh conditions Basic Principles of Microbial Control Action of Antimicrobial Agents Damage to proteins and nucleic acids (2/2) Protein function depends on 3-D shape Extreme heat or certain chemicals denature proteins STOP protein synthesis through action on RNA (ribosomes) Eukaryotic 80S ribosomes Prokaryotic 70S ribosomes Mitochondria/Chloroplast also 70S ribosomes Basic Principles of Microbial Control Action of Antimicrobial Agents Damage to proteins and nucleic acids (2/2) Nucleic acids can be altered or destroyed by chemicals, radiation, and heat 3

4 The Selection of Microbial Control Methods Factors Affecting the Efficacy of Antimicrobial Methods Site to be treated (1/3) Harsh chemicals and extreme heat cannot be used on humans, animals, and fragile objects Method of microbial control based on site of medical procedure (bed vs scalpel) The Selection of Microbial Control Methods Factors Affecting the Efficacy of Antimicrobial Methods Relative susceptibility of microorganisms (2/3) Endospores protozoan cysts Mycobacterium tuberculosis waxy cell walls Bacteria Vegetative cell endospore boil Waxy lipids Protozoa trophozoite cyst 4

5 Figure 9.2 Relative susceptibilities of microbes to antimicrobial agents., RNAse enzyme The Selection of Microbial Control Methods Factors Affecting the Efficacy of Antimicrobial Methods Relative susceptibility of microorganisms (2/3) Germicide classification (imagine for medical instruments that cannot be sterilized by heat) High-level germicides (invasive contact) Kill all pathogens, including endospores Intermediate-level germicides (non-invasive but mucous contact) Kill fungal spores, protozoan cysts, viruses, and pathogenic bacteria Low-level germicides (surface contact) Kill vegetative bacteria, fungi, protozoa, and some viruses The Selection of Microbial Control Methods Factors Affecting the Efficacy of Antimicrobial Methods Environmental Conditions (3/3) Temperature (high) ph (low) Good Contact 5

6 The Selection of Microbial Control Methods Biosafety Levels Four levels of safety in labs dealing with pathogens Biosafety Level 1 (BSL-1) Handling pathogens that do not cause disease in healthy humans Biosafety Level 2 (BSL-2) Handling moderately hazardous agents (hepatitis/influenza virus, MRSA) Biosafety Level 3 (BSL-3) Handling microbes in safety cabinets with HEPA filters (tuberculosis/anthrax bacteria, yellow fever/rocky mountain fever virus) Biosafety Level 4 (BSL-4) Handling microbes that cause severe or fatal disease (smallpox, Lassa fever virus) (E.coli) (Ebola virus) Figure 9.4 A BSL-4 worker carrying Ebola virus cultures. Physical Methods of Microbial Control 5 Physical Methods Heat-Related Methods (extremes of heat) (1.1/5) Heat-Related Methods (extremes of cold) (1.2/5) Dessication and Lyophilization (2/5) Filtration (3/5) Osmotic Pressure (4/5) Radiation (5/5) 6

7 Physical Methods of Microbial Control Heat-Related Methods (extremes of heat) (1.1/5) Effects of high temperatures Denature proteins Interfere with integrity of cytoplasmic membrane and cell wall Disrupt structure and function of nucleic acids Thermal death point Lowest temperature that kills all cells in broth in 10 min Thermal death time Time to sterilize volume of liquid at set temperature Physical Methods of Microbial Control Heat-Related Methods Moist Heat e.g.? Moist heat Used to disinfect, sanitize, sterilize, and pasteurize More effective than dry heat (water conducts heat better than air) Methods of microbial control using moist heat Boiling Autoclaving Pasteurization Ultrahigh-temperature sterilization Physical Methods of Microbial Control Boiling Kills vegetative/growing cells of bacteria and fungi, protozoan trophozoites, and most viruses Boiling time is critical Endospores (20 hrs), protozoan cysts, and some viruses can survive boiling 7

8 Physical Methods of Microbial Control Heat-Related Methods Autoclaving Pressure applied to boiling water prevents steam from escaping Boiling temperature increases as pressure increases Autoclave conditions: 121ºC, 15 psi, 15 minutes not for vitamins or some plastics Figure 9.6 The relationship between temperature and pressure. Figure 9.7 An autoclave. How to tell it is working Manual exhaust to atmosphere Pressure gauge Safety valve Valve for steam to chamber Exhaust valve Steam Air Door Steam jacket Material to be sterilized Trap Thermometer Steam supply 8

9 Figure 9.8 Sterility indicators. Cap that allows steam to penetrate Flexible plastic vial Crushable glass ampule Nutrient medium containing ph color indicator Endospore strip Incubation After autoclaving, flexible vial is squeezed to break ampule and release medium onto spore strip. Yellow medium means spores are viable; autoclaved objects are not sterile. Red medium means spores were killed; autoclaved objects are sterile. B. Stearothermophilus endospores Physical Methods of Microbial Control Pasteurization (kills Brucella melitensis / mycobacterium Bovis / E.coli) Used for milk, ice cream, yogurt, and fruit juices Not sterilization Heat-tolerant (thermoduric) and heat-loving (thermophillic) microbes survive (expiration date on milk) Pasteurization Yeast = Alcohol Bacteria = Acid Beer and wine spoiled due to growth of bacteria Pasteurization = heat it just enough to kill bacteria that generate acid 9

10 Physical Methods of Microbial Control Pasteurization of milk Batch method Flash pasteurization Ultrahigh-temperature pasteurization/sterilization Dairy Industry Procedures Then cool rapidly Figure 9.6 The relationship between temperature and pressure. Ultra-high temperature pasteurization of milk requires 134 ºC - so what pressure needs to be applied? Physical Methods of Microbial Control Heat-Related Methods Dry Heat e.g.? Dry heat Used for materials that cannot be sterilized with moist heat (powders, oil, metals) Denatures proteins and oxidizes metabolic and structural chemicals Requires higher temperatures for longer time than moist heat 10

11 Extreme Dry heat = fire Incineration is ultimate means of sterilization Physical Methods of Microbial Control Refrigeration and Freezing (extremes of cold) (1.2/5) Decrease microbial metabolism, growth, and reproduction Chemical reactions occur slower at low temperatures Liquid water not available Refrigeration halts growth of most pathogens Some microbes can multiply in refrigerated foods 11

12 Physical Methods of Microbial Control dessication e.g.? Desiccation and Lyophilization Desiccation (drying) inhibits growth due to removal of water Lyophilization (freeze-drying) used for long-term preservation of microbial cultures Prevents formation of damaging ice crystals Figure 9.9 The use of desiccation as a means of preserving apricots in Pakistan. Dessication and what? 12

13 Figure 9.10 Filtration equipment used for microbial control. Nonsterile medium Membrane filter To vacuum pump Sterile medium Nitrocellulose/plastic Pore size important and not thickness Sterilization? Figure 9.11 The roles of high-efficiency particulate air (HEPA) filters in biological safety cabinets. Outside Exhaust HEPA filter Safety glass viewscreen Blower Supply HEPA filter Light High-velocity air barrier 13

14 Osmotic Pressure Osmotic Pressure To preserve food by inhibiting microbes use Low or High concentrations of salt or sugar in foods Why? 14

15 Physical Methods of Microbial Control Osmotic Pressure High concentrations of salt or sugar in foods to inhibit growth Why? Cells in hypertonic solution of salt or sugar lose water Fungi have greater ability than bacteria to survive hypertonic environments Physical Methods of Microbial Control Radiation Ionizing radiation e.g? Wavelengths shorter than 1 nm Electron beams, gamma ray, some X rays Why? - Ejects electrons from atoms to create ions Ions disrupt hydrogen bonding, oxidize double covalent bonds, and create hydroxyl radicals, denature DNA Gamma rays penetrate well but require hours to kill microbes Figure 9.12 A demonstration of the increased shelf life of food achieved by ionizing radiation. Gamma rays FDA approved 15

16 Physical Methods of Microbial Control Nonionizing radiation - UV Wavelengths greater than 1 nm Why? Excites electrons, causing them to make new covalent bonds - Affects 3-D structure of proteins and nucleic acids UV light does not penetrate well Suitable for disinfecting air, transparent fluids, and surfaces of objects UV light causes pyrimidine dimers in DNA Figure 7.25 A pyrimidine (in this case, thymine) dimer. Ultraviolet light How to create point mutations Thymine dimer G C T G T T = G G T A C G A C A A C C A T Figure 9.9 The use of desiccation as a means of preserving apricots in Pakistan. Dessication and UV 16

17 Good Summary Good Summary Chemical Methods of Microbial Control Affect microbes cell walls, cytoplasmic membranes, proteins, or DNA Effect varies with differing environmental conditions Often more effective against enveloped viruses and vegetative cells of bacteria, fungi, and protozoa Fungal spores, protozoan cysts, bacterial endospores are particularly resistant 17

18 Chemical Methods of Microbial Control Phenol and Phenolics Denature proteins and disrupt cell membranes Effective in presence of organic matter Remain active for prolonged time Commonly used in health care settings, labs, and homes Have disagreeable odor and possible side effects Figure 9.13 Phenol and phenolics. Phenol Orthocresol Orthophenylphenol Triclosan Hexachlorophene Bisphenolics Phenolics 18

19 Chemical Methods of Microbial Control Alcohols (rubbing alcohol = isopropanol) Intermediate-level disinfectants Denature proteins and disrupt cytoplasmic membranes 100% not as effective as 70-90% because proteins need water to denature More effective than soap in removing bacteria from hands Swabbing of skin with alcohol prior to injection removes most microbes Fungal spores, bacterial endospores are resistant Chemical Methods of Microbial Control Halogens Why? - Damage enzymes by denaturation Widely used in numerous applications Iodine tablets, iodophores, chlorine treatment, bleach (NaOCl), chloramines (Cl and NH 3 ), and bromine disinfection (evaporates slower than Cl hot tubes), Fluorine 19

20 Figure 9.14 Degerming in preparation for surgery on a hand. Iodophor (Betadine) iodine containing organic compound that slowly releases iodine Chemical Methods of Microbial Control Oxidizing Agents (release oxygen radicals) Peroxides, ozone, and peracetic acid Kill by oxidation of microbial enzymes Especially effective against anaerobic pathogens High-level disinfectants and antiseptics Hydrogen peroxide can disinfect and sterilize surfaces Not useful for treating open wounds due to catalase activity Peracetic acid is effective sporicide used to sterilize equipment (Not adversely affected by organic contaminants and leaves no residue) 20

21 Ozone (O 3 ) treatment of drinking water (more effective than Cl) Chemical Methods of Microbial Control Surfactants "Surface active" chemicals Why? - Reduce surface tension of solvents Soaps and detergents Soaps have hydrophilic and hydrophobic ends Good degerming agents but not antimicrobial Detergents are positively charged organic surfactants (More soluble than soaps) Figure 9.15 Quaternary ammonium compounds (quats). Quats colorless/tasteless and harmless Low-level disinfectants Disrupt cellular membranes Ideal for many medical and industrial applications Ammonium ion Cetylpyridinium Quaternary ammonium ions (quats) Benzalkonium Hydrophobic tail 21

22 mouthwash Chemical Methods of Microbial Control Heavy Metals (As, Zn, Hg, Ag, Cu) Heavy-metal ions denature proteins (by combining with sulfur in cysteine) Low-level bacteriostatic and fungistatic agents 1% silver nitrate to prevent blindness caused by N. gonorrhoeae Thimerosal (Hg) used to preserve vaccines Copper controls algal growth in fish tanks, pools, storage tanks Figure 9.16 The effect of heavy-metal ions on bacterial growth. Dental amalgam 22

23 Copper kills MRSA Chemical Methods of Microbial Control Aldehydes Compounds containing terminal CHO groups Cross-link functional groups to denature proteins and inactivate nucleic acids 2% Glutaraldehyde disinfects (10 mins) and sterilizes (10 hrs) Formalin (37 % formaldehyde) used in embalming and disinfection of rooms and instruments (carcinogenic) Chemical Methods of Microbial Control Gaseous Agents Microbicidal and sporicidal gases used in closed chambers to sterilize items (4-18 hrs -ethylene oxide, propylene oxide, beta-propiolactone) Cannot expose to heat or water and need to sterilize use ethylene oxide Denature proteins and DNA by cross-linking functional groups Used in hospitals and dental offices Disadvantages Can be hazardous to people, highly explosive, Extremely poisonous, Potentially carcinogenic (beta-propiolactone) 23

24 Chemical Methods of Microbial Control Enzymes Antimicrobial enzymes act against microorganisms Human tears contain lysozyme Digests peptidoglycan cell wall of bacteria Use enzymes to control microbes in the environment Lysozyme used to reduce the number of bacteria in cheese Prionzyme can remove prions on medical instruments Chemical Methods of Microbial Control Antimicrobials Antibiotics (antimicrobial agents produced naturally by microbes) and semisynthetic and synthetic chemicals Typically used for treatment of disease and not for environmental control (like earlier chemicals) Some used for antimicrobial control outside the body Nisin (kill bacteria in cheese) natamycin (kill fungi in cheese) is Lysozyme an antibiotic? 24

25 Good Summary Questions from here 4 Methods for Evaluating Disinfectants and Antiseptics 1) Phenol coefficient (1/4) Evaluates efficacy of disinfectants and antiseptics Compares an agent's ability to control microbes to phenol Greater than 1.0 indicates agent is more effective than phenol Phenol coefficient (a) of 100 =?, (b) 0f phenol =? Methods for Evaluating Disinfectants and Antiseptics Methods for Evaluating Disinfectants and Antiseptics 2) Use-dilution Metal cylinders dipped into broth cultures of bacteria, dried Contaminated cylinder immersed into dilution of disinfectant Cylinders removed, washed, and placed into tube of medium Most effective agents entirely prevent growth at highest dilution Current standard test in the U.S. 25

26 Methods for Evaluating Disinfectants and Antiseptics Kelsey-Sykes capacity test (3/4) Alternative assessment approved by the European Union Bacterial suspensions added to the chemical being tested Samples removed at predetermined times and incubated Lack of bacterial reproduction reveals minimum time required for the disinfectant to be effective Methods for Evaluating Disinfectants and Antiseptics In-use test (4/4) Swabs taken from objects before and after application of disinfectant or antiseptic Swabs inoculated into growth medium and incubated Medium monitored for growth Methods for Evaluating Disinfectants and Antiseptics Development of Resistant Microbes Little evidence that products containing antiseptic and disinfecting chemicals add to human or animal health Use of such products promotes development of resistant microbes 26

27 FDA bans antibacterial soaps - Sep2016 Rule removes triclosan and triclocarban from overthe-counter antibacterial hand and body washes The agency after some data suggested that longterm exposure to certain active ingredients used in antibacterial products for example, triclosan (liquid soaps) and triclocarban (bar soaps) could pose health risks, such as bacterial resistance or hormonal effects. 27

Chapter 9. Controlling Microbial Growth in the Environment. Lecture prepared by M indy M iller-kittrell North Carolina State University

Chapter 9. Controlling Microbial Growth in the Environment. Lecture prepared by M indy M iller-kittrell North Carolina State University Chapter 9 Controlling Microbial Growth in the Environment Lecture prepared by M indy M iller-kittrell North Carolina State University Table 9.1 Terminology of Microbial Control Figure 9.1 A plot of microbial

More information

Principles of Microbial Control Terminology of Microbial Control Death Rate Action of Anti-microbial agents

Principles of Microbial Control Terminology of Microbial Control Death Rate Action of Anti-microbial agents Principles of Microbial Control Terminology of Microbial Control Death Rate Action of Anti-microbial agents Selection of Anti-microbial agents Factors affecting efficacy BioSafety Levels Methods of Microbial

More information

Chapter 9 Controlling Microbial Growth in the Environment.

Chapter 9 Controlling Microbial Growth in the Environment. Chapter 9 Controlling Microbial Growth in the Environment http://www.cdc.gov/hicpac/disinfection_sterilization/acknowledg.html Controlling microorganisms Decontamination: Physical, chemical, and mechanical

More information

Controlling Microbial Growth in the Environment

Controlling Microbial Growth in the Environment PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 9 Controlling Microbial Growth in the Environment Bacteristatic vs cidal vs sterilize?

More information

Controlling Microbial Growth in the Environment

Controlling Microbial Growth in the Environment PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 9 Controlling Microbial Growth in the Environment Why do Gram Staining? Classification/identification

More information

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho Chapter 9 Controlling Microbial Growth in the Environment 10/1/2017 1 MDufilho Table 91 Terminology of Microbial Control 10/1/2017 MDufilho 2 Number of living microbes Figure 91 A plot of microbial death

More information

Important Terminology (pg )

Important Terminology (pg ) Number of living microbes 10/18/2016 Chapter 9: Control of Microbial Growth 1. Physical Methods 2. Chemical methods Important Terminology (pg. 263-264) sterilization > commercial sterilization > disinfection

More information

Chapter 7: Control of Microbial Growth

Chapter 7: Control of Microbial Growth Chapter 7: Control of Microbial Growth 1. Physical Methods 2. Chemical methods Important Terminology sterilization > commercial sterilization > disinfection = antisepsis > degerming > sanitization Also,

More information

Important Terminology

Important Terminology Chapter 7: Control of Microbial Growth 1. Physical Methods 2. Chemical methods Important Terminology sterilization > commercial sterilization > disinfection = antisepsis > degerming > sanitization Also,

More information

The Control of Microbial Growth

The Control of Microbial Growth The Control of Microbial Growth Sepsis refers to microbial contamination. Asepsis is the absence of significant contamination. Aseptic surgery techniques prevent microbial contamination of wounds. Terminology

More information

The Control of Microbial Growth

The Control of Microbial Growth The Control of Microbial Growth Sepsis refers to microbial contamination. Asepsis is the absence of significant contamination. Aseptic surgery techniques prevent microbial contamination of wounds. Terminology

More information

Inhibiting Microbial Growth in vitro. CLS 212: Medical Microbiology Zeina Alkudmani

Inhibiting Microbial Growth in vitro. CLS 212: Medical Microbiology Zeina Alkudmani Inhibiting Microbial Growth in vitro CLS 212: Medical Microbiology Zeina Alkudmani Microbicidal or Microbistatic? Microbicidal Microbicidal is the process or an agent that kills the microorganism. The

More information

M I C R O B I O L O G Y

M I C R O B I O L O G Y ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 7 The Control of Microbial Growth PowerPoint Lecture Slide Presentation prepared by Christine L. Case The Control of

More information

Controlling Microbial Growth

Controlling Microbial Growth Controlling Microbial Growth What factors limit microbial growth? In what situations are large microbial numbers undesirable? Concept of Microbial Control Factors Which Affect Control Temp., species type

More information

Foundations in Microbiology Seventh Edition. Talaro Chapter 11 Physical and Chemical Agents for Microbial Control

Foundations in Microbiology Seventh Edition. Talaro Chapter 11 Physical and Chemical Agents for Microbial Control Foundations in Microbiology Seventh Edition Talaro Chapter 11 Physical and Chemical Agents for Microbial Control 11.1 Controlling Microorganisms Physical, chemical, and mechanical methods to destroy or

More information

The Control of Microbial Growth

The Control of Microbial Growth 11/10/2016 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 7 The Control of Microbial Growth The Terminology of Microbial Control Sepsis refers to

More information

8. Scrubbing or immersing the skin in chemicals to reduce the numbers of microbes on the skin is: A. disinfection B. sterilization C. antisepsis D.

8. Scrubbing or immersing the skin in chemicals to reduce the numbers of microbes on the skin is: A. disinfection B. sterilization C. antisepsis D. 11 Student: 1. Microbiological contaminants are best described as: A. unwanted microbes present on or in a substance B. any and all microbes present on or in a substance C. pathogenic microbes present

More information

Chapter 8 Control of Microorganisms by Physical and Chemical Agents

Chapter 8 Control of Microorganisms by Physical and Chemical Agents Chapter 8 Control of Microorganisms by Physical and Chemical Agents Why control the microbial activity? Prevention from : Food spoilage and Contamination Pathogen and their transmission Longer preservation

More information

Inhibiting of Microbial Growth in vitro CLS 212

Inhibiting of Microbial Growth in vitro CLS 212 Inhibiting of Microbial Growth in vitro CLS 212 Microbicidal Microbicidal is the process or an agent that kills the microorganism. The suffix -cidal or cide means??( See chapter 8 page 131) Microbistatic

More information

Chapter 7 Study Guide Control of Microbial Growth

Chapter 7 Study Guide Control of Microbial Growth Chapter 7 Study Guide Control of Microbial Growth Note: you will not be tested on the following: use-dilution test. 1. Be able to define and use the following terms in context: sterilization, commercial

More information

Physical and Chemical Control of Microorganisms

Physical and Chemical Control of Microorganisms 1 Physical and Chemical Control of Microorganisms I. Terms II. Factors which determine the effectiveness of control methods III. Methods of physical control IV. Chemical agents Terms 1) Control -- Limiting

More information

Chapter 7. The Control of Microbial Growth

Chapter 7. The Control of Microbial Growth Chapter 7 The Control of Microbial Growth The Terminology of Microbial Control Sepsis refers to microbial contamination / microbial growth Asepsis is the absence of significant contamination Antisepsis:

More information

The Control of Microbial Growth

The Control of Microbial Growth PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 7 The Control of Microbial Growth The Terminology of Microbial Control Sepsis refers to bacterial

More information

Physical and Chemical Agents for Microbial Control

Physical and Chemical Agents for Microbial Control Chapter 11 Physical and Chemical Agents for Microbial Control Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Controlling Microorganisms Physical, chemical, and

More information

2054, Chap. 7, page 1

2054, Chap. 7, page 1 2054, Chap. 7, page 1 I. Control of Microorganisms by Physical and Chemical Methods A. Terminology 1. sterilization = destruction of living cells, viable spores, viruses, viroids 2. disinfection = killing,

More information

Sterilization, Disinfection and Antisepsis

Sterilization, Disinfection and Antisepsis Sterilization, Disinfection and Antisepsis For the control of infections Prevention Principles of Sterilization, Disinfection and Antisepsis Treatment Chemotherapy Definitions Sterilization Disinfection

More information

Lecture Summary Microbial Control of Growth (CH5)

Lecture Summary Microbial Control of Growth (CH5) Lecture Summary Microbial Control of Growth (CH5) This chapter covers the processes available to control microbial growth. These processes are divided into two groups, physical and chemical methods of

More information

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death Definitions Control of Microbes in the Environment u Sterilization - destruction or removal of all viable organisms from an object or environment (agent = sterilant) u Disinfection - killing, inhibition,

More information

Control of microbial growth means "Preventing the growth of microbes. Preventing growth of undesirable microorganisms

Control of microbial growth means Preventing the growth of microbes. Preventing growth of undesirable microorganisms Control of microbial growth means "Preventing the growth of microbes OR Preventing growth of undesirable microorganisms Very important in microbiology experiments Control Killing microorganisms Preventing

More information

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death

Definitions. BIOL 3702: Chapter 8. Control of Microbes in the Environment. Mechanical Removal Methods. Pattern of Microbial Death Definitions Control of Microbes in the Environment u Sterilization - destruction or removal of all viable organisms from an object or environment (agent = sterilant) u Disinfection - killing, inhibition,

More information

1)What are the four general considerations for effective microbial control? List and describe (8 pts)

1)What are the four general considerations for effective microbial control? List and describe (8 pts) ä.2 Name: Sanitation work sheet Answer Key Not to be turned in... 1)What are the four general considerations for effective microbial control? List and describe (8 pts) 1) Sterilization: complete removal

More information

Sterilization and Disinfection

Sterilization and Disinfection BACTERIOLOGY MSc. Halah Dawood Second stage LAB. 1 Sterilization and Disinfection Sterilization is defined as the process where all the living microorganisms, including bacterial spores are killed. Sterilization

More information

Chapter 11. Topics: Controlling Microorganisms. - Physical Control. - Chemical control

Chapter 11. Topics: Controlling Microorganisms. - Physical Control. - Chemical control Chapter 11 Topics: Controlling Microorganisms - Physical Control - Chemical control 1 An overview of the microbial control methods. Fig. 11.1 Microbial control methods 2 Controlling Microorganisms Microbial

More information

AUTOCLAVE: steam pressure sterilizer

AUTOCLAVE: steam pressure sterilizer Microbiology Chapter 6 Controlling Microbes and Antimicrobial Agents 6:1 Physical Methods for Controlling Microbes DISINFECTION: the process of destroying disease-causing microorganisms STERILIZATION:

More information

1. # of organisms present- it is harder to kill a larger population of cells.

1. # of organisms present- it is harder to kill a larger population of cells. ANTIMICROBIAL AGENTS Killing of Organisms-Death depends upon 1. # of organisms present- it is harder to kill a larger population of cells. 2. # of molecules (bullets of chemical agents)- a more concentrated

More information

Claire Kari Biosafety Specialist DEHS Biosafety October 2010

Claire Kari Biosafety Specialist DEHS Biosafety October 2010 Claire Kari Biosafety Specialist DEHS Biosafety 612 626 6002 karix001@umn.edu October 2010 Welcome to DEHS introductory training about Decontamination Decontamination Definitions Categories Prep Work Methods

More information

Control of Microbial growth Dr. Hala Al Daghistani

Control of Microbial growth Dr. Hala Al Daghistani Control of Microbial growth Dr. Hala Al Daghistani Terminology Sepsis: Characterized by the presence of pathogenic microbes in living tissues or associated fluids. Asepsis: absence of significant contamination.

More information

How antimicrobial agents work

How antimicrobial agents work Physical and Chemical Control of Microbes Physical Agents heat or radiation Chemical Agents disinfectants or antiseptics Important Terms 1. Sterilization process of killing all viable microbes 2. Bactericide

More information

Controlling Microbes (Sterilization & Disinfection)

Controlling Microbes (Sterilization & Disinfection) Controlling Microbes (Sterilization & Disinfection) Some Important Terms Defined: Sterilization - treatment to destroy all microbial life (even destroys bacterial endospores and fungal spores); there are

More information

Control of Microbial growth Dr. Hala Al Daghistani

Control of Microbial growth Dr. Hala Al Daghistani Control of Microbial growth Dr. Hala Al Daghistani Terminology Sepsis: Characterized by the presence of pathogenic microbes in living tissues or associated fluids. Asepsis: absence of significant contamination.

More information

Physical and Chemical Control of Microbes. Muhammad Suleman Kamran Rasool Fatima Amjad Aysha Imtiaz BIOL 411

Physical and Chemical Control of Microbes. Muhammad Suleman Kamran Rasool Fatima Amjad Aysha Imtiaz BIOL 411 BIOL 411 Physical and Chemical Control of Microbes Muhammad Suleman Kamran Rasool Fatima Amjad Aysha Imtiaz BIOL 411 Background: Physical and Chemical Control of Microbial Growth In the 19 th century,

More information

Microbial Growth and Aseptic Techniques

Microbial Growth and Aseptic Techniques Microbial Growth and Aseptic Techniques Control of Microbial Growth: Introduction Early civilizations practiced salting, smoking, pickling, drying, and exposure of food and clothing to sunlight to control

More information

Microorganisms are the agents of contamination, infection. Hence it becomes necessary to remove them from materials and areas.

Microorganisms are the agents of contamination, infection. Hence it becomes necessary to remove them from materials and areas. Mawada M.yahia Objectives 1.Define the terms sterilization, disinfectant and antiseptic. 2. Classify the different methods of sterilization 3. Rrealizes that heat is the most important method of sterilization.

More information

2120 Lab. Week 11. Experiments 13,14,21. Kirby Bauer, TDT, Chemicals

2120 Lab. Week 11. Experiments 13,14,21. Kirby Bauer, TDT, Chemicals 2120 Lab Week 11 Experiments 13,14,21 Kirby Bauer, TDT, Chemicals Controlling Microorganisms Decontamination: Physical, chemical, and mechanical methods to destroy or reduce undesirable microbes in a given

More information

Chapter 9: Controlling Microbial Growth in the Environment

Chapter 9: Controlling Microbial Growth in the Environment Chapter 9: Controlling Microbial Growth in the Environment Control of Microbial Growth: Introduction Early civilizations practiced salting, smoking, pickling, drying, and exposure of food and clothing

More information

Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7)

Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7) Microbial Growth and The Control of Microbial Growth (Chapter 6 & 7) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content:

More information

The Control of Microorganisms LC D R B R I A N B E A R D E N, M S, P E

The Control of Microorganisms LC D R B R I A N B E A R D E N, M S, P E The Control of Microorganisms LC D R B R I A N B E A R D E N, M S, P E U S P U B L I C H E A LT H S E R V I C E / U S E PA R 9 M A R I A N A I S L A N D S WAT E R O P E R ATO R S A S S O C I AT I O N F

More information

Sterilization & Disinfection

Sterilization & Disinfection Sterilization & Disinfection Prof. Hanan Habib College of Medicine-KSU Objectives 1- Define the terms sterilization, disinfectant and antiseptic. 2- Classify the different methods of sterilization (physical

More information

Agent Mechanisms of Action Comments Surfactants. Membrane Disruption; increased penetration Denature proteins; Disrupts lipids

Agent Mechanisms of Action Comments Surfactants. Membrane Disruption; increased penetration Denature proteins; Disrupts lipids Agent Mechanisms of Action Comments Surfactants Quats (cationic detergent) Organic acids and bases Membrane Disruption; increased penetration Denature proteins; Disrupts lipids High/low ph Soaps; detergents

More information

Control and Sterilization (see pages )

Control and Sterilization (see pages ) Control and Sterilization (see pages 671-698) Some definitions: Sterilization: Killing of all life. No cells living or capable of becoming metabolically active Disinfection: A clinical term. Removal of

More information

مادة االدوية املرحلة الثالثة أ.م.د. حسام الدين سامل

مادة االدوية املرحلة الثالثة أ.م.د. حسام الدين سامل مادة االدوية املرحلة الثالثة أ.م.د. حسام الدين سامل 2017-2016 ANTISEPTICS AND DISINFECTANTS Dr. Husam Aldeen Salim General information They have specific use and their selectivity is very low. Disinfectants

More information

Principle of Lab. Safety

Principle of Lab. Safety Sulaimani University College of Pharmacy Principle of Lab. Safety Dr. Abdullah Ahmed Hama 1 1. Wear appropriate clothing and shoes to the laboratory. Shoes must completely cover the feet to provide protection

More information

COLLEGE OF PHARMACY STERILE PRODUCTS PHT 434. Dr. Mohammad Javed Ansari, PhD. Contact info:

COLLEGE OF PHARMACY STERILE PRODUCTS PHT 434. Dr. Mohammad Javed Ansari, PhD. Contact info: COLLEGE OF PHARMACY STERILE PRODUCTS PHT 434 Dr. Mohammad Javed Ansari, PhD. Contact info: javedpharma@gmail.com OBJECTIVES OF THE LECTURE At the end of this lecture, you will be aware of: What are Sterile

More information

Microbiology sheet (6)

Microbiology sheet (6) Microbiology sheet (6) Made by marah marahleh corrected by : abd. Salman DATE :9/10/2016 Microbial growth / control of microbial growth 1 The method of counting bacteria is divided into: 1) direct 2) indirect

More information

Microbiology with Diseases by Body System Robert W. Bauman Third Edition

Microbiology with Diseases by Body System Robert W. Bauman Third Edition Microbiology with Diseases by Body System Robert W. Bauman Third Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on

More information

number Done by Corrected by Doctor Hamed Al Zoubi

number Done by Corrected by Doctor Hamed Al Zoubi number 6 Done by Narjes Alsammak Corrected by Salsabeel Fleifel Doctor Hamed Al Zoubi Sterilization and disinfection Terms: -Sterilization: Elimination or deactivation of all forms of life (biological

More information

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic

Lab Exercise #4 Microbial Control Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic Lab Exercise #4 Control of Microorganisms: Physical, Chemical and Chemotherapeutic I. OBJECTIVES: Investigate the effectiveness various agents of control. Assess the effectiveness of heat in killing vegetative

More information

Sterilization and Disinfection

Sterilization and Disinfection Sterilization and Disinfection Sterilization: It is a process that kills all living microorganisms. Disinfection: It is a process that reduce the number of microorganisms (Unable to destroy spores and

More information

INTRODUCTION Sanitization sterilization Antibiotics Bactericidal Bacteriostatic Antiseptics disinfectants

INTRODUCTION Sanitization sterilization Antibiotics Bactericidal Bacteriostatic Antiseptics disinfectants INTRODUCTION Infectious agents on environmental surfaces, given the correct circumstances, may potentially find their way into an unsuspecting victim. Thus, it is important to keep the surfaces we regularly

More information

11.1 Controlling Microorganisms

11.1 Controlling Microorganisms Chapter 11 Physical and Chemical Agents for Microbial Control* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams.

More information

20.106J Systems Microbiology Lecture 16 Prof. Schauer. Chapter 20

20.106J Systems Microbiology Lecture 16 Prof. Schauer. Chapter 20 20.106J Systems Microbiology Lecture 16 Prof. Schauer Chapter 20 Microbial growth control o Physical antimicrobial control o Chemicals that are used externally o Antimicrobial agents used internally o

More information

on ro ero la THE TERMINOLOGY OF MICROBIAL CONTROL THE RATE OF MICROBIAL DEATH ACTIONS OF MICROBIAL CONTROL AGENTS

on ro ero la THE TERMINOLOGY OF MICROBIAL CONTROL THE RATE OF MICROBIAL DEATH ACTIONS OF MICROBIAL CONTROL AGENTS e on ro ero la THE TERMINOLOGY OF MICROBIAL CONTROL Sterilization is the removal or destruction of all forms of microbial life (although it usually assumes the absence of prions which are rare but exceptionally

More information

Guidelines for Selection and Use of Disinfectants

Guidelines for Selection and Use of Disinfectants Guidelines for Selection and Use of Disinfectants Ref: (a) APIC Guidelines for Infection Control Practice, American Journal of Infection Control; April 1990, Vol 18, 99-113. To assist health care professionals

More information

DOWNLOAD PDF CONTROL OF MICROBES BY PHYSICAL AND CHEMICAL METHODS

DOWNLOAD PDF CONTROL OF MICROBES BY PHYSICAL AND CHEMICAL METHODS Chapter 1 : Physical and Chemical Methods of Control Clinical Gate Chemical Methods of Control Most reduce the microbial populations to safe levels or remove pathogens from objects. An ideal disinfectant

More information

Animal cell and tissue culture. Lab 1

Animal cell and tissue culture. Lab 1 Animal cell and tissue culture Lab 1 Tissue culture Laboratory Safety Outline Lab Safety Biohazards Biosafety Levels Biosafety Cabinets Decontamination Biological Waste Introduction A cell culture laboratory

More information

6/28/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

6/28/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics Control of Microbial Growth Disinfectants and Antiseptics 1 Method Three approaches for the control of microbial growth Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical

More information

Exercise 24-A MICROBIAL CONTROL METHODS (Effects Of Temperature, Ultra Violet Light, Disinfectants And Antiseptics)

Exercise 24-A MICROBIAL CONTROL METHODS (Effects Of Temperature, Ultra Violet Light, Disinfectants And Antiseptics) Introduction Exercise 24-A MICROBIAL CONTROL METHODS (Effects Of Temperature, Ultra Violet Light, Disinfectants And Antiseptics) Microorganisms, like all other life forms, are greatly influenced by the

More information

The Complete Solution for Clean Room Aerosol-Based Disinfection MINNCARE DRY FOG SYSTEM

The Complete Solution for Clean Room Aerosol-Based Disinfection MINNCARE DRY FOG SYSTEM The Complete Solution for Clean Room Aerosol-Based Disinfection Current Methods of Room Disinfection Surface Wiping Manual Spraying (with Spray Bottles) Heating Process (Vaporization) Cold Process - Wet

More information

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS Specific control measures can be used to kill or inhibit the growth of microorganisms. A procedure which leads to the death of cells is broadly

More information

M I C R O B I O L O G Y

M I C R O B I O L O G Y ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 6 Microbial Growth PowerPoint Lecture Slide Presentation prepared by Christine L. Case Microbial Growth Microbial growth

More information

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS

CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS CONTROL OF MICROBIAL GROWTH - DISINFECTANTS AND ANTISEPTICS Specific control measures can be used to kill or inhibit the growth of microorganisms. A procedure which leads to the death of cells is broadly

More information

Biosecurity Sanitation and Pest Control

Biosecurity Sanitation and Pest Control Biosecurity Sanitation and Pest Control Animal Biosecurity All measures used to control all known or unknown infections in laboratory animals. All measures taken to identify, contain, prevent, and eradicate

More information

Lec.5 Food Microbiology Dr. Jehan Abdul Sattar

Lec.5 Food Microbiology Dr. Jehan Abdul Sattar Lec.5 Food Microbiology Dr. Jehan Abdul Sattar High-Temperature Food Preservation: The use of high temperatures to preserve food is based on their destructive effects on microorganisms. Depending on the

More information

SANITATION CLEANING AND DISINFECTANTS

SANITATION CLEANING AND DISINFECTANTS SANITATION CLEANING AND DISINFECTANTS Although the subject of sanitation procedures, as related to disease management, is frequently discussed, it is helpful to review basic principles and review facts

More information

10/6/2015. Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Aseptic Principles. Brain Check. Aseptic Principles

10/6/2015. Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Aseptic Principles. Brain Check. Aseptic Principles Aseptic Principles Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Sterilization: the killing or removal of all microbes in a material or on an object Disinfection: the

More information

10/2/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics

10/2/2016. Control of Microbial Growth. Method. Terminology. Disinfectants and Antiseptics Control of Microbial Growth Disinfectants and Antiseptics 1 Method Three approaches for the control of microbial growth Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical

More information

Heat Sterilization. Module- 40 Lec- 40. Dr. Shishir Sinha Dept. of Chemical Engineering IIT Roorkee

Heat Sterilization. Module- 40 Lec- 40. Dr. Shishir Sinha Dept. of Chemical Engineering IIT Roorkee Heat Sterilization Module- 4 Lec- 4 Dr. Shishir Sinha Dept. of Chemical Engineering IIT Roorkee Sterilization is the total elimination of all microorganisms including spores Typically the last things to

More information

MICROBIOLOGICAL PROFILE

MICROBIOLOGICAL PROFILE Evans Vanodine International plc G L O B A L H Y G I E N E S O L U T I O N S APEX MICROBIOLOGICAL PROFILE 2 CONTENTS PAGE INTRODUCTION 3 1 BACTERICIDAL ACTIVITY 4 The following bacteria tested Campylobacter

More information

Immune System. Viruses vs. Bacteria

Immune System. Viruses vs. Bacteria Immune System Viruses vs. Bacteria Concept Map Section 19-1 Bacteria are classified into the kingdoms of Eubacteria Archaebacteria include a variety of lifestyles such as live in harsh environments such

More information

CHAPTER-V STERILIZATION R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

CHAPTER-V STERILIZATION R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. CHAPTER-V STERILIZATION R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. STERILIZATION Sterilization:- It is defined as the process where

More information

MICROBIAL GROWTH. Dr. Hala Al-Daghistani

MICROBIAL GROWTH. Dr. Hala Al-Daghistani MICROBIAL GROWTH Dr. Hala Al-Daghistani Microbial Growth Microbial growth: Increase in cell number, not cell size! Physical Requirements for Growth: Temperature Minimum growth temperature Optimum growth

More information

2/3/12. + Prokaryote: + Eubacteria. + How do the two groups of prokaryotes differ? + Unique characteristics Where found

2/3/12. + Prokaryote: + Eubacteria. + How do the two groups of prokaryotes differ? + Unique characteristics Where found Prokaryote: unicellular organisms that lack a nucleus. Ch. 19 Bacteria and Viruses Eubacteria Eubacteria have a cell wall that protects the cell and determines its shape. The cell wall of eubacteria contain

More information

Chapter 6: Microbial Growth

Chapter 6: Microbial Growth Chapter 6: Microbial Growth 1. Requirements for Growth 2. Culturing Microorganisms 3. Patterns of Microbial Growth 1. Requirements for Growth Factors that affect Microbial Growth Microbial growth depends

More information

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures

2/25/2013. Psychrotrophs Grow between 0 C and C Cause food spoilage Food Preservation Temperatures 3 4 5 6 7 8 9 0 Chapter 6 Microbial Growth Microbial Growth Increase in number of cells, not cell size Populations Colonies The Requirements for Growth Physical requirements Temperature ph Osmotic pressure

More information

Disinfection and sterilisation

Disinfection and sterilisation Disinfection and sterilisation Mongolia 2011 Prof. Dr. Walter Popp Hospital Hygiene, University Clinics Essen, Germany 1 Term Definition Reduction factor of germs Cleaning Remove dirt including 10-100

More information

Dr. Gary Mumaugh. Microbial Control and Growth

Dr. Gary Mumaugh. Microbial Control and Growth Dr. Gary Mumaugh Microbial Control and Growth Microbial Growth Microbial Control Sterilization Selective Removal Temperature Types of Heat Treatment Incineration Tyndallization Autoclaving Microbial Control

More information

01/08/2018. Control of Microbial Growth. Methods. Terminology. Disinfectants and Antiseptics. Three approaches. Cleaning. Chemical.

01/08/2018. Control of Microbial Growth. Methods. Terminology. Disinfectants and Antiseptics. Three approaches. Cleaning. Chemical. Control of Microbial Growth Disinfectants and Antiseptics 1 Methods 2 Three approaches Chemical Disinfectants and antiseptics Physical Heat Ultraviolet Irradiations Mechanical elimination Cleaning Filtration

More information

Water sanitation at its best

Water sanitation at its best Water sanitation at its best - www.basu.at This comparative study shows the clear advantage of over the competition Chlorine Is used in its gaseous state and requires strict security measures Powerful

More information

Disinfection & Sterilization

Disinfection & Sterilization Disinfection & Sterilization Objectives Define important components in cleaning, disinfection, and sterilization Identify methods for cleaning, disinfection, or sterilization List risks of failure to properly

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 10 BACTERIAL GROWTH WHY IS THIS IMPORTANT? Increase in numbers is one of the requirements for infection This increase is dependent upon bacterial growth Understanding the requirements for growth

More information

Physical)and)Chemical)Control) of)microbes) Chapter)9) ) Rela8ve)Resistance)of)Different)Microbial)Types)to) Microbial)Control)Agents) More resistant

Physical)and)Chemical)Control) of)microbes) Chapter)9) ) Rela8ve)Resistance)of)Different)Microbial)Types)to) Microbial)Control)Agents) More resistant PhysicalandChemicalControl ofmicrobes Chapter9 Rela8veResistanceofMicrobialForms Primary*targets*of*microbialcontrolare*microorganisms* capable*of*causing*infecaon*or*spoilage* Microbes*can*have*extreme*differences*in*resistance*and*

More information

Microbes. Image Source: dhmh.maryland.gov

Microbes. Image Source: dhmh.maryland.gov Microbes AND CULTURING TECHNIQUES Image Source: dhmh.maryland.gov Microbes Image Sources: nuigalway.ie; clordisys.com Microbes Have been around for at least 3.5 billion years Rise of the Cyanobacteria

More information

Control of Microorganisms by Physical and Chemical Agents

Control of Microorganisms by Physical and Chemical Agents CHAPTER 7 Control of Physical and Chemical Outline Concepts Bacteria are trapped on the surface of a membrane filter used to remove microorganisms from fluids. 7.1 Definition of Frequently Used Terms 137

More information

Choosing an Effective Sanitizer

Choosing an Effective Sanitizer Choosing an Effective Sanitizer, CEO - Shepard Bros., Inc. NWFSS 2017 Outline Antimicrobial Definitions Cleaning Comes First Biofilms Overview of Sanitizers Common Products New Technologies Organic Processing

More information

Kevin Lorcheim Engineer ClorDiSys Solutions, Inc. Facility Decontamination and Quality Assurance

Kevin Lorcheim Engineer ClorDiSys Solutions, Inc. Facility Decontamination and Quality Assurance Kevin Lorcheim Engineer ClorDiSys Solutions, Inc Facility Decontamination and Quality Assurance Revision Date: June 22, 2008 Facility Decontamination Decontaminating facilities can be performed for various

More information

Sterilization - validation, qualification requirements. Sterilization - Overview

Sterilization - validation, qualification requirements. Sterilization - Overview Sterilization - validation, qualification requirements Dawn Tavalsky 1 ISPE Boston Chapter Framingham MA 19Sep2013 Sterilization - Overview Objectives Discuss definition of Sterile Briefly describe sterilization

More information

Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13)

Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Aseptic Principles Unit 4: Sterilization, Disinfection, & Antimicrobial Therapy (Chapters 12 & 13) Sterilization: the killing or removal of all microbes in a material or on an object Disinfection: the

More information

Concept Generation and Selection Document

Concept Generation and Selection Document Portable Sanitization Chamber By Robertson Beauchamp, Jacob Blackburn, Lauren Kieffer, Elliot Nation, Angel Soto, and Dangxian Zha Team 15 Concept Generation and Selection Document Submitted towards partial

More information