Micro-CT based local strain analysis of porous materials: potential for industrial applications

Size: px
Start display at page:

Download "Micro-CT based local strain analysis of porous materials: potential for industrial applications"

Transcription

1 Micro-CT based local strain analysis of porous materials: potential for industrial applications G. Pyka 1, M. Speirs 2, E. Van de Casteele 1, B. Alpert 1, M. Wevers 1, 1 Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB2450, 3001 Leuven, Belgium, 2 Department of Mechanical Engineering, Celestijnlaan 300B, 3001 Leuven, Belgium Aims Porous structures hold unique physical properties (mechanical, thermal and electrical) that are related to their low density and architecture. These attributes open a wide variety of potential applications, such as insulation, packaging, filtering, medical implantology, as well as in the automobile, military shipping and aerospace industries 1-5. Beside their dependency on the composition and the microstructure of the raw material, the mechanical and thermal properties of porous structures also depend on the geometrical and morphological properties of the basic cell architecture 1-2. The growing demand for porous structures with highly controlled mechanical and thermal properties, coming from different industrial and scientific applications, has forced researchers to develop novel production techniques to enable the manufacturing of designed structures. For a better understanding and control of the mechanical behaviour and/or thermal conductivity of various porous structures, several studies involving computed tomography (CT) reconstructions and numerical micro-finite element (µfe) models have been conducted 6-8. Typical application of CT in industry covers however, detection of the imperfections such us voids, cracks or in measuring the external as well as the internal geometry of complex parts 9. In this study, microfocus computed tomography (µct) combined with advanced image processing was used to evaluate the temperature gradient induced local deformation of thermal isolator Styrene-acrylonitrile (SAN) polymer foams which might have benefits for the isolation system industry. Additionally, this work attempts to assess and improve the mechanical properties of Ti6Al4V scaffolds by eliminating/modifying the sharp and thin nodes 10, recognized in previous work as the main source of stress concentrations and lowering the mechanical properties 11. This is carried out through a modification of the scaffolds uniform beam thickness design based on the outcome from the µct based local strain analysis. A gradual increase of the beam (strut) thickness around the nodes where corresponding struts meet was designed. The compression performance of these scaffolds was assessed and compared to common examples (unaltered struts) and to scaffolds designed with thicker struts in the centre of the beams (demonstrating the largest contrast). Materials and Method In-situ cooling experiments of the polymeric foam In this experiment, the Bruker Skyscan 1172 µct system and its associated cooling stage were used to change and evaluate the physical characteristics of Styrene-acrylonitrile (SAN) polymer foam cube samples. The samples were mounted on the cooling stage and scanned once at 20 C and once again at -20 C. Analyzing the reconstructed CT models revealed the samples morphologies before and after freezing and provided data like total change in volume, porosity, surface area, and structure thickness at any cross-section. Non-rigid image registration was applied to the data set in order to evaluate the local volumetric deformation 12.

2 In-situ compression of Ti6Al4V scaffolds Selective laser melting was used for manufacturing porous titanium (Ti6Al4V-ELI) using a diamond unit cell with two other variations with respect to the conventional diamond design (Di). One variation introduced a gradual increase in strut thickness from the centre of the beam to the node at a ratio of 2:1. The other variation incorporated the opposite with a gradually increasing thickness from the central node to the centre of the beam at a ratio of 2:1. These two designs will be referred to as reinforced nodes (RN) and centrally thickened beam (CTB) along with the conventional diamond unit cell. The CAD images of the 3 designs are presented Figure 1. All samples were designed with a height of 6.4mm and 6mm diameter with a constant pore size of 1000µm. Applying different designed strut sizes, 200 µm for Di and 140 µm for CTB and RN, allowed to obtain similar volume fraction for each design: vf = 13.2%(+/- 0.6). Each design was created using Magics software [Materialise NV, Haasrode, Belgium]. a) b) c) Figure 1: CAD images of each beam for each design and the pore and strut size for one unit cell: A) conventional diamond, B) reinforced node (RN) and C) centrally thickened beam (CTB) design To evaluate the local volumetric strain in function of the applied displacement a radiotranslucent micro-mechanical compression setup is used to apply and maintain strain during high resolution μct scanning. To evaluate the local strain changes in function of displacement a constant compression rate of 0.2mm/min was applied followed by μct scanning. First, a reference scan of the non-compressed sample was taken using a pre-load of 0.01kN. Afterwards, the sample was compressed to 50% ultimate compressive strain (50% UCS) followed by μct scanning using the nano-focus CT scanner (Phoenix NanoTom S GE Measurement and Control Solutions, Germany). Both μct images taken for each sample were registered to each other non-rigidly using Elastix software 11,12. Results In Situ cooling strain analysis The experiment showed that µct could be applied with consideration of temperature to show the structural changes of an object or sample. Volume and structure thickness alterations were observed in both samples and it can be attributed locally or globally to the temperature decrease. An overall volume decrease was measured in the SAN foam, however, non-rigid image registration allowed to evaluate the structural deformations more locally. The largest local volume changes can be seen at the contact point of the sample with the cooling stage (Figure 2). This in turn reinforces the hypothesis of the structural changes due to cooling and reveals that the base of the stage is colder than its surrounding environment. Therefore, this method can be used to accurately depict and gather data about the morphological properties of materials.

3 Figure 2: a) Bruker in-situ cooling stage holding polymer sample, b) 3D and c) 2D strain visualization showing local deformation in SAN polymer sample In Situ compressive strain analysis The RN scaffolds showed a similar stiffness to the conventional diamond design, which was higher than CTB scaffolds. Analysis of the mean strain indicated differences in the level of the local deformations of the CTB in comparison with RN and Di (5.9%, 3.2% and 2.7% of mean compressive strain for CTB, RN and Di respectively). Measurements of the most frequent (dominant) strain revealed a similar pattern (7.2%, 3.0% and 2.7% of compressive strain for CTB, RN and Di respectively). Comparison of the strain distribution (Figure 3) obtained for Di and RN did not show significant differences. Figure 3: Frequency of local distribution strain for CTB and RN at 50% of ultimate compressive strain (50% UCS) However, as presented in Figure 4 the locations of the largest compressive strains are different for each design. It can be shown that a more uniform strain is observed for Di and RN (Figure 4). CTB shows large sections with high compressive strain (indicated in pink colour in Figure 4c). This confirms visually the differences in the strain histograms (Figure 3). Additionally, for RN the largest compressive strains are typically observed at the centre of the beams (indicated with the white arrows in Figure 4). This is in contrast to Di where high compressive deformations were observed mainly in the connection between beams and nodes. Perhaps, thicker size of struts at central zones have led to a localized strain by further

4 thickening of those areas in comparison with nodal joints where the struts have bended over and produced a tensile strain. In contrast, the gradual increase in strut thickness from the centre of the beam eliminated the amount of critical points on the scaffolds. Finally, both Di and RN revealed a more homogenous strain distribution across the scaffold structure in comparison to CTB (Figure 4), which could be advantageous during implant loading triggering osteoinduction uniformly throughout the scaffold. Figure 4: 2D visualization in the coronal slices of the strain computed for each scaffold design a) Di, b) RN and c) CTB. White arrows indicate typical locations of the high compressive deformations Conclusion This study showed that combination of the µct imaging with non-rigid image registration based local strain analysis can be applied for evaluation of the thermal gradient and/or mechanical deformation induced morphological changes of various porous materials. In that way, production methods can be further used to create an iterative process optimizing the components for their requirements in industry from isolation to mechanical loading and biocompatibility. For example this method can be used to improve the scaffold design by a gradual strut thickness (in a comparable volume fraction) for an improved bio-mechanical performance. Additionally, proposed experimental evaluation of the local deformation distribution can be applied to validate the foam geometry based effective thermal conductivity model of porous structures for the isolation system industry.

5 References: 1. Gibson L.J et al. Cellular solids: Structure and Properties. Cambridge University Press, Cambridge, Ohgaki T. et al. In situ observations of compressive behaviour of aluminium foams by local tomography using high-resolution X-rays. Philosophical Magazine, , Hollister S.J. Porous scaffold design for tissue engineering. Nature Materials, , Salgado A.J. et al. Bone tissue engineering: state of the art and future trends. Macromol Biosci, , Emmelmann C. et al. Laser additive manufacturing of modified implant surfaces with osseointegrative characteristics. Physics Procedia, , Baas E. et al. A numerical model of heterogenous surface strains in polymer scaffolds. J Biomech, , Jacques S.V.N. et al. Individualised, μct-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials, , Xu Y. et al. Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement. Computational Materials Science, , De Chiffre L. et al. Industrial applications of computed tomography. CIRP Annals, , Speirs M. et al. Design enhancement of biomedical scaffolds made by selective laser melting. Proceedings of the solid freeform fabrication symposium, Austin, TX, Pyka G et al. Evaluation of credibility and limitations of the non-rigid registration of micro-ct images as a tool for local strain analysis. Micro-CT User Meeting Klein S, et al. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging, 29(1): p , 2010.

DESIGN ENHANCEMENT OF BIOMEDICAL SCAFFOLDS MADE BY SELECTIVE LASER MELTING

DESIGN ENHANCEMENT OF BIOMEDICAL SCAFFOLDS MADE BY SELECTIVE LASER MELTING DESIGN ENHANCEMENT OF BIOMEDICAL SCAFFOLDS MADE BY SELECTIVE LASER MELTING M. Speirs*, G. Pyka, J.-P. Kruth*, J. Luyten, J. Schrooten, M.Wevers and J.Van Humbeeck * University of Leuven (KU Leuven), Department

More information

G. Pyka 1, G. Kerckhofs 1, S. Van Bael 2, J. Schrooten 1, M. Wevers 1

G. Pyka 1, G. Kerckhofs 1, S. Van Bael 2, J. Schrooten 1, M. Wevers 1 Micro-CT based characterisation of the effect of surface modification on the morphology and roughness of selective laser melted Ti6Al4V open porous structures G. Pyka 1, G. Kerckhofs 1, S. Van Bael 2,

More information

Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images

Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images Ł. Skarżyński 1, J. Tejchman 1 1 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk,

More information

Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium 4

Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium 4 NON-DESTRUCTIVE CHARACTERISATION OF THE INFLUENCE OF SURFACE MODIFICATION ON THE MORPHOLOGY AND MECHANICAL BEHAVIOUR OF RAPID PROTOTYPED Ti6Al4V BONE TISSUE ENGINEERING SCAFFOLDS Grzegorz PYKA 1,3, Greet

More information

Fracture Mechanism Analysis of Schoen Gyroid Cellular Structures Manufactured by Selective Laser Melting. Lei Yang, Chunze Yan*, Yusheng Shi*

Fracture Mechanism Analysis of Schoen Gyroid Cellular Structures Manufactured by Selective Laser Melting. Lei Yang, Chunze Yan*, Yusheng Shi* Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Fracture Mechanism Analysis of Schoen

More information

Design and fabrication of functionally graded components by selective laser melting. C. N. Sun*#, S. Y. Choy*+, K. F. Leong*+, J.

Design and fabrication of functionally graded components by selective laser melting. C. N. Sun*#, S. Y. Choy*+, K. F. Leong*+, J. Solid Freeform Fabrication 216: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Design and fabrication of functionally graded

More information

An effective and efficient approach for simulating the mechanical behaviour of metal foam filled tubular structures

An effective and efficient approach for simulating the mechanical behaviour of metal foam filled tubular structures Dipartimento di An effective and efficient approach for simulating the mechanical behaviour of metal foam filled tubular structures Matteo Strano - matteo.strano@polimi.it Politecnico di Milano, (Italy)

More information

NUMERICAL STUDY ON CLOSED CELL FOAM STRUCTURE DAMAGE MECHANISMS

NUMERICAL STUDY ON CLOSED CELL FOAM STRUCTURE DAMAGE MECHANISMS Journal of KONES Powertrain and Transport, Vol. 19, No. 2012 NUMERICAL STUDY ON CLOSED CELL FOAM STRUCTURE DAMAGE MECHANISMS Danuta Miedzi ska Military University of Technology Department of Mechanics

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION Size effect in concrete under tensile splitting - experiments and DEM analyses for different failure modes V International Conference on Particle-based Methods Fundamentals and Applications PARTICLES 2017

More information

Investigations of fracture process in concrete using X-ray micro-ct

Investigations of fracture process in concrete using X-ray micro-ct Investigations of fracture process in concrete using X-ray micro-ct Ł. Skarżyński 1, J. Tejchman 1 1 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, Aims The main objective of

More information

NUMERICAL AND EXPERIMENTAL STUDY OF THE EFFECT OF ARTIFICIAL POROSITY IN A LATTICE STRUCTURE MANUFACTURED BY LASER BASED POWDER BED FUSION

NUMERICAL AND EXPERIMENTAL STUDY OF THE EFFECT OF ARTIFICIAL POROSITY IN A LATTICE STRUCTURE MANUFACTURED BY LASER BASED POWDER BED FUSION Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper NUMERICAL AND EXPERIMENTAL STUDY OF

More information

Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy Home Search Collections Journals About Contact us My IOPscience Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy This content has been downloaded from IOPscience.

More information

NEW SIMULATION APPROACH TO MECHANICAL PROPERTIES OF NANOCELLULOSE AEROGELS

NEW SIMULATION APPROACH TO MECHANICAL PROPERTIES OF NANOCELLULOSE AEROGELS NEW SIMULATION APPROACH TO MECHANICAL PROPERTIES OF NANOCELLULOSE AEROGELS J. Sorvari, J.A. Ketoja, N. Beletski, J. Sievänen, H.-P. Hentze VTT Technical Research Centre of Finland, P. O. Box 1000, FI-02044

More information

Evaluation of internal defects in additive manufactured metallic network structures by Computed Tomography Lars Pejryd 1

Evaluation of internal defects in additive manufactured metallic network structures by Computed Tomography Lars Pejryd 1 Evaluation of internal defects in additive manufactured metallic network structures by Computed Tomography Lars Pejryd 1 1 Örebro University, School of Science and Technology. SE 701 82 Örebro, Sweden,

More information

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM Puput Wiyono, Faimun, Priyo Suprobo and Heppy Kristijanto Department of Civil Engineering, Institut Teknologi Sepuluh Nopember,

More information

Mechanical behaviour of additively manufactured materials

Mechanical behaviour of additively manufactured materials Outline Mechanical behaviour of additively manufactured materials ION Congress 2018 Dr. Vera Popovich Delft University of Technology (TUDelft) Contact: v.popovich@tudelft.nl, +31 (0) 15 2789568 Outline

More information

CHARACTERIZATION OF STOCHASTIC HONEYCOMB SANDWICH FAILURE

CHARACTERIZATION OF STOCHASTIC HONEYCOMB SANDWICH FAILURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Stochastic honeycombs have a complex internal architecture with missing walls and other defects, while maintaining high strength- and

More information

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING

THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING THE EFFECT OF THE LASER PROCESS PARAMETERS IN THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TI6AL4V PRODUCED BY SELECTIVE LASER SINTERING/MELTING João Batista FOGAGNOLO 1, Edwin SALLICA-LEVA 1, Eder

More information

2. Precision Extrusion Deposition Previous research has focused on Fuse Deposition Modeling (FDM) for the fabrication of

2. Precision Extrusion Deposition Previous research has focused on Fuse Deposition Modeling (FDM) for the fabrication of PRECISION EXTRUSION DEPOSITION OF POLYCAPROLACTONE/ HYDROXYAPATITE TISSUE SCAFFOLDS L. Shor, S. Güçeri, W. Sun Laboratory for Computer-Aided Tissue Engineering Department of Mechanical Engineering and

More information

PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY

PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY Borzan C.Ş.; Berce P.; Chezan H.; Sabău E.; Radu S.A.; Ridzon M.; borzan_cristina@ymail.com

More information

Mechanical Behaviour of Polymer Sandwich Composites under Compression

Mechanical Behaviour of Polymer Sandwich Composites under Compression American Journal of Materials Science 2015, 5(3C): 107-111 DOI: 10.5923/c.materials.201502.22 Mechanical Behaviour of Polymer Sandwich Composites under Compression Mohd. Zahid Ansari *, Sameer Rathi, Kewal

More information

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM COST STSM REPORT Investigation of anisotropic properties of Rapid Prototyped metallic implants COST STSM Reference Number: COST-STSM-MP1301-26743 Period: 2015-10-19 00:00:00 to 2015-11-30 00:00:00 COST

More information

CELLULAR AND FIBRE-REINFORCED COMPOSITES FOR BONE ENGINEERING

CELLULAR AND FIBRE-REINFORCED COMPOSITES FOR BONE ENGINEERING 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS CELLULAR AND FIBRE-REINFORCED COMPOSITES FOR BONE ENGINEERING Manuel Bühler, Pierre-Etienne Bourban, Jan-Anders E. Månson Laboratoire de Technologie

More information

Pressure drop and velocity simulations in non-stochastic lattice structure for filter applications fabricated using additive manufacturing

Pressure drop and velocity simulations in non-stochastic lattice structure for filter applications fabricated using additive manufacturing Pressure drop and velocity simulations in non-stochastic lattice structure for filter applications fabricated using additive manufacturing H. Hasib 1,2, A. Rennie 1, N. Burns 1,3 and L. Geekie 3 1 Engineering

More information

DESIGN AND MANUFACTURING OF A SCAFFOLD FOR BIOMEDICAL APPLICATIONS USING ADDITIVE MANUFACTURING

DESIGN AND MANUFACTURING OF A SCAFFOLD FOR BIOMEDICAL APPLICATIONS USING ADDITIVE MANUFACTURING ISSN: 2250-0138 (Online) DESIGN AND MANUFACTURING OF A SCAFFOLD FOR BIOMEDICAL APPLICATIONS USING ADDITIVE MANUFACTURING L. SIVA RAMA KRISHNA a1, M. KAMAL b, SRIRAM VENKATESH c AND MANMADHACHARY d abc

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

INVESTIGATION OF HIGHLY POROUS POLY(Ε-CAPROLACTONE)

INVESTIGATION OF HIGHLY POROUS POLY(Ε-CAPROLACTONE) szerzoi_jav_005_036.qxd 2008.06.20. 16:00 Page 30 INVESTIGATION OF HIGHLY POROUS POLY(Ε-CAPROLACTONE) SCAFFOLDS László Oláh 1, Lajos Borbás 2, Tibor Czigány 3 1 Polymer Competence Center Leoben GmbH 2

More information

Model Development for Residual Stress Consideration in Design for Laser Metal 3D Printing of Maraging Steel 300. Vedant Chahal and Robert M.

Model Development for Residual Stress Consideration in Design for Laser Metal 3D Printing of Maraging Steel 300. Vedant Chahal and Robert M. Solid Freeform Fabrication 8: Proceedings of the 9th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Model Development for Residual Stress

More information

Advanced Simulations of Cellular Structures with LS-DYNA. Authors: Correspondence: ABSTRACT

Advanced Simulations of Cellular Structures with LS-DYNA. Authors: Correspondence: ABSTRACT Advanced Simulations of Cellular Structures with LS-DYNA Authors: Matej Vesenjak, Zoran Ren University of Maribor, Faculty of Mechanical Engineering, Slovenia Correspondence: Matej Vesenjak University

More information

Abstract. Keywords: Tissue Engineering scaffolds, Automated Design, Advanced CAD Programming, Layer Manufacturing. 1. Introduction

Abstract. Keywords: Tissue Engineering scaffolds, Automated Design, Advanced CAD Programming, Layer Manufacturing. 1. Introduction AUTOMATED DESIGN OF TISSUE ENGINEERING SCAFFOLDS BY ADVANCED CAD E. Ramin* and R. A. Harris* * Rapid Manufacturing Research Group, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough

More information

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes P. Vora a, F. Derguti b, K. Mumtaz a, I. Todd b, N. Hopkinson a a Department of Mechanical Engineering,

More information

Development and Analysis of Different Density Auxetic Cellular Structures

Development and Analysis of Different Density Auxetic Cellular Structures Development and Analysis of Different Density Auxetic Cellular Structures M. Usman Aslam 1, 2, Saied M. Darwish 1, 2 1 Industrial Engineering Department, King Saud University 2 Advance Manufacturing Institute,

More information

Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B Leuven, Belgium; 2

Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B Leuven, Belgium; 2 Micro-CT: a powerful tool for the characterization and evaluation of the bone formatting capacity of calcium phosphate stem cells tissue engineering constructs G. Kerckhofs 1,2, SJ. Roberts 2,3, M. Wevers

More information

Reticulated foams expand the boundaries of cellular solids

Reticulated foams expand the boundaries of cellular solids Reticulated foams expand the boundaries of cellular solids by Paul Everitt and James Taylor, Technical Development Specialists, Goodfellow Corporation Paul.Everitt@goodfellow.com James.Taylor@goodfellow.com

More information

Non-Stochastic Lattice Structures for Novel Filter Applications Fabricated via Additive Manufacturing

Non-Stochastic Lattice Structures for Novel Filter Applications Fabricated via Additive Manufacturing Non-Stochastic Lattice Structures for Novel Filter Applications Fabricated via Additive Manufacturing Hazman Hasib 1, Allan Rennie 1, Neil Burns 1,2 and Louise Geekie 2 1 Engineering Department, Lancaster

More information

Research in Experimental Solid Mechanics. Krishna Jonnalagadda Mechanical Engineering Indian Institute of Technology Bombay

Research in Experimental Solid Mechanics. Krishna Jonnalagadda Mechanical Engineering Indian Institute of Technology Bombay Research in Experimental Solid Mechanics Krishna Jonnalagadda Mechanical Engineering Indian Institute of Technology Bombay TEQIP Workshop - Experimental Solid Mechanics Indian Institute of Technology Bombay

More information

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*,

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*, Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper LASER SINTERING OF PA12/PA4,6 POLYMER

More information

Design of scaffolds with computer assistance

Design of scaffolds with computer assistance Modelling in Medicine and Biology VII 157 Design of scaffolds with computer assistance H. A. Almeida 1, P. J. Bártolo 1 & J. C. Ferreira 2 1 Centre for Rapid and Sustainable Product Development CDRsp,

More information

MESO-SCALE MODELLING OF SHOCK WAVE PROPAGATION IN A CELLULAR GLASS PARTICLE REINFORCED THERMOPLASTIC COMPOSITE

MESO-SCALE MODELLING OF SHOCK WAVE PROPAGATION IN A CELLULAR GLASS PARTICLE REINFORCED THERMOPLASTIC COMPOSITE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction There is increasing interest in developing novel cellular particulate composite materials for shock mitigation and high energy absorbing

More information

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering M. Erdal 1, S. Dag 2, Y. A. C. Jande 3 and C. M. Tekin 4 Department of Mechanical Engineering,

More information

An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts

An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts Symposium Zerstörungsfreie Materialcharakterisierung 2017 More info about this article: http://www.ndt.net/?id=22383 An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts Tatiana

More information

An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts

An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts Symposium Zerstörungsfreie Materialcharakterisierung 2017 An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V parts Tatiana MISHUROVA 1, Sandra CABEZA 2, Katia ARTZT 3, Jan HAUBRICH 3,

More information

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #220

ENGINEERING MECHANICS 2012 pp Svratka, Czech Republic, May 14 17, 2012 Paper #220 . 18 m 2012 th International Conference ENGINEERING MECHANICS 2012 pp. 239 244 Svratka, Czech Republic, May 14 17, 2012 Paper #220 DESIGN AND USE OF NOVEL COMPRESSION DEVICE FOR MICROTOMOGRAPHY UNDER APPLIED

More information

The preparation and properties of novel structural carbon foams derived from different mesophase pitches

The preparation and properties of novel structural carbon foams derived from different mesophase pitches Engineering Conferences International ECI Digital Archives 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry Refereed Proceedings Summer 6-23-2014

More information

CHARACTERISATION OF 3D FRACTURE EVOLUTION IN CONCRETE USING IN-SITU X-RAY COMPUTED TOMOGRAPHY TESTING AND DIGITAL VOLUME CORRELATION

CHARACTERISATION OF 3D FRACTURE EVOLUTION IN CONCRETE USING IN-SITU X-RAY COMPUTED TOMOGRAPHY TESTING AND DIGITAL VOLUME CORRELATION VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) CHARACTERISATION OF 3D FRACTURE EVOLUTION

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Characterisation of micro-lattices fabricated by selective laser melting Author(s) Citation Sing, Swee

More information

NUMERICAL AND EXPERIMENTAL STUDY OF AUXETIC CLOSED-CELL FOAMS

NUMERICAL AND EXPERIMENTAL STUDY OF AUXETIC CLOSED-CELL FOAMS Computational Methods in Science and Technology 10(2), 197-202 (2004) NUMERICAL AND EXPERIMENTAL STUDY OF AUXETIC CLOSED-CELL FOAMS SERGE SHILKO AND DENIS KONYOK Mechanics of Adaptive Materials and Biomechanics

More information

Available online at ScienceDirect. Procedia Materials Science 4 (2014 ) 91 95

Available online at   ScienceDirect. Procedia Materials Science 4 (2014 ) 91 95 Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 4 (2014 ) 91 95 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013 Fabrication of porous aluminum

More information

Microstructure characterization of high-strength Al-alloys by high resolution X-ray computed tomography

Microstructure characterization of high-strength Al-alloys by high resolution X-ray computed tomography Microstructure characterization of high-strength Al-alloys by high resolution X-ray computed tomography Johann KASTNER 1, Bernhard HARRER 2, Guillermo REQUENA 3 1 University of Applied Sciences Upper Austria,

More information

APPLICATION OF X-RAY MICROTOMOGRAPHY TO THE STUDY OF POLYMER COMPOSITES

APPLICATION OF X-RAY MICROTOMOGRAPHY TO THE STUDY OF POLYMER COMPOSITES APPLICATION OF X-RAY MICROTOMOGRAPHY TO THE STUDY OF POLYMER COMPOSITES R. Pyrz Institute of Mechanical Engineering, Aalborg University, Pontoppidanstræde 101, 9220 Aalborg East, Denmark SUMMARY: The ability

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

Tissue Scaffold Engineering by Micro-Stamping

Tissue Scaffold Engineering by Micro-Stamping Tissue Scaffold Engineering by Micro-Stamping Journal: 2013 MRS Fall Meeting Manuscript ID: MRSF13-1626-K05-06 Manuscript Type: Symposium K Date Submitted by the Author: 17-Dec-2013 Complete List of Authors:

More information

Expanding Material Property Space Maps with Functionally Graded materials for Large Scale Additive Manufacturing

Expanding Material Property Space Maps with Functionally Graded materials for Large Scale Additive Manufacturing Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Expanding Material Property Space Maps with Functionally

More information

NUMERICAL CALCULATIONS OF RVE DIMENSIONS FOR TWO-PHASE MATERIAL

NUMERICAL CALCULATIONS OF RVE DIMENSIONS FOR TWO-PHASE MATERIAL Journal of KONES Powertrain and Transport, Vol. 18, No. 2 2011 NUMERICAL CALCULATIONS OF RVE DIMENSIONS FOR TWO-PHASE MATERIAL Danuta Miedzi ska, Tadeusz Niezgoda Military University of Technology Department

More information

Figure 1 Scaffold use for cell proliferation to produce a functional bio-implant.

Figure 1 Scaffold use for cell proliferation to produce a functional bio-implant. ANALSIS OF THE EFFECTS OF 3DP PARAMETERS ON PART FEATURE DIMENSIONAL ACCURAC Tamas D. Szucs and Dermot Brabazon School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland Abstract

More information

ScienceDirect. Characterisation of ALUHAB aluminium foams with micro-ct

ScienceDirect. Characterisation of ALUHAB aluminium foams with micro-ct Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 4 (2014 ) 69 74 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013 Characterisation of ALUHAB

More information

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999]

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999] Literature Review Based on this knowledge the work of others relating to selective laser sintering (SLSLM) of metal is reviewed, leading to a statement of aims for this PhD project. Provides background

More information

Mechanical properties of AlSi10Mg produced by Selective Laser Melting

Mechanical properties of AlSi10Mg produced by Selective Laser Melting Available online at www.sciencedirect.com Physics Procedia 39 (2012 ) 439 446 LANE 2012 Mechanical properties of AlSi10Mg produced by Selective Laser Melting K. Kempen a,, L.Thijs b, J. Van Humbeeck b

More information

COMPARISON OF CONVENTIONAL OPEN-CELL ALUMINUM FOAM AND ITS ADDITIVELY MANUFACTURED TWIN

COMPARISON OF CONVENTIONAL OPEN-CELL ALUMINUM FOAM AND ITS ADDITIVELY MANUFACTURED TWIN COMPARISON OF CONVENTIONAL OPEN-CELL ALUMINUM FOAM AND ITS ADDITIVELY MANUFACTURED TWIN Kristoffer Matheson, Kory Cross, Iman Javahery, Jayden Plumb, Ashley Spear Department of Mechanical Engineering,

More information

MODELLING CARBON NANOTUBE BRIDGES IN UNIDIRECTIONAL FIBER COMPOSITES AND UNDERSTANDING THEIR EFFECT ON MICRO-SCALE STRESS CONCENTRATIONS

MODELLING CARBON NANOTUBE BRIDGES IN UNIDIRECTIONAL FIBER COMPOSITES AND UNDERSTANDING THEIR EFFECT ON MICRO-SCALE STRESS CONCENTRATIONS MODELLING CARBON NANOTUBE BRIDGES IN UNIDIRECTIONAL FIBER COMPOSITES AND UNDERSTANDING THEIR EFFECT ON MICRO-SCALE STRESS CONCENTRATIONS Valentin Romanov a*, Stepan V. Lomov, Ignaas Verpoest, Larissa Gorbatikh

More information

CHACTERIZATION OF CU TUBE FILLED WITH AL ALLOY FOAM BY MEANS OF X-RAY COMPUTER TOMOGRAPHY

CHACTERIZATION OF CU TUBE FILLED WITH AL ALLOY FOAM BY MEANS OF X-RAY COMPUTER TOMOGRAPHY TMS2014 Annual Meeting Supplemental Proceedings TMS (The Minerals, Metals & Materials Society), 2014 CHACTERIZATION OF CU TUBE FILLED WITH AL ALLOY FOAM BY MEANS OF X-RAY COMPUTER TOMOGRAPHY Girolamo Costanza

More information

THE EFFECT OF PROCESS PARAMETERS AND MECHANICAL PROPERTIES OF DIRECT ENERGY DEPOSITED STAINLESS STEEL 316. Abstract

THE EFFECT OF PROCESS PARAMETERS AND MECHANICAL PROPERTIES OF DIRECT ENERGY DEPOSITED STAINLESS STEEL 316. Abstract Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper THE EFFECT OF PROCESS PARAMETERS AND

More information

Investigating Approaches to Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration

Investigating Approaches to Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration Investigating Approaches to Three-Dimensional Printing of Hydroxyapatite Scaffolds for Bone Regeneration Zhou, Z., Buchanan, F., Lennon, A., & Dunne, N. (2015). Investigating Approaches to Three-Dimensional

More information

Fracture Toughness of Cellular Solids using Finite Element Based Micromechanics

Fracture Toughness of Cellular Solids using Finite Element Based Micromechanics Fracture Toughness of Cellular Solids using Finite Element Based Micromechanics J. WANG AND B. V. SANKAR ABSTRACT Micromechanical methods to predict the fracture behavior and estimate the fracture toughness

More information

LASER ULTRASONICS INSPECTIONS OF AERONAUTICAL COMPONENTS VALIDATED BY COMPUTED TOMOGRAPHY

LASER ULTRASONICS INSPECTIONS OF AERONAUTICAL COMPONENTS VALIDATED BY COMPUTED TOMOGRAPHY 7 th International Symposium on NDT in Aerospace Mo.3.A.2 LASER ULTRASONICS INSPECTIONS OF AERONAUTICAL COMPONENTS VALIDATED BY COMPUTED TOMOGRAPHY Esmeralda CUEVAS AGUADO 1, Carlos GALLEGUILLOS 2, Covadonga

More information

Austria. Material Matrix Matrix-density (g/cm 3 ) Fibre-diameter. Fibre-density

Austria. Material Matrix Matrix-density (g/cm 3 ) Fibre-diameter. Fibre-density COMPARISON OF X-RAY COMPUTED TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY FOR CHARACTERISATION OF GLASS-FIBRE POLYMER MATRIX COMPOSITES J. Kastner 1, E. Schlotthauer 1, P. Burgholzer 2, and D. Stifter 2

More information

FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE

FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 1 Introduction FATIGUE BEHAVIOR OF A 3D BRAIDED CARBON/EPOXY COMPOSITE V. Carvelli 1 *, J. Pazmino 1, S.V. Lomov 2, A.E. Bogdanovich 3, D.D. Mungalov

More information

Mechanical performance of selective laser melted 17-4 PH stainless steel under compressive loading

Mechanical performance of selective laser melted 17-4 PH stainless steel under compressive loading Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Mechanical performance of selective

More information

Use of SWIR Imaging to Monitor Layer-to-Layer Part Quality during SLM of 304L Stainless Steel

Use of SWIR Imaging to Monitor Layer-to-Layer Part Quality during SLM of 304L Stainless Steel Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Use of SWIR Imaging to Monitor Layer-to-Layer Part

More information

Finite element analysis and experimental study of plastic lattice structures manufactured. by selective laser sintering

Finite element analysis and experimental study of plastic lattice structures manufactured. by selective laser sintering Finite element analysis and experimental study of plastic lattice structures manufactured by selective laser sintering Jie Niu 1, Hui Leng Choo 1, Wei Sun 2 1 The University of Nottingham Ningbo China,

More information

In situ microscopic structural investigations with a three-dimensional X-ray microscope: nano3dx

In situ microscopic structural investigations with a three-dimensional X-ray microscope: nano3dx Technical articles In situ microscopic structural investigations with a three-dimensional X-ray microscope: nano3dx Kazuhiko Omote*, Yoshihiro Takeda*, Raita Hirose* and Joseph D. Ferrara** 1. Introduction

More information

Prof. Steven S. Saliterman

Prof. Steven S. Saliterman Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Prof. Angela Panoskaltsis-Mortari s BMEn 5361, 3D Bioprinting Tissue engineering Bioprinting Design considerations

More information

ScienceDirect. Synthesis of Co 3 O 4 micro-needles on the cell walls and their effect on the sound absorption behavior of open cell Al foam

ScienceDirect. Synthesis of Co 3 O 4 micro-needles on the cell walls and their effect on the sound absorption behavior of open cell Al foam Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 4 (2014 ) 191 195 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013 Synthesis of Co 3 O 4

More information

SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES. Mengxue Yan, Xiaoyong Tian* and Gang Pengr

SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES. Mengxue Yan, Xiaoyong Tian* and Gang Pengr 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES Mengxue Yan, Xiaoyong Tian* and Gang Pengr State Key Laboratory of

More information

CFRP and aluminum foam hybrid composites. R. Hartmann 1, M. Koch 1 ABSTRACT

CFRP and aluminum foam hybrid composites. R. Hartmann 1, M. Koch 1 ABSTRACT URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-100:6 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 CFRP and aluminum foam hybrid

More information

SIRRIS ADD department. Additive Manufacturing

SIRRIS ADD department. Additive Manufacturing SIRRIS ADD department Additive Manufacturing thierry.dormal@sirris.be ADD capacities & competencies SIRRIS ADD (1990 2011) 15 engineers and technicians Two locations: Liège (10 p.) and Charleroi (5 p.)

More information

PLY FRAGMENTATION IN INTERLAYER HYBRID COMPOSITES MODELLED DIRECTLY FROM THE FIBRE BREAK STATISTICS

PLY FRAGMENTATION IN INTERLAYER HYBRID COMPOSITES MODELLED DIRECTLY FROM THE FIBRE BREAK STATISTICS Athens, Greece, 24-28 th June 2018 1 PLY FRAGMENTATION IN INTERLAYER HYBRID COMPOSITES MODELLED DIRECTLY FROM THE FIBRE BREAK STATISTICS Francisco Mesquita 1, Yentl Swolfs 1, Stepan V. Lomov 1, Larissa

More information

Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions

Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions Volume-5, Issue-5, October-2015 International Journal of Engineering and Management Research Page Number: 320-324 Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different

More information

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE P.Selvakumar and Naresh Bhatnagar * Department of Mechanical Engineering Indian Institute

More information

Production of Functionally Graded Foams by Solid State Process

Production of Functionally Graded Foams by Solid State Process International Journal of Electrospun Nanofibers and Applications, Vol. 4, No. 1 (January-June, 2018) ISSN : 0973-628X Production of Functionally Graded Foams by Solid State Process Abstract: In the present

More information

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING Bo Cheng and Kevin Chou Mechanical Engineering Department The University of Alabama Tuscaloosa, AL 35487 Accepted August

More information

Supporting Information

Supporting Information Supporting Information Novel Interwoven Polymer Composites via Dual- Electrospinning with Shape Memory/Self-healing Properties Jaimee M. Robertson, Hossein Birjandi Nejad, Patrick T. Mather* Syracuse Biomaterials

More information

Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction

Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction Investigating the Residual Stress Distribution in Selective Laser Melting Produced Ti-6Al-4V using Neutron Diffraction L.S. Anderson 1,a, A.M. Venter 2,b, B. Vrancken 3,c, D. Marais 2, J. van Humbeeck

More information

square 1, Győr, Hungary Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

square 1, Győr, Hungary Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary Characterization of Internal Stresses in Hybrid Steel Structures Produced by Direct Metal Laser Sintering HATOS István 1,a, HARGITAI Hajnalka 1,b* and KOVÁCS József Gábor 2,c 1 Department of Materials

More information

Systematic Analysis of the Effects of Moulding Conditions on the Properties of Shape Memory Polymers

Systematic Analysis of the Effects of Moulding Conditions on the Properties of Shape Memory Polymers Downloaded from orbit.dtu.dk on: Nov 18, 2018 Systematic Analysis of the Effects of Moulding Conditions on the Properties of Shape Memory Polymers Danielak, Anna Halina; Islam, Aminul Publication date:

More information

A Comparison of Stress Corrosion Cracking Susceptibility in Additively-Manufactured and Wrought Materials for Aerospace and Biomedical Applications

A Comparison of Stress Corrosion Cracking Susceptibility in Additively-Manufactured and Wrought Materials for Aerospace and Biomedical Applications Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference A Comparison of Stress Corrosion Cracking Susceptibility

More information

Transferring Unit Cell Based Tissue Scaffold Design to Solid Freeform Fabrication

Transferring Unit Cell Based Tissue Scaffold Design to Solid Freeform Fabrication Transferring Unit Cell Based Tissue Scaffold Design to Solid Freeform Fabrication Connie Gomez 1, Binil Starly 1, Ali Shokoufandeh 2, Wei Sun 1 1 Laboratory for Computer Aided Tissue Engineering Department

More information

Additive Manufacturing Challenges Ahead

Additive Manufacturing Challenges Ahead Additive Manufacturing Challenges Ahead Dr. S. SELVI Associate Professor, Dept. of Mechanical Engineering Institute of Road and Transport Technology, Erode 638 316. selvimech@yahoo.com Received 25, November

More information

MICROPELLETIZATION AND THEIR APPLICATION TO MANUFACTURE POROUS PLASTIC PARTS

MICROPELLETIZATION AND THEIR APPLICATION TO MANUFACTURE POROUS PLASTIC PARTS MICROPELLETIZATION AND THEIR APPLICATION TO MANUFACTURE POROUS PLASTIC PARTS Christian Schäfer and Tim A. Osswald, University of Wisconsin-Madison, Polymer Engineering Center (PEC), USA Florian Ammon,

More information

Laboratory of Applied Mechanics and Reliability: Research Activities

Laboratory of Applied Mechanics and Reliability: Research Activities Laboratory of Applied Mechanics and Reliability: Research Activities Experimental mechanics Static, cyclic & fatigue testing, uniaxial / biaxial test, climatic chamber (- 10 C to 250 C). Vibration testing

More information

Modelling the elastic response of a polyurethane open cell foam based on a minimal surface energy approach

Modelling the elastic response of a polyurethane open cell foam based on a minimal surface energy approach Computational Methods and Experimental Measurements XVI 3 Modelling the elastic response of a polyurethane open cell foam based on a minimal surface energy approach B. Buffel 1, F. Desplentere 1, K. Bracke

More information

High Speed X-ray Solution For Process Control

High Speed X-ray Solution For Process Control High Speed X-ray Solution For Process Control Hemanthkumar National Sales Manager for Industrial X ray solutions Nov 2018 1 Agenda 1 2 3 4 ZEISS Introduction. High Speed X-ray Solution CT High Speed X-ray

More information

PRECISION EXTRUDING DEPOSITION AND CHARACTERIZATION OF CELLULAR POLY-ε -CAPROLACTONE TISSUE SCAFFOLDS

PRECISION EXTRUDING DEPOSITION AND CHARACTERIZATION OF CELLULAR POLY-ε -CAPROLACTONE TISSUE SCAFFOLDS PRECISION EXTRUDING DEPOSITION AND CHARACTERIZATION OF CELLULAR POLY-ε -CAPROLACTONE TISSUE SCAFFOLDS F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun *, S. Güçeri, A. Lau Laboratory for Computer-Aided

More information

In many industrial fields, such as aviation, aerospace,

In many industrial fields, such as aviation, aerospace, August 2012 Research & Development Compressive properties of aluminum foams by gas injection method *Zhang Huiming 1, Chen Xiang 1, 2, Fan Xueliu 1, and Li Yanxiang 1,2 (1. Department of Mechanical Engineering,

More information

DCB TEST SAMPLE DESIGN FOR MICRO-MECHANICAL TESTING

DCB TEST SAMPLE DESIGN FOR MICRO-MECHANICAL TESTING THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DCB TEST SAMPLE DESIGN FOR MICRO-MECHANICAL TESTING S. Zike, L. P. Mikkelsen, B. F. Sørensen Composites and Materials Mechanics Section, Department

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Functionally graded material by additive manufacturing Author(s) Choy, S. Y.; Sun, C. N.; Leong, K. F.;

More information

Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers

Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers Lasers in Manufacturing Conference 2015 Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers Tobias Laumer a-c, Thomas Stichel a,b, Michael Schmidt

More information

Evaluation of a Testpiece for Porosity in Carbon Fibre Reinforced Polymers

Evaluation of a Testpiece for Porosity in Carbon Fibre Reinforced Polymers 19 th World Conference on Non-Destructive Testing 2016 Evaluation of a Testpiece for Porosity in Carbon Fibre Reinforced Polymers Johann KASTNER 1, Bernhard PLANK 1, Guruprasad RAO 1 1 University of Applied

More information

Quality Control of a Laser Additive Manufactured Medical Implant by X-Ray Tomography

Quality Control of a Laser Additive Manufactured Medical Implant by X-Ray Tomography 3D PRINTING AND ADDITIVE MANUFACTURING Volume 3, Number 3, 2016 Mary Ann Liebert, Inc. DOI: 10.1089/3dp.2016.0012 ORIGINAL ARTICLE Quality Control of a Laser Additive Manufactured Medical Implant by X-Ray

More information

ELECTROSPUN NANOFIBER PROCESS CONTROL

ELECTROSPUN NANOFIBER PROCESS CONTROL CELLULOSE CHEMISTRY AND TECHNOLOGY Received April 26, 2010 ELECTROSPUN NANOFIBER PROCESS CONTROL University of Guilan, P.O. Box 3756, Rasht, Iran Fiber diameter is an important structural characteristic

More information