Practical Considerations Related to the Use of Alternative Backfill Materials for Flexible Soil-interaction Structure Installation

Size: px
Start display at page:

Download "Practical Considerations Related to the Use of Alternative Backfill Materials for Flexible Soil-interaction Structure Installation"

Transcription

1 Practical Considerations Related to the Use of Alternative Backfill Materials for Flexible Soil-interaction Structure Installation By Steve Tysl, P.E., and Jim Noll, P.E. July 2011

2 Professional Development Series Practical Considerations Related to the Use of Alternative Backfill Materials for Flexible Soil-interaction Structure Installation By Steve Tysl, P.E., and Jim Noll, P.E. All installations of buried flexible structures rely on soil-interaction behavior for strength and overall performance. Flexible structures include corrugated metal pipe (CMP), thermoplastic pipe, structural plate, and certain types of large reinforced concrete arch culverts. As the stiffness of such structures increases, the reliance on backfill support generally decreases. High-quality granular materials with good particle size distribution (gradation) that are angular in shape and resistant to breakage are ideal for all buried structure installations. However, as the use of alternative and non-traditional materials increases because of factors such as cost savings, material availability, or environmental reasons, there are specific aspects of the backfill characteristics that need to be considered. This article attempts to identify the relevant characteristics for both common and alternative backfill materials, utilizing available material specifications and industry standards as a basis for reference. Traditional backfill materials The types of acceptable granular backfill material suitable for use with flexible soil-interaction structures are well-documented and described in industrial standards. These documents include: product-specific ASTM standards, American Association of State Highway and Transportation Officials (AASHTO) Bridge Construction Specifications, installation manuals published by the National Corrugated Steel Pipe Association (NCSPA) and American Water Works Association (AWWA) and many Federal Highway Administration (FHWA), state department of transportation, county, and municipal standard specifications. In general, any well-graded granular material that is suitable for use for construction of a quality road base will meet industry standards. For the purpose of this article, granular materials that are found onsite are called soil and manufactured granular materials are called aggregate. Granular soil found on a particular project site may be appropriate for use as backfill in accordance with project specifications. Such soil is typically a mixture of granular particles with silt and clay. The most commonly specified sizes range from a maximum of 3 inches to the standard No. 200 sieve particle size (visible to the naked eye). Using the Unified Soil Classification system, well-graded soils classified as GW, SW, GM, SM, GC, or SC that are primarily non-plastic are generally acceptable for backfilling flexible structures. However, ML and CL materials, which are primarily silt and clay, should be avoided. Figure 1 shows a typical range of acceptable particle size distribution. It is the responsibility of the engineer of record to specify appropriate soil characteristics that provide adequate structural support. If borrow material that meets project specifications is not available, it may be necessary to import select aggregate fill material. Aggregate can originate from either a natural source (sand and gravel pit) or be a manufactured aggregate Instructions The Professional Development Series is a unique opportunity to earn continuing education credit at no cost to you by reading specially focused, sponsored articles. After reviewing the learning objectives below, read the Professional Development Series article and complete the quiz online at Quiz answers will be graded automatically and, if you answer at least 80 percent of the questions correctly, you can immediately download a certificate of completion and will be awarded 1.0 professional development hour (equivalent to 0.1 continuing education unit in most states). Note: It is the responsibility of the licensee to determine if this method of continuing education meets his or her governing board(s) of registration s requirements. Learning Objectives After reading this article you should be able to: Identify properties of commonly used backfill materials allowed in standard specifications. Understand the differences between soil and aggregate fill material. Understand pertinent factors related to the use of recycled and reclaimed materials as backfill. Understand the practical factors related to the use of selfcompacting fill materials. Professional Development Series Sponsor CONTECH Construction Products Inc. 2 PDH Professional Development Advertising Section CONTECH Construction Products Inc.

3 from a quarry. Examples of natural soil and quarried rock aggregate are shown in Figure 2. The following characteristics are common to all suitable granular backfill: must be a sound material which will not deteriorate in water; provide the strength needed to support the structure; be well compacted to provide the proper strength; be graded to prevent migration of native material into the backfill (note that filter fabrics can be used to prevent migration of fines); backfill and underlying foundation must be relatively free draining to allow rapid drainage of any water that accumulates in the backfill; be placed in a controlled manner and in balanced lifts and adequately compacted or densified; be compatible with the structure from a corrosion potential, material, and chemical content standpoint; and all such backfill supplied to the site must be consistent in the above characteristics. Suitable backfill materials normally are available from prequalified manufactured sources or borrow pits and should be used whenever possible. A qualified local geotechnical engineer or construction materials testing laboratory should assist with evaluating backfill sources. This is especially important when considering onsite borrow pits. Recycled aggregate All recycled materials served a purpose prior to their new intended use as select backfill material. Because the composition and previous service environment of these recycled materials may not be known, it is important to qualify the proposed recycled aggregate prior to allowing its use as backfill. The tests listed in Table 1 should be performed to assess if a recycled material should be considered for use. AASHTO M 319 further cautions the engineer to consider compaction and consolidation relative to moisture content and repetitive live loads, potential leaching of highly alkaline minerals and soluble calcium salts and minerals into groundwater, potential changes in permeability over time, potential changes in soundness over time, and possible contamination with extraneous solid waste or hazardous materials. Recycled portland cement concrete is produced from crushed concrete that has been removed from service. The material contains the sand, rock, and cement binder that was used in the original mixture along with any additives (chemical admixtures or cement pozzolans) used to control setting time, placement, or durability. The most common source for recycled concrete Figure 1: Typical range of acceptable particle size distribution. Note: Well-graded soil and aggregate grain size distribution plots should fall between the minimum and maximum lines shown here. CBC Engineers and Associates Professional Development Advertising Section CONTECH Construction Products Inc. PDH 3

4 Use of Alternative Backfill Materials is pavement or portions of ready-mix deliveries that are returned to the plant. Foreign material such as pieces of rebar and steel mesh and any organic or deleterious substances should be removed. Recycled concrete that meets the above physical and chemical testing requirements and procedures should be acceptable for use as backfill with flexible structures. Other recycled aggregate/binder combinations such as brick and lime mortar or structural repair mortars that use pea gravel and magnesium phosphate, epoxy, or polyurethane binder should be avoided. Recycled concrete that contains appreciable concentrations of road de-icing salts may not be suitable because of the potential corrosive nature of these salts and potential damage and deterioration concerns for the new structure. Recycled asphaltic concrete (AC, bitumen, macadam, or simply asphalt) is also used for roadway surfaces. Aggregate particles are bound together with a distilled product of crude oil under heat and pressure. Asphalt is typically 95 percent aggregate and 5 percent asphaltic binder. However, the 5 percent binder significantly influences the overall behavior of the mixture. Asphalt behaves like a very thick liquid similar to soft clay. As such, it is somewhat elastic in nature. In general, because of the potential for such materials to compress under loads, all types of asphalt should be avoided for use as backfill material around flexible structures. Reclaimed materials Slag is a byproduct of the blast oven steel-making process and is readily available in areas with close proximity to steel mills. Slag is typically a sound material with good physical properties, but the chemical composition of slag should be checked carefully prior to acceptance. The potential exists for corrosion issues related to such chemicals in close proximity to certain structures, as well as the potential for detrimental environmental effects. Foundry sand is used in metal forging production and is readily available as a surplus or spent material. The gradation of foundry sand is specific to the metal forging process and should be evaluated carefully before such material is considered for use as backfill. Also, the presence of unwanted metal or chemical compounds should be determined prior to use. Bottom ash and boiler slag are the waste materials that are collected in the lower systems of industrial furnaces. Bottom ash and boiler slag materials, unlike fly ash, are generally much larger in particle size, being generally in the 1/2-inch to sand size range. These materials typically have a single particle size (poorly graded), have potentially high sulfate and iron contents, and tend to be of relatively low density and may be prone to degradation during accepted hardness tests such as the Los Angeles Abrasion test. Self-compacting materials At some sites, the use of self-compacting materials has proven to be beneficial in providing adequate support to flexible structures, especially in tight spaces where placement and compaction of more traditional backfill material would be problematic. Challenging situations such as placing bedding under haunches, backfilling between closely spaced parallel structures, or installing Figure 2: Left Poorly graded quarry aggregate. Right Wellgraded natural soil. Figure 3: Directly adjacent to a structure, good compaction is achieved with walk-behind equipment. CBC Engineers and Associates 4 PDH Professional Development Advertising Section CONTECH Construction Products Inc.

5 structures that are partially submerged can be simplified or enhanced by using self-compacting materials. The most common materials used are either open-graded, angular aggregates or specially proportioned cementitious mixtures. Open-graded stone (OGS) is a common name for a granular aggregate whose particles are primarily one size. The most common OGS sizes are 3/4 inch and 3/8 inch. These sizes of coarse aggregate typically are used for concrete and mortar production and also in conjunction with perforated drainage pipe to construct perimeter drains (French drains). It may be possible to obtain satisfactory results when constructing subdrain systems using small-diameter pipe by dumping fill in place in a controlled manner. However, for pipe diameters greater than 48 inches, it is recommended that the fill must be placed in controlled, balanced lifts no larger than 8 to 12 inches. The larger 3/4-inch material is commonly supplied as crushed limestone and is typically angular in particle shape, which promotes the interlocking of particles and helps to confine the pipe walls. The smaller 3/8-inch material is commonly supplied as rounded or irregularly shaped particles, frequently referred to as pea gravel. Such fill material needs to be worked in carefully under the haunches of the pipe to ensure adequate coverage and support. Because the size of pea gravel coincides with the diameter of some standard perforations, the selection of this size material should be considered carefully when used for installing perforated pipe systems. A common practice is to wrap perforated pipe with a nonwoven geotextile to guard against infiltration of backfill material into the pipe system. OGS typically has a void content of as much as 40 percent. The voids in the backfill can be considered as part of stormwater retention, recharge, or percolation systems to help store and then release captured rainwater back into the ground. Because the OGS also must provide soil-interaction support to the pipe, the placement of such fill is critical. Unfortunately, in-place density testing of OGS is not universally accepted and can be impractical. The in-place density of such materials often can be enhanced using compaction devices such as plate compactors and concrete vibration tools. Verification of thorough placement coverage of this fill material combined with ensuring sufficient density to support the pipe system adequately and to carry any applied surface loads is critical. Consequently, the installation quality often is dependent on a combination of site conditions, material choice, and installer experience. It also is likely that there will be a significant difference in gradation between OGS and the adjacent native soils. It is common practice to place a non-woven geotextile separator between the differing soils to prevent migration of fines and filling of voids. A common mistake is to assume that the use of an OGS is necessary to satisfy the requirement for freedraining backfill. Most well-graded granular backfill materials have adequate porosity to allow water to drain. A granular backfill will drain more freely than a cohesive, clay backfill, which is one reason cohesive fill materials are not recommended for use as select backfill for these pipe systems. Table 1: Tests to assess recycled materials for use as select backfill AASHTO Test Description Specification ph Determine if the material is neutral, acidic, or caustic T-288 Resistivity Indicates potential for a material to facilitate corrosion; indicates presence T-289 of dissolved salts Gradation on a received sample Indicates particle size distribution; determines maximum size and minimum size T-27 Proctor Determination of material moisture-density relationship (applies to gradations that T-99 or T-180 mimic road base materials; does not apply to coarse aggregate with few fines) Density Unit weight and voids T-19 Los Angeles Abrasion and Impact test Determines soundness and resistance to degradation under backfill placement T-96 and compaction forces Gradation on sample after Los Angeles Indicates presence of excessive fines after application of compaction equipment forces T-27 Abrasion and Impact Total dissolved sulfates Indicates presence of corrosive salts T-290 Total dissolved chlorides Indicates presence of corrosive salts T-291 Professional Development Advertising Section CONTECH Construction Products Inc. PDH 5

6 Use of Alternative Backfill Materials Controlled low-strength material (CLSM, also known as flowable fill or controlled density fill) is a mixture of sand, cement, water, and fly ash. Fly ash is a major component of CLSM and is a byproduct of burning coal for generating electricity. Fly ash is a finely ground waste material that is captured in the exhaust stacks prior to release into the atmosphere. The chemical composition of fly ash varies based on the source of the burned coal. Similar to freshly placed concrete, CLSM can have a high ph in excess of 12. Also, the mixture should be evaluated for the presence of cure time accelerators such as calcium chloride, which potentially can be corrosive. When using CLSM, the requirement for free-draining backfill commonly is waived as the lack of porosity is compensated by the stiffness and strength of the hardened CLSM and its resistance to swelling as moisture content changes. CLSM can have a relatively low density and can be somewhat buoyant in nature, so lift thickness must be staged carefully so that structures with full inverts are not floated off the bedding. In addition, such materials must be placed in a relatively balanced and controlled manner to avoid distortion or displacement of the pipe structure. Soil improvement In geographical areas where coarse-grained soils and aggregate are not available or feasible, the use of soil-cement mixes are common to help stiffen and strengthen available soils. Local construction specifications and practices should be used in these geographical areas. In general, a good understanding of the optimum moisture-density relationship of the soil with and without blended cement is necessary. Conclusion There are many possible materials that can be considered for use as backfill material for flexible soil-interaction structures. Determining whether a material is suitable for use on a particular application depends on a number of practical and site-specific considerations and factors. The reader is encouraged to understand the important and sometimes not immediately obvious characteristics and key differences in such materials prior to selecting backfill for a particular site application. Factors such as required support, site constraints, project location and proximity to select fill sources, relative economics associated with material cost, backfill placement, and compaction costs all enter into the decision process. This article identifies and evaluates a number of the relevant factors; however, when in doubt, employ the services of a well-qualified and experienced geotechnical engineer. Steve Tysl, P.E., is a product design engineer for CONTECH. He has more than 20 years of experience in civil and materials/construction engineering. He is a member of ASTM, SEAoO, and NCSEA. Contact him at tysls@contechcpi.com. Jim Noll, P.E., is director of engineering services for CONTECH. He has 35 years of experience in the corrugated metal pipe industry and is an active member of various technical organizations including ASCE, AREMA, NCSPA, and ASTM. Contact him at jnoll@contech-cpi.com. References ASTM A798 Standard Practice for Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications ASTM A807 Standard Practice for Installing Corrugated Steel Structural Plate Pipe for Sewers and Other Applications ASTM B788 Standard Practice for Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe ASTM B789 Standard Practice for Installing Corrugated Aluminum Structural Plate Pipe for Culverts and Sewers ASTM C1479 Standard Practice for Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations ASTM D2321 Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) AASHTO Bridge Construction Specifications, Sections 26, 27, and 30 (Metal, Concrete, and Thermoplastic Culverts) AASHTO M 145 Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes AASHTO M 319 Standard Specification for Concrete Aggregate for Unbound Soil-Aggregate Base Course AASHTO T 19 Standard Method of Test for Bulk Density ( Unit Weight ) and Voids of Aggregate AASHTO T 27 Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates AASHTO T 96 Standard Method of Test for Resistance to Degradation of Small-Sized Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine AASHTO T 99 Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb.) Rammer and a 305-mm (12-inch) Drop [Standard Proctor Test] AASHTO T 134 Standard Method of Test for Moisture Density Relations of Soil-Cement Mixtures AASHTO T 180 Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb.) Rammer and a 457-mm (18-inch) Drop [Modified Proctor Test] AASHTO T 288 Standard Method of Test for Determining Minimum Laboratory Soil Resistivity AASHTO T 289 Standard Method of Test for Determining ph of Soil for Use in Corrosion Testing AASHTO T 290 Standard Method of Test for Determining Water- Soluble Sulfate Ion Content in Soil AASHTO T 291 Standard Method of Test for Determining Water- Soluble Chloride Ion Content in Soil Use Of Recycled Concrete as Backfill for Flexible Metal Structures, Unpublished Report issued by CBC Engineers and Associates to CONTECH Construction Products Inc., 6 pages, May 12, 2008, Dayton, Ohio. Corrugated Steel Pipe Design Manual, National Corrugated Steel Pipe Association (NCSPA), Dallas, Texas, PDH Professional Development Advertising Section CONTECH Construction Products Inc.

7 Quiz instructions Go to to take the following quiz online. Quiz answers will be graded automatically and, if you answer at least 80 percent of the questions correctly, you can immediately download a certificate of completion. 1. The ideal backfill material is a) Granular fill with a good particle size distribution b) Resistant to breakage or deterioration during placement, compaction, and under service load c) Chemically inert d) All of the above 2. Granular materials used adjacent to flexible soilinteraction structures are a) Classified by GW and GM only b) Classified by ML and CL only c) Generally between 3 inches and No. 200 sieve d) Only supplied from prequalified quarries 3. Writing and enforcing backfill material specifications for a particular project are normally the responsibility of the a) Financier/Owner c) General contractor b) Engineer of record d) Aggregate supplier 4. The best source for recycled concrete is a) A load-bearing wall from the 1920s b) A 20-year-old highway bridge deck in a Northern state c) An industrial re-fueling station slab d) Concrete returned to a ready-mix plant 5. When evaluating recycled aggregate as an appropriate backfill material, taking the extra step of checking gradation after performing abrasion and impact testing is important because a) The second series of tests provides an extra data point for statistical analysis b) This provides a means of determining if material breakdown is likely and if excessive fines could be produced by compaction forces c) Sieves may need to be re-calibrated d) All of the above 6. Recycled portland cement concrete and recycled asphaltic concrete are equally suitable for use as backfill a) True b) False 7. When evaluating the use of slag, foundry sand, or bottom ash, the most important consideration is a) Cost b) Availability c) Chemical compatibility d) Hauling distance 8. If the select fill envelope surrounding a large buried structure is likely to be exposed to inundation and build-up of hydrostatic pressure, the only way to ensure that free-draining backfill will be used is to specify an open-graded stone such as 3/4-inch limestone a) True b) False 9. Placing open-graded stone around large structures requires a) Careful staging of lifts to provide balanced support b) Careful monitoring to make sure the backfill zone is filled completely c) Careful inspection to ensure that adequate backfill density and stiffness is achieved d) All of the above 10. Placing a non-woven geotextile between opengraded stone and native soils is recommended to a) Prevent migration of fines between these two material zones and into desired void spaces b) Guard against buoyancy and floatation problems c) Improve bearing capacity d) All of the above For online access to all of CE News PDH articles, visit Professional Development Advertising Section CONTECH Construction Products Inc. PDH 7

8 Over. Under. Around. Through. Away. CONTECH is the only nationwide manufacturer that can truly deliver on the promise of single source provider. Our extensive product offering and expertise in the areas of bridge, drainage, erosion control, hard armor, retaining wall, sanitary, soil stabilization and stormwater solutions, set us apart from everybody else. Plus, our national sales force and industry leading technical specialists assure maximum support from specifi cation through installation. To learn more about CONTECH, call , or visit Knowledge. Solutions. Service.

SECTION UTILITY BACKFILL MATERIALS

SECTION UTILITY BACKFILL MATERIALS SECTION 31 23 23 UTILITY BACKFILL MATERIALS PART 1: GENERAL 1.01 SECTION INCLUDES A. Material Classifications B. : 1. Concrete sand 2. Gem sand 3. Pea gravel 4. Crushed stone 5. Crushed concrete 6. Bank

More information

SECTION AGGREGATES

SECTION AGGREGATES SECTION 32 05 00 AGGREGATES PART 1 GENERAL 1.01 SUMMARY A. Section Includes: 1. Aggregate base 2. Engineered fill 3. Backfill 4. Fine filter aggregate (non-frost susceptible fill) 5. Riprap 6. Recreational

More information

DETENTION, RETENTION AND RECHARGE STRUCTURES

DETENTION, RETENTION AND RECHARGE STRUCTURES DETENTION, RETENTION AND RECHARGE STRUCTURES Introduction Foundation, trenchwall, bedding and backfill considerations for multiple barrel detention systems are not unlike those for conventional CSP installations.

More information

Glossary of Terms - A -

Glossary of Terms - A - Glossary of Terms - A - AASHTO - American Association of State Highway and Transportation Officials. ABRASION - A test for determination of resistance of aggregate to abrasion conducted as per AASHTO Test

More information

Handling and Installation Instructions

Handling and Installation Instructions Handling and Installation Instructions SUPERTANK Water Reclamation Solutions, LLC Unloading and Handling NOTE: It is the responsibility of the installer to follow OSHA safety guidelines during the installation,

More information

2501 PART V SECTION 2501 PART V

2501 PART V SECTION 2501 PART V SECTION 2501 PART V 2501.1 GENERAL In order to properly monitor materials on a project, follow all applicable procedures as outlined in the KDOT Construction Manual, Part V. This includes, but is not limited

More information

DIVISION 2500 MISCELLANEOUS METHODS OF TEST

DIVISION 2500 MISCELLANEOUS METHODS OF TEST TABLE OF CONTENTS DIVISION 2500 MISCELLANEOUS METHODS OF TEST SECTION 2501 PART V... 2500-1 PAGE i SECTION 2501 PART V 2501.1 GENERAL In order to properly monitor materials on a project, follow all applicable

More information

TRENCH EXCAVATION AND BACKFILL

TRENCH EXCAVATION AND BACKFILL TRENCH EXCAVATION AND BACKFILL PART 1 - GENERAL 1.01 SECTION INCLUDES A. Trench Excavation for Pipe Systems B. Trench Foundation Stabilization C. Pipe Bedding and Backfill 1.02 DESCRIPTION OF WORK A. Excavate

More information

Special Provision No. 199S64 July 2016

Special Provision No. 199S64 July 2016 GENERAL REQUIREMENTS FOR REFEREE TESTING Special Provision No. 199S64 July 2016 1.0 Scope This Special Provision describes the common requirements for referee testing related to laboratory and field testing

More information

Flood Testing Laboratories, Inc.

Flood Testing Laboratories, Inc. in Chicago, Illinois, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information

Standard Testing & Engineering, LLC

Standard Testing & Engineering, LLC Standard Testing & Engineering, LLC dba Standard Testing & Engineering Company in Oklahoma City, Oklahoma, USA has demonstrated proficiency for the testing of construction materials and has conformed to

More information

Pennoni Associates, Inc.

Pennoni Associates, Inc. in Bethlehem, Pennsylvania, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies

More information

DIVISION 2500 MISCELLANEOUS METHODS OF TEST

DIVISION 2500 MISCELLANEOUS METHODS OF TEST TABLE OF CONTENTS DIVISION 2500 MISCELLANEOUS METHODS OF TEST SECTION 2501 PART V... 2500-1 PAGE i SECTION 2501 PART V 2501.1 GENERAL In order to properly monitor materials on a project, follow all applicable

More information

Following are key codes & standards to remember for Civil Estimators to prepare the tender/bid proposal in correct manner.

Following are key codes & standards to remember for Civil Estimators to prepare the tender/bid proposal in correct manner. CODES & STANDARDS FOR ON-SITE TESTING LABORATORY Following are key codes & standards to remember for Civil Estimators to prepare the tender/bid proposal in correct manner. Codes & Standards are published

More information

SECTION FILL AND BACKFILL

SECTION FILL AND BACKFILL PART 1 GENERAL 1.1 SECTION INCLUDES A. Filling, backfilling, and compacting for building volume below grade, footings, slabs-on-grade, paving, site structures, and utilities within the building. B. Backfilling

More information

Section 800 Coarse Aggregate

Section 800 Coarse Aggregate Section 800 Coarse Aggregate 800.1 General Description This section includes requirements for coarse aggregate. All aggregate shall be the specified type, class, and grade, and shall meet the requirements

More information

SECTION TRENCHING

SECTION TRENCHING SECTION 31 23 17 TRENCHING PART 1 GENERAL 1.1 SUMMARY A. Section Includes: 1. Excavating trenches for utilities and utility structures. 2. Bedding. 3. Backfilling and compacting to subgrade elevations.

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 TOLUNAY-WONG ENGINEERS, INC 10710 Sam Houston Parkway West, Suite 100 Houston, TX 77031 Patricia Hodgkins Phone: 504 202 7541 Valid To: February 29, 2020 Certificate

More information

SECTION 904 AGGREGATES

SECTION 904 AGGREGATES SECTION 904 AGGREGATES 904.01 Aggregates. Aggregates shall consist of natural or manufactured materials produced from but not limited to limestone, dolomite, gravels, sandstones, steel furnace slag (SF),

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 5/8/7) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular

More information

GeoTesting Express, Inc.

GeoTesting Express, Inc. in Acton, Massachusetts, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies

More information

MagnumStone Specifications Gravity

MagnumStone Specifications Gravity MagnumStone Specifications Gravity SPECIFICATION FOR MAGNUMSTONE GRAVITY MECHANICALLY STABILIZED EARTH SYSTEM PART 1: GENERAL.01Description The work consists of supplying and installing all aspects of

More information

CONTENTS INSTALLATION DETENTION SYSTEMS PHYSICAL PROPERTIES AGRICULTURE INSTALLATION GUIDE

CONTENTS INSTALLATION DETENTION SYSTEMS PHYSICAL PROPERTIES AGRICULTURE INSTALLATION GUIDE INSTALL GUIDE s to b INSTALLATION CONTENTS atco. t has be rig DETENTION SYSTEMS PHYSICAL PROPERTIES AGRICULTURE INSTALLATION GUIDE 4 10 12 15 o. If it INSTALLATION SCOPE This provides information on the

More information

The Work under this Section consists of performing all operations necessary to complete construction of the leveling course on the prepared subbase.

The Work under this Section consists of performing all operations necessary to complete construction of the leveling course on the prepared subbase. SECTION 20.22 LEVELING COURSE Article 22.1 General The Work under this Section consists of performing all operations necessary to complete construction of the leveling course on the prepared subbase. Article

More information

3- Highway Materials Aggregates

3- Highway Materials Aggregates 3- Highway Materials Aggregates Highway Materials/ Aggregates Aggregates are granular mineral particles that are widely used for highway bases, subbases, and backfill. Aggregate are also used in combination

More information

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, EDITION 2007

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, EDITION 2007 Sheet 1 of 6 KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, EDITION 2007 Delete SECTION 2501 and replace with the following: SECTION 2501 PART V 2501.1 GENERAL In

More information

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 422 APRIL 2004 CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT TABLE OF CONTENTS 422.01 SCOPE 422.02

More information

SECTION CEMENTITIOUS TREATED CRUSHED ROCK FOR PAVEMENT SUBBASE

SECTION CEMENTITIOUS TREATED CRUSHED ROCK FOR PAVEMENT SUBBASE SECTION 815 - CEMENTITIOUS TREATED CRUSHED ROCK FOR PAVEMENT SUBBASE ##This section cross-references Sections 175, 306, 801, 812 and 821. If any of the above sections are relevant, they should be included

More information

Aggregate Specifications

Aggregate Specifications Qualified Aggregate Technician Kentucky Specifications Aggregate Specifications State, FHWA, FAA, Contractor Kentucky Transportation Cabinet 107 Aggregate Size Designations Nominal Maximum Size The largest

More information

Principles of Soil Stabilization

Principles of Soil Stabilization Principles of Soil Stabilization by E. J. Y oder, R esearch E ngineer Joint Highway Research Project Purdue University A problem continually facing an engineer is that dealing with procedures and techniques

More information

MSCAA /04 ITEM P-219 RECYCLED CONCRETE CRUSHED AGGREGATE BASE COURSE DESCRIPTION MATERIALS

MSCAA /04 ITEM P-219 RECYCLED CONCRETE CRUSHED AGGREGATE BASE COURSE DESCRIPTION MATERIALS 219-1.1 ITEM P-219 RECYCLED CONCRETE CRUSHED AGGREGATE BASE COURSE DESCRIPTION This item consists of a base course composed of crushed recycled concrete aggregate, crushed to meet a particular gradation,

More information

SECTION 500 STRUCTURES

SECTION 500 STRUCTURES SECTION 500 STRUCTURES 500.1 GENERAL This section defines the various construction items that are associated with the completion of a concrete, steel, timber, or masonry unit structures, or a combination

More information

SECTION CONCRETE SEGMENTAL RETAINING WALL SYSTEM

SECTION CONCRETE SEGMENTAL RETAINING WALL SYSTEM SECTION 02832 CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1.: GENERAL 1.01 WORK INCLUDED A. This section includes the following: The Specifications on furnishing the design, materials and labor required

More information

SPECIAL PROVISION Portland Cement Concrete

SPECIAL PROVISION Portland Cement Concrete 1993 Specifications CSJ 0271-16-117 SPECIAL PROVISION 421---040 Portland Cement Concrete For this project, Item 421, Portland Cement Concrete, of the Standard Specifications, is hereby amended with respect

More information

FHWA-Central Federal Lands Highway Division

FHWA-Central Federal Lands Highway Division in Denver, Colorado, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information

50 lbs (23 kg) of + #8 (+2.36 mm) material plus 50 lbs (23 kg) of pile run material.

50 lbs (23 kg) of + #8 (+2.36 mm) material plus 50 lbs (23 kg) of pile run material. 5.5 REQUIRED SAMPLE SIZES 1. SCOPE This section covers the size of samples to be submitted to the s and Research Center for testing. The sample sizes listed are minimums and in special cases the Engineer

More information

Summary of the 2011 Changes

Summary of the 2011 Changes The following is a list of amendments to the Residential Site Improvement s, N.J.A.C. 5:21, adopted in 2011. The Notice of Adoption of these changes appeared in the New Jersey Register on May 16, 2011.

More information

SECTION TRENCHING, BACKFILLING AND COMPACTION. B. Provide necessary sheeting, shoring and bracing.

SECTION TRENCHING, BACKFILLING AND COMPACTION. B. Provide necessary sheeting, shoring and bracing. SECTION 02221 TRENCHING, BACKFILLING AND COMPACTION PART 1 GENERAL 1.01 WORK INCLUDED A. Excavation for piped utility material. B. Provide necessary sheeting, shoring and bracing. C. Prepare trench bottom

More information

North Dakota. Highway Materials Concrete Airfield Pavement

North Dakota. Highway Materials Concrete Airfield Pavement An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program Highway Materials Concrete Airfield Pavement IPRF Project 01-G-002-05-3 REVIEW OF STATE HIGHWAY

More information

SECTION SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM

SECTION SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM SECTION 32 32 23 SPECIFICATION FOR STONEBRIDGE RETAINING WALL SYSTEM PART 1: GENERAL 1.01 Scope Work includes furnishing all materials, labor, equipment, and supervision to install a Stonebridge segmental

More information

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 422 APRIL 2004 (Reissued November 2010) CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS AND BOX SEWERS IN OPEN CUT TABLE OF

More information

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 1001 MARCH 1993 MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL 1001.01 SCOPE 1001.02 REFERENCES 1001.03 DEFINITIONS TABLE OF CONTENTS 1001.04 SUBMISSION

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 9/17/18)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 9/17/18) Page 1 of 8 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

Beyond Engineering & Testing, LLC.

Beyond Engineering & Testing, LLC. in Round Rock, Texas, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information

SECTION PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795)

SECTION PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) Note: This guide specification for U.S. applications describes construction of permeable interlocking concrete

More information

TRENCH EXCAVATION AND BACKFILL

TRENCH EXCAVATION AND BACKFILL SUDAS Standard Specifications Division 3 - Trench and Trenchless Construction Section 300 - Trench Excavation and Backfill TRENCH EXCAVATION AND BACKFILL PART - GENERAL.0 SECTION INCLUDES A. Trench Excavation

More information

NEW MEXICO. Highway Materials Concrete Airfield Pavement

NEW MEXICO. Highway Materials Concrete Airfield Pavement An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program NEW MEXICO Highway Materials Concrete Airfield Pavement IPRF Project 01-G-002-05-3 REVIEW OF

More information

Recycled Base Aggregates in Pavement Applications

Recycled Base Aggregates in Pavement Applications Recycled Base Aggregates in Pavement Applications Jeffrey S. Melton, Ph.D. Outreach Director, Recycled Materials Resource Center jeffrey.melton@unh.edu The Big Picture Sustainability Nexus of major issues

More information

FHWA-Western Federal Lands Highway Division

FHWA-Western Federal Lands Highway Division in Vancouver, Washington, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies

More information

Terracon Consultants, Inc.

Terracon Consultants, Inc. in College Station, Texas, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies

More information

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS IN OPEN CUT

CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS IN OPEN CUT ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 422 November 2015 CONSTRUCTION SPECIFICATION FOR PRECAST REINFORCED CONCRETE BOX CULVERTS IN OPEN CUT TABLE OF CONTENTS D 422.01 D 422.02 D 422.03

More information

STRATA Certified Laboratory Tests

STRATA Certified Laboratory Tests STRATA Certified Laboratory Tests Table 1. List of Certified Soil Tests 1 ASTM D 422 Standard Test Method for Particle-Size Analysis of Soils 2 ASTM D 698-12 Standard Test Method for Compaction Characteristics

More information

A. Texas Department of Transportation 2004 Standard Specifications for Construction and Maintenance of Highways, Streets and Bridges (TxDOT).

A. Texas Department of Transportation 2004 Standard Specifications for Construction and Maintenance of Highways, Streets and Bridges (TxDOT). SECTION 32 01 16 ASPHALT OVERLAY PART 1 - GENERAL 1.1 SCOPE OF WORK A. This Section specifies the requirements for scarifying, grinding, sweeping and repair of existing asphalt concrete pavement to establish

More information

SPECIAL SPECIFICATION 4653 Polypropylene Pipe

SPECIAL SPECIFICATION 4653 Polypropylene Pipe 2004 Specifications CSJ 2158-01-013, Etc. SPECIAL SPECIFICATION 4653 Polypropylene Pipe 1. Description. Furnish and install polypropylene pipe for constructing polypropylene pipe culverts or polypropylene

More information

SPECIAL SPECIFICATION 3157 Cold Processed - Recycled Paving Material (RPM) for Use as Aggregate Base Course

SPECIAL SPECIFICATION 3157 Cold Processed - Recycled Paving Material (RPM) for Use as Aggregate Base Course 1993 Specifications SPECIAL SPECIFICATION 3157 Cold Processed - Recycled Paving Material (RPM) for Use as Aggregate Base Course 1. Description. This Item, Cold Processed - Recycled Paving Material (RPM),

More information

Bituminous Pavements and Surfaces

Bituminous Pavements and Surfaces PART ONE Bituminous Pavements and Surfaces Bituminous pavements and surfaces are composed of compacted aggregate and bitumen. The aggregate transmits the load from the surface to the base, takes the abrasive

More information

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 1001 NOVEMBER 2005 MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL TABLE OF CONTENTS 1001.01 SCOPE 1001.02 REFERENCES 1001.03 DEFINITIONS 1001.04 SUBMISSION

More information

ITEM D-701 PIPE FOR STORM DRAINS AND CULVERTS

ITEM D-701 PIPE FOR STORM DRAINS AND CULVERTS ITEM D-701 PIPE FOR STORM DRAINS AND CULVERTS 701-1 DESCRIPTION 701-1.1 This item shall consist of the construction of pipe culverts, and storm drains, removal of existing storm pipes, connections to existing

More information

The Practical Differences in Material Properties of Flexible Pipe Products. By Darrell Sanders, P.E., and Andrew Jenkins, E.I.

The Practical Differences in Material Properties of Flexible Pipe Products. By Darrell Sanders, P.E., and Andrew Jenkins, E.I. The Practical Differences in Material Properties of Flexible Pipe Products By Darrell Sanders, P.E., and Andrew Jenkins, E.I. DECEMBER 2010 Professional Development Series The Practical Differences in

More information

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, 2015 EDITION

KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, 2015 EDITION Sheet 1 of 6 KANSAS DEPARTMENT OF TRANSPORTATION SPECIAL PROVISION TO THE STANDARD SPECIFICATIONS, 2015 EDITION Delete SECTION 2501 and replace with the following: SECTION 2501 PART V 2501.1 GENERAL In

More information

Item P-219 Recycled Concrete Aggregate Base Course

Item P-219 Recycled Concrete Aggregate Base Course Item P-219 Recycled Concrete Aggregate DESCRIPTION 219-1.1 This item consists of a base course composed of recycled concrete aggregate, crushed to meet a particular gradation, constructed on a prepared

More information

SECTION STRUCTURAL EXCAVATION FOR STRUCTURES

SECTION STRUCTURAL EXCAVATION FOR STRUCTURES 1 1 1 0 1 0 1 0 1 SECTION 1. STRUCTURAL EXCAVATION FOR STRUCTURES BASED ON DFD MASTER SPECIFICATION DATED /1/1 P A R T 1 - G E N E R A L SCOPE The work under this section shall consist of providing all

More information

Accredited Laboratory

Accredited Laboratory Accredited Laboratory A2LA has accredited PIONEER LABORATORY Doha, Qatar for technical competence in the field of Construction Materials Testing This laboratory is accredited in accordance with the recognized

More information

SPECIAL SPECIFICATION 4425 Thermoplastic Pipe

SPECIAL SPECIFICATION 4425 Thermoplastic Pipe 2004 Specifications CSJ 0264-07-028 SPECIAL SPECIFICATION 4425 Thermoplastic Pipe 1. Description. Furnish and install thermoplastic pipe for constructing thermoplastic pipe culverts or thermoplastic storm

More information

An Introduction to Soil Stabilization with Portland Cement

An Introduction to Soil Stabilization with Portland Cement An Introduction to Soil Stabilization with Portland Cement Course No: G02-012 Credit: 2 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 9 Greyridge Farm

More information

September 1, 2003 CONCRETE MANUAL SPECIAL TYPES OF CONCRETE

September 1, 2003 CONCRETE MANUAL SPECIAL TYPES OF CONCRETE September 1, 2003 CONCRETE MANUAL 5-694.800 5-694.810 GENERAL SPECIAL TYPES OF CONCRETE 5-694.800 In the general use of the word concrete, the idea implied is the conventional placement of the material

More information

Aggregates in Concrete

Aggregates in Concrete Aggregates in Concrete Definitions and Importance of Aggregates Aggregate is a rock like material Used in many civil engineering and construction applications including: Portland cement concrete Asphalt

More information

Foundry Byproducts as Sustainable Geotechnical Construction Materials

Foundry Byproducts as Sustainable Geotechnical Construction Materials Foundry Byproducts as Sustainable Geotechnical Construction Materials Craig H. Benson, PhD, PE, DGE Wisconsin Distinguished Professor Director, Recycled Materials Resource Center University of Wisconsin-Madison

More information

REQUEST FOR COMMENTS UNIFORM STANDARD SPECIFICATIONS SECTION 704, "BASE AGGREGATES"

REQUEST FOR COMMENTS UNIFORM STANDARD SPECIFICATIONS SECTION 704, BASE AGGREGATES REQUEST FOR COMMENTS UNIFORM STANDARD SPECIFICATIONS SECTION 704, "BASE AGGREGATES" The Specifications Subcommittee of the Regional Transportation Commission of Southern Nevada has approved the proposed

More information

Wyoming. Highway Materials Concrete Airfield Pavement

Wyoming. Highway Materials Concrete Airfield Pavement An IPRF Research Report Innovative Pavement Research Foundation Airport Concrete Pavement Technology Program Highway Materials Concrete Airfield Pavement IPRF Project 01-G-002-05-3 REVIEW OF STATE HIGHWAY

More information

Characterizing Engineering Properties of Foundry Sands

Characterizing Engineering Properties of Foundry Sands Characterizing Engineering Properties of Foundry Sands Craig H. Benson, PhD, PE Recycled Materials Resource Center University of Washington chbenson@u.washington.edu www.recycledmaterials.org Recycled

More information

INSTALLATION INSTALLATION

INSTALLATION INSTALLATION SCOPE: This is an outline of procedures for the installation of Prinsco corrugated HDPE pipe for Storm Sewer and Culvert applications in accordance with ASTM and AASHTO specifications. PRINCIPAL REFERENCES:

More information

SAMPLE CONSTRUCTION AND MATERIAL SPECIFICATIONS FOR THE ULTRABLOCK GRAVITY WALL SYSTEM

SAMPLE CONSTRUCTION AND MATERIAL SPECIFICATIONS FOR THE ULTRABLOCK GRAVITY WALL SYSTEM SAMPLE CONSTRUCTION AND MATERIAL SPECIFICATIONS FOR THE ULTRABLOCK GRAVITY WALL SYSTEM The following paragraphs provide general guidelines on developing construction and material specifications for specific

More information

SECTION TRENCHING, BACKFILLING, COMPACTION AND GENERAL GRADING

SECTION TRENCHING, BACKFILLING, COMPACTION AND GENERAL GRADING PART 1 GENERAL SECTION 02221 TRENCHING, BACKFILLING, COMPACTION AND GENERAL GRADING 1.01 SECTION INCLUDES A. Excavation, dewatering and backfilling with compaction of trenches for pipes, conduits, channels

More information

INDEX FOR SPECIFICATIONS FOR JACKING CULVERTS THROUGH EMBANKMENTS SCOPE... 2

INDEX FOR SPECIFICATIONS FOR JACKING CULVERTS THROUGH EMBANKMENTS SCOPE... 2 INDEX FOR SPECIFICATIONS FOR JACKING CULVERTS THROUGH EMBANKMENTS 410. 1 SCOPE... 2 410. 2 DEFINITIONS 2.1 Tunneling and Jacking... 2 2.2 Tunneling... 2 2.3 Jacking... 2 410. 3 MATERIALS 3.1 General...

More information

SECTION EROSION CONTROLS

SECTION EROSION CONTROLS SECTION 31 25 13 EROSION CONTROLS PART 1 GENERAL 1.1 SUMMARY A. Section Includes installing, maintaining and removing: 1. Silt Fence. 2. Temporary Construction Entrances. 3. Diversion Channels. 4. Sediment

More information

SECTION RIPRAP, BOULDERS, AND BEDDING

SECTION RIPRAP, BOULDERS, AND BEDDING SECTION 31 37 00 RIPRAP, BOULDERS, AND BEDDING PART 1 GENERAL 1.01 SECTION INCLUDES A. The WORK includes excavation, grading, and installation of riprap, boulders, soil riprap, void-filled riprap, and

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 PROFESSIONAL SERVICE INDUSTRIES, INC. PORTLAND, OREGON DIVISION 6032 N Cutter Circle, Suite #480 Portland, OR 97217 Joseph A. Morrissey, PE Phone: 503 289 1778

More information

Union County Vocational - Technical Schools Scotch Plains, New Jersey

Union County Vocational - Technical Schools Scotch Plains, New Jersey SECTION 02222 - EXCAVATION, BACKFILL, AND COMPACTION FOR UTILITIES PART 1 - GENERAL 1.01 SECTION INCLUDES A. Excavating trenches for the installation of utilities and stormwater detention facilities. B.

More information

Under the green roof. Stormwater detention using geosynthetics. in northern California. Reviving. Geosynthetic applications.

Under the green roof. Stormwater detention using geosynthetics. in northern California. Reviving. Geosynthetic applications. JUNE/JULY 2010 VOLUME 28 NUMBER 3 Under the green roof Stormwater detention using geosynthetics in northern California Reviving the Wrigley Reservoir Geosynthetic applications in the new I-35W Bridge More

More information

Aggregates. Introduction. Inert, granular, inorganic materials, which normally consist of stone or stone-like solids.

Aggregates. Introduction. Inert, granular, inorganic materials, which normally consist of stone or stone-like solids. Introduction Inert, granular, inorganic materials, which normally consist of stone or stone-like solids. Usage: Alone road bases, fill, drainage layers Particulate Composites - Portland cement concrete

More information

PAVETEX Engineering, LLC

PAVETEX Engineering, LLC in El Paso, Texas, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information

Appendix D Recommended Materials

Appendix D Recommended Materials Appendix D Recommended Materials Numerous BMPs in this manual have similar material needs. These BMPs are listed in the table below. Detailed information on each material requirement follows. In addition,

More information

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL

MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL ONTARIO PROVINCIAL STANDARD SPECIFICATION METRIC OPSS 1001 NOVEMBER 2013 MATERIAL SPECIFICATION FOR AGGREGATES - GENERAL TABLE OF CONTENTS 1001.01 SCOPE 1001.02 REFERENCES 1001.03 DEFINITIONS 1001.04 DESIGN

More information

V. Subramani #1, S.Sridevi *2 PG student, Department of Civil Engineering

V. Subramani #1, S.Sridevi *2 PG student, Department of Civil Engineering Soil Stabilization using Nano Materials V. Subramani #1, S.Sridevi *2 PG student, Department of Civil Engineering Abstract -- The main aim of the study is to investigate the effect of addition of different

More information

INDEX FOR SPECIFICATIONS FOR REMOVING CULVERTS AND PLACING CULVERTS SCOPE... 1

INDEX FOR SPECIFICATIONS FOR REMOVING CULVERTS AND PLACING CULVERTS SCOPE... 1 March 2002 No. 400 INDEX FOR SPECIFICATIONS FOR REMOVING CULVERTS AND PLACING CULVERTS 400. 1 SCOPE... 1 400. 2 REMOVING CULVERTS AND TIMBER STRUCTURES 2.1 Concrete and Metal Pipe Culverts... 1 2.2 Structural

More information

SECTION CONTROLLED LOW STRENGTH MATERIAL

SECTION CONTROLLED LOW STRENGTH MATERIAL SECTION 03300 CONTROLLED LOW STRENGTH MATERIAL PART 1 GENERAL 1.1 DESCRIPTION A. This Section specifies Controlled Low Strength Material (CLSM) to be used as described in this specification, including

More information

Troubleshooting Aggregates and Admixtures

Troubleshooting Aggregates and Admixtures Troubleshooting Aggregates and Admixtures Portland Cement Association Founded in 1916 Headquarters: Skokie, Illinois USA References Design and Control of Concrete Mixtures, EB001.16, PCA 2016 CH 8 Aggregates

More information

A.2.a Random Riprap... Table

A.2.a Random Riprap... Table 3601 RIPRAP MATERIAL 3601.1 SCOPE Provide stone and filter layer material for use in random or hand-placed riprap, gabion, and revet mattress construction. 3601.2 REQUIREMENTS A Stones A.1 Quality Provide

More information

Ontario ENGINEERING STANDARD SPECIFICATION 1.0 PURPOSE 2.0 MATERIALS

Ontario ENGINEERING STANDARD SPECIFICATION 1.0 PURPOSE 2.0 MATERIALS 1/8 1.0 PURPOSE This specification describes the minimum gradation and physical property requirements and describes acceptable material qualities, handling, storage and delivery of earthfill materials.

More information

Soil-Cement Technology for Pavements: Different Products for Different Applications

Soil-Cement Technology for Pavements: Different Products for Different Applications Soil-Cement Technology for Pavements: Different Products for Different Applications A publication from the Portland Cement Association Compliments of 801 South 71st Avenue Phoenix, AZ 85043 623-936-8800

More information

Expanded Shale Clay and Slate in Water Filtration

Expanded Shale Clay and Slate in Water Filtration Expanded Shale Clay and Slate in Water Filtration Expanded Shale, Clay and Slate (ESCS) filtration media has up to 100 times the specific surface area than ordinary filtration sand and gravel. This advantage

More information

INDEX FOR SPECIFICATIONS FOR AGGREGATE FOR BITUMINOUS PAVEMENT SCOPE... 2

INDEX FOR SPECIFICATIONS FOR AGGREGATE FOR BITUMINOUS PAVEMENT SCOPE... 2 February 2017 No. 920(I) INDEX FOR SPECIFICATIONS FOR AGGREGATE FOR BITUMINOUS PAVEMENT 920. 1 SCOPE... 2 920. 3 MATERIALS 3.1 Source of Supply... 2 3.2 Aggregate Requirements... 2 3.3 Mix Design... 3

More information

SECTION PERMEABLE INTERLOCKING CONCRETE UNIT PAVEMENT

SECTION PERMEABLE INTERLOCKING CONCRETE UNIT PAVEMENT SECTION 32 14 13 19 PERMEABLE INTERLOCKING CONCRETE UNIT PAVEMENT SECTION 32 14 13 19 PERMEABLE INTERLOCKING CONCRETE UNIT PAVEMENT PART 1 - GENERAL 1.1 SUMMARY A. Section Includes: 1. Permeable Articulating

More information

C. Foundation stabilization for pipe and utility structures.

C. Foundation stabilization for pipe and utility structures. PART 1 - GENERAL 1.1 SECTION INCLUDES A. Excavating, backfilling, and compacting for utilities, including pipe, structures, and appurtenances. B. Control of water in trenches. C. Foundation stabilization

More information

Stanford University Facilities Design Guidelines SECTION Pervious Concrete Paving

Stanford University Facilities Design Guidelines SECTION Pervious Concrete Paving SECTION 32 13 43 Pervious Concrete Paving PART 1 GENERAL 1.1 RELATED WORK Current Caltrans Standard Specification Sections A. SECTION 31 10 00 Site Preparation B. SECTION 31 00 00 Earthwork C. SECTION

More information

INDEX DESCRIPTION MATERIALS APPROVAL FOR BASE COURSE CONSTRUCTION MEASUREMENT PAYMENT 6

INDEX DESCRIPTION MATERIALS APPROVAL FOR BASE COURSE CONSTRUCTION MEASUREMENT PAYMENT 6 03005_Jan31_2018.pdf Page 1 of 6 INDEX Page 03005-1 DESCRIPTION 2 03005-2 MATERIALS 2 03005-3 APPROVAL FOR BASE COURSE 3 03005-4 CONSTRUCTION 3 03005-5 MEASUREMENT 6 03005-6 PAYMENT 6 03005_Jan31_2018.pdf

More information

Nelson Testing Laboratories

Nelson Testing Laboratories in Elmhurst, Illinois, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 NORTHWEST GEOTECH, INC. d/b/a NORTHWEST TESTING, INC. 9120 SW Pioneer Court, Suite B Wilsonville, OR 97070 Thomas Ginsbach, P.E. Phone: 503 682 1880 Valid To:

More information