Coal Combustion Studies in a Fluidised Bed Suthum Patumsawad *

Size: px
Start display at page:

Download "Coal Combustion Studies in a Fluidised Bed Suthum Patumsawad *"

Transcription

1 Coal Combustion Studies in a Fluidised Bed Suthum Patumsawad stt@kmitnb.ac.th * Abstract Fluidized bed is one of the most promising methods for combustion today. Its application to boilers is recognized primarily for its low sensitivity to fuel quality and its capacity to limit air pollution. This technology is being used for co-combustion of coal and waste fuels. The objective of this paper is to evaluate the combustion performance from firing coal in a laboratory-scale fluidized bed combustor for the purpose of establishing optimum combustion conditions as a preamble to investigating co-combustion of solid waste as a supplementary fuel with coal. The results show that between 91-95% carbon utilization efficiency and over 99.8% CO combustion efficiency have been achieved at a design feed rate of 1.2 kg/hr and excess air of 30% to 90%. The effects of operating parameters on coal combustion, such as gas velocity and excess air, are discussed. Keywords : Coal, Fluidized Bed, Co-Combustion 1. Introduction There is now increasing interest in the use of biomass and municipal solid/industrial waste within existing coal-fired. plant. The advantages can be summarized as follows: - Continuous supply of waste is not an issue, since the boiler plant would always have the primary fuel (coal) for 100% utilization. - Reduce the need for land based waste disposal. - Can burn high moisture content wastes. - Displacement of a small proportion of coal by the biomass/waste will help to conserve reserves of fossil fuels. - Reduce emissions in particular SO 2. - Relatively small investment as compared to plant dedicated to biomass processing. Fluidized bed combustion has been shown to be a versatile technology capable of burning practically any fuel combination with low emissions (Anthony, 1995). The significant advantages of fluidized bed combustors over conventional ones include their compact furnace, simple design, effectiveness for a wide variety of fuels, relatively uniform temperature and the ability to reduce nitrogen oxide and sulphur dioxide emissions (Saxena and Jotshi, 1994). Fluidized bed combustors can be designed to combust almost any solid, semi-solid or liquid fuel without the use of supplement fuel, as long as the heating value is sufficient to heat up the fuel, drive off the moisture and preheat the combustion air In addition, with appropriate attention to fuel preparation and blending and to operating procedures, wastes can be co-fired with coal in many existing coalfired fluidised bed combustion boilers. Conversion of existing fluidized bed combustion boilers to co-firing wastes with coal is in many cases more cost-effective and efficient than building a dedicated new unit (McGowin and Howe, 1994). The objective of this work was to report experiments on combustion of coal for the purpose of establishing optimum combustion conditions as a preamble to investigating co-combustion of solid waste as a supplementary fuel with coal. Combustion efficiency and flue gas composition were investigated, with excess air, fluidising velocity and fuel feed rate as variables. 2. Materials aiad Method Fig. 1 shows the layout of the experimental fluidised bed unit. The design of this unit was originally for solid fuels and was operated at temperature of 900 o C with fluidising air velocity of 1-2 m/s. The fluidised bed combustor was designed to generate 10 kw thermal power. The combustor body is made of 1 cm thick 306 stainless steel. The combustor is 0.15 m in diameter and 2.3 m high, allowing bed depths up to 0.3 m with 2 m in freeboard height. The bed material is sand of an average size of 850 micron. The combustor is covered with Kaowool insulation. The freeboard height is an important design parameter since unburnt particles elutriated from the bed and volatiles released during the devolatilisation process will continue burning in the freeboard * Department of Mechanical Engineering, Faculty of Engineering, King Mongkut s Institute of Technology North Bangkok.

2 region. This requires a residence time of approximately 1-2 sec (Wiley, 1987 and Baeyens and Geldart, 1978). Fluidising air is introduced at the base of the bed through a nozzle distributor and used as both fluidisation and combustion air. The distributor plate is a 10 mm thick stainless steel plate bearing nineteen 6-cm-high capped standpipe, each with twenty seven 1.5-mm-diarneter, holes drilled radially just below the top. This configuration allows for a static layer of sand to insulate the plate from the hot bed, removing the requirement for a separate distributor cooling system. Fuel is fed pneumatically to the bed surface from a sealed hopper through an inclined feeding pipe and flow rate is controlled by a screw-feeder. To prevent the fuel from burning insi0e the feeding pipe before entering the combustor, a water-cooled jacket is fixed around the feeding pipe. A cyclone is fifted to the combustor exit and the carryover from the bed is collected for analysis. Gas analyser Cyclone Feeding system Distributor plate Air 200 φ150 Fig. 1 A drawing of the laboratory scale fluidised bed reactor Start up of the bed is achieved by using an in-bed technique. Propane is introduced directly into the distributor plate by injectors and mixed with air in the nozzles, providing a combustible mixture at the nozzle exit. The propane gas is used as an auxiliary fuel to raise the bed temperature to a designated level, normally above the ignition temperature of the fuel. Bed and freeboard temperatures are measured at 8 different heights above the distributor plate by means of sheathed Ni/Cr-Ni thermocouples type K. Combustion gas samples are obtained from a sampling port located at the cyclone exit and analysed by on- line gas analysers. Gas analysers are susceptible to dust and water vapour thus the gas sample has to be cleaned and dried. The gas sample was passed through a glass wool filter, a water cooling heat exchanger, and a drier consisting of magnesium oxide granules before entering the on-line gas analysers. CO and O 2 are measured using a Xentra 4904 B1 continuous emissions analyser. The analyser uses the Servomex paramagnetic transducer for measuring O 2 and a gas filter correlation (Gfx) transducer for CO. The measurement ranges of O 2 and CO are 0-25% and ppmv, respectively. CO 2 is measured by using a non-dispersive infrared absorption spectrometry analyser. The measurement range of C O 2 is 0-15%. These gas analysers are calibrated with standard gas samples before use. Air and gas flow rates are measured by calibrated rotameters.

3 The percentage of combustion efficiency is computed from the following relation: % CO2 in flue gas 100% η = (1) CE (% CO + % CO) in flue gas 2 This efficiency calculation procedure is based on the knowledge of flue gas composition only and assumes that there are no carbon losses, and that cabon composition presented in the feed is converted completely to carbon monoxide and carbon dioxide. As unburnt carbon could be elutriated, a more accurate combustion efficiency taking this into account is calculated using equation (2) (Saxena and Jotshi, 1994). η CE = (B/C) x 100 (2) where B and C are, respectively, the mass fractiont of burnt and total carbon in the fuel. Knowing flue gas composition, fractional excess air, and the ultimate analyses of fuel, B can be calculated. Based on values of combustion efficiency from experiments where duplicate runs are conducted under almost identical conditions, combustion efficiency values should be within +2%. This methodology is convenient since determining experimentally the unburnt carbon is difficult. The coal property is summarised in Table 1. The coal with particle size in the range of mm and containing 6% moisture content was used. Table 1. Proximate and ultimate analyses of coal Proximate analysis, wt% (dry basis) Volatile Fixed carbon Ash 2.98 Moisture content, wt% (as received) 5.9 Ultimate analysis, wt% (dry basis) Carbon Hydrogen 5.31 Oxygen 9.88 Nitrogen 0.96 Sulphur 0.74 HHV, MJ/kg (dry basis) 33 As mentioned earlier, the design heat input for the combustor was I 0 kw thermal, which is equivalent to a coal feed rate of 1.2 kg/hr. Hence, this coal feed rate operated with excess air between 30% to 90% are used as reference states.

4 3. Experimental Results and Discussions The results of the tests, while burning bituminous coal, classified according to The American Society for Testing and Materials (ASTM) system, are given in Table 2. The gas fluidising velocities and fluidisation numbers computed at the bed temperature and combustion efficiencies calculated from both carbon balance, Eq. (2), and [CO 2,] and [CO] in flue gas composition, Eq. (1), are also reported. Table 2 Combustion of coal in an experimental fluidised bed Run Fuel feed rate (kg/hr) Air flow rate (kg/hr) Excess air (%) Bed temperature ( C) Bed surface temperature ( C) Flue gas composition CO at 6%O 2 in flue gas (ppm) CO 2 (%) O 2 (%) Carbon combustion efficiency Eq. 2 (%) CO combustion efficiency Eq. 1 (%) Fluidising gas velocity (m/s) Fluidisation number (Ug/Umf)

5 3.1 General Combustion Chgaracteristics of Coal Generally, the efficiencies were between 91-95% for carbon utilisation efficiency, Eq. (2), and over 99.8% for CO combustion efficiency, Eq. (1), at a design feed rate of 1.2 kg/hr and excess air of 30% to 90%. The low CO emissions, ppm imply that most of the burnt carbon was converted to CO 2 in the combustion process and the major loss of combustion efficiency comes from elutriation loss in flue gas. Bed temperatures are in the range of o C. Measurement of the bed temperature (at 10 mm, 20 mm, and 30 mm above the distributor plate) showed no measureable variation. Because of over-bed feeding, burning coal particles could be seen on the surface o the bed and there was also evidence of volatile burning. The temperatures above the bed surface at 30 and 40 mm above the distributor plate were found t be more or less the same as the bed temperature indicating freeboard combustion in this region. Fig. 2 shows the temperature profile along the height of the combustor when burning coal. Height above the distributor plate (cm) Run 1 40 Run 2 Run 3 20 Run Temperature (C) Fig. 2 Temperature profile of coal combustion 3.2 Effect of Excess Air The influence of excess air on the carbon utilisation efficiency is shown in Fig. 3. It can be seen that increasing excess air increases the carbon utilisation efficiency from 91% to 95% when the excess air increased from 30% to 90%. This means the amount of unburnt carbon decreases with increase in excess air. These results show the same trend with those of Gibbs and Headley (I 978). But normally the amount of air flow is related to the air velocity in fluidised bed. The higher the amount of air flow rate, the higher the gas velocity. From Fig. 3, the carbon utilisation efficiencies at a feed rate of 1.3 kg/hr are constant rather than increasing continually with increase in excess air. At a feed rate of 1 kg/hr, the carbon utilisation efficiency increases continually with increase in excess air up to a maximum of 100%. These results show a significant effect of fluidising velocity to the combustion efficiency.

6 Carbon combustion efficiency (%) Excess air (%) 1 kg/hr 1.2 kg/hr 1.3 kg/hr Fig. 3 Effect of excess air to carbon combustion efficiency of coal combustion at various feed rate 3.3 Effect of Fluidising Velocity Air velocity used in a fluidised bed combustor is at least at minimum fluidisation velocity of the combustor. It is convenient to use fluidisation number (Ug/Umf) which is the ratio of fluidising velocity with minimum fluidisation velocity. The effect of fluidising velocity to carbon utilisation efficiency is shown in Fig. 4 in terms of the fluidisation number (Ug/Umf) relationship. During the experimental tests, the fluidisation numbers (Ug/Umf) used were in the range of Carbon combustion efficiency (%) Fluidisation number, Ug/Umf Fig. 4 Effect of Fluidisation number on carbon combustion efficiency of coal combustion

7 It is expected that the carbon utilisation efficiency could be increased when fluidisation number increases since increasing the fluidisation number (Ug/Umf) also increases the amount of excess air at the same fuel feed rate. However, fluidising velocity has an affect on unbumt combustibles in the elutriated carryover. The higher the fluidising velocity, the higher the unbumt combustible loss in the flue gas, and the lower carbon utilisation efficiency. On the other hand it is to be expected as the hydrodynamic activity in the bed is related to solid mixing and gas-solids contacting and these in turn are directly related to carbon utilisation efficiency (Saxena et al., 1992). They found that in the turbulent regime, the carbon utilisation efficiency was a maximum and a further increase in the fluidisation number (Ug/Umt) had an insignificant influence on the bed hydrodynamics and hence the carbon utilisation efficiency. As it can be seen from Fig. 4, the carbon utilisation effiency increases as fluidisation number (Ug/Umf) increases from 3 to 4 and is fairly constant with increasing fluidisation number (Ug/Umf) from 4 to Effect of Fuel Feed Rate The designed combustion rate for this experimental rig was 10 kw which corresponded a coal feed rate of 1.2 kg/hr. To study the effect of feed rates, feed rates of I and 1.3 kg/hr were also tested and compared to feed rate of 1.2 kg/hr as shown in Fig. 3. For a feed rate of 1.2 kg/hr at the same percentage of excess air. The decrease in the carbon combustion efficiency was possible due to the reduction in the bed temperature. The bed temperatures are approximately 870 o C and 920 o C at feed rates of 1 and 1.2 kg/hr. respectively. The higher the bed temperature the higher the carbon combustion efficiency (Gibbs and Headley, 1978). For a feed rate of 1.3 kg/hr, the carbon combustion efficiency is lower than at a feed rate of 1.2 kg/hr with increasing percentage of excess air. The bed temperatures at feed rates of 1.2 and 1.3 kg/hr are approximately the same at 920 o C. There are two possible reasons for the drop of carbon utilisation efficiency. Firstly, when considering at constant excess air, increasing fuel feed rate means increasing the amount of combustion air which relates to air fluidising velocity. The higher the fluidising velocity the higher the amount of unbumt combustibles in the flue gas. Secondly, as pointed out by Saxena et al. (1992) and Artos et al. (1991), the carbon loss associated with elutriation rate is proportional to the carbon load. Increase of carbon loading, i.e. fuel feed rate, enhances the rate of particle attrition resulting in greater elutriation loss. This causes the carbon utilisation efficiency to decrease. 4. Conclusions. Combustion of coal in a laboratory-scale fluidised bed was investigated to evaluate its combustion, characteristics. The results show that high combustion efficiencies could be achieved by choosing appropriate operating conditions. The efficiencies were between 91-95% for carbon utilisation efficiency and over 99.8% for CO combustion efficiency at a design feed rate of 1.2 kg/hr and excess air-of 30% to 90%. The effects of operating parameters on coal combustion, such as gas velocity and excess air, were discussed. An optimum fluidisation number around is recommended 6y this work. Larger fluidising gas velocity should be avoided because the reduction in residence time will Permit volatiles and unburnt particles to escape before complete combustion is achieved. For co-combustion purposes, coal could be used as an auxiliary fuel to obtain and sustain combustion conditions.

8 References 1. Anthony, E.J. "Fluidized Bed Combustion of Alternative Solid Fuels; Status, Successes and Problems of the Technology." Progress in Energy and Combustion Science. 21 (1995): Artos, V., et al. "Fluidized bed combustion of high ash spanish coals." Clean Energy for the World.- Proceedings of the Ilth International Conference on Fluidized Bed Combustio, Montreal, Canada, April 21-24, Baeyens, J. and Geldart, D. "Fluidized Bed Incienaration - A Design Approach for Complete Combustion of Hydrocarbons." Fluidization: Proceeding of the 2nd Engineering Foundation Conference, Trinity College, Cambridge, England, 2-6 April Gibbs, B.M. and Hedley, A.B. "Combustion of Large Coal Particles in a Fluidised Bed." Fluidization: Proceedings of the 2nd Egineering Foundation Conference, Trinity College, Cambridge, England, 2-6 April, McGowin, C.R. and Howe, W.C. "Alternative Fuel Cofiring in Fluidized Bed Boilers." American Society of Mechanical Engineers (ASME), Proceedings of the 1994 Industrial Power Conference. PWR-24 (1994): Saxena, S.C. and Jotshi, C.K. "Fluidized Bed Incineration of Waste Materials." Progress in Energy and Combustion Science. 20 (1994): Saxena, S.C., et al. "Coal combustion studies in a fluidized-bed test facility." Energy. 17, 6 (1992): Wiley, S.R. "Incinerate your hydrocarbon waste." Hydrocarbon Processing. 66 (1987): 51.

Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor

Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor 2011 International Conference on Biology, Environment and Chemistry IPCBEE vol.24 (2011) (2011)IACSIT Press, Singapoore Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor

More information

Combustion Characteristics of Sawdust in a Bubbling Fluidized Bed

Combustion Characteristics of Sawdust in a Bubbling Fluidized Bed 2011 International Conference on Chemistry and Chemical Process IPCBEE vol.10 (2011) (2011) IACSIT Press, Singapore Combustion Characteristics of Sawdust in a Bubbling Fluidized Bed Srinath Suranani 1+,

More information

Effects on ash formation of coal particle properties during fluidized bed combustion. Wang Qinhui

Effects on ash formation of coal particle properties during fluidized bed combustion. Wang Qinhui Effects on ash formation of coal particle properties during fluidized bed combustion Wang Qinhui State Lab of Clean Energy Utilization Institute for Thermal Power Engineering, Zhejiang University, Hangzhou,

More information

Fuel Particle Size Effect on Performance of Fluidized Bed Combustor Firing Ground Nutshells

Fuel Particle Size Effect on Performance of Fluidized Bed Combustor Firing Ground Nutshells Fuel Particle Size Effect on Performance of Fluidized Bed Combustor Firing Ground Nutshells Srinath Suranani and Venkat Reddy Goli Abstract Biomass fuels come from many varieties of sources resulting in

More information

PARTICLE SIZE DISTRIBUTION OF PRIMARY ASH OF DIFFERENT FOSSIL AND ALTERNATIVE SOLID FUELS

PARTICLE SIZE DISTRIBUTION OF PRIMARY ASH OF DIFFERENT FOSSIL AND ALTERNATIVE SOLID FUELS PARTICLE SIZE DISTRIBUTION OF PRIMARY ASH OF DIFFERENT FOSSIL AND ALTERNATIVE SOLID FUELS 1 A. Cammarota, 1 R. Chirone, 2 P. Salatino, 2 M. Urciuolo 1 Istituto di Ricerche sulla Combustione - C.N.R., Naples

More information

Improved Performance in Fluidised Bed Combustion by the Use of Manganese Ore as Active Bed Material

Improved Performance in Fluidised Bed Combustion by the Use of Manganese Ore as Active Bed Material Improved Performance in Fluidised Bed Combustion by the Use of Manganese Ore as Active Bed Material Abstract Malin Källén*, Magnus Rydén, Fredrik Lind Department of Energy and Environment Chalmers University

More information

EXPERIENCE WITH ATMOSPHERIC FLUIDIZED BED GASIFICATION OF SWITCHGRASS. Jerod Smeenk and Robert C. Brown

EXPERIENCE WITH ATMOSPHERIC FLUIDIZED BED GASIFICATION OF SWITCHGRASS. Jerod Smeenk and Robert C. Brown EXPERIENCE WITH ATMOSPHERIC FLUIDIZED BED GASIFICATION OF SWITCHGRASS Jerod Smeenk and Robert C. Brown Center for Coal and the Environment Iowa State University 286 Metals Development Building Ames, IA

More information

A Two-Stage Fluidized Bed Combustion Process for High PVC Solid Waste with HCl Recovery

A Two-Stage Fluidized Bed Combustion Process for High PVC Solid Waste with HCl Recovery A Two-Stage Fluidized Bed Combustion Process for High PVC Solid Waste with HCl Recovery Loay Saeed & Ron Zevenhoven Helsinki University of Technology Energy Engineering & Environmental Protection Laboratory

More information

Biofuels GS 2 Measuring Course Part II, DTU, Feb 2 6, 2009 Experiments in the entrained flow reactor

Biofuels GS 2 Measuring Course Part II, DTU, Feb 2 6, 2009 Experiments in the entrained flow reactor Biofuels GS 2 Measuring Course Part II, DTU, Feb 2 6, 2009 Experiments in the entrained flow reactor Frida Claesson (ÅA) Johanna Olsson (CTU) Kavitha Pathmanathan (NTNU) Samira Telschow (DTU) Liang Wang

More information

Fluidised bed gasification of high-ash South African coals: An experimental and modelling study

Fluidised bed gasification of high-ash South African coals: An experimental and modelling study Fluidised bed gasification of high-ash South African coals: An experimental and modelling study A.D. Engelbrecht, B.C. North, B.O. Oboirien, R.C. Everson and H.W.P.J. Neomagus MAY 2012 www.csir.co.za CSIR

More information

Chapter 2.6: FBC Boilers

Chapter 2.6: FBC Boilers Part-I: Objective type questions and answers Chapter 2.6: FBC Boilers 1. In FBC boilers fluidization depends largely on --------- a) Particle size b) Air velocity c) Both (a) and (b) d) Neither (a) nor

More information

Biomass gasification plant and syngas clean-up system

Biomass gasification plant and syngas clean-up system Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 240 245 The 7 th International Conference on Applied Energy ICAE2015 Biomass gasification plant and syngas clean-up system

More information

CO 2 capture using lime as sorbent in a carbonation/calcination cycle

CO 2 capture using lime as sorbent in a carbonation/calcination cycle capture using lime as sorbent in a carbonation/calcination cycle Adina Bosoaga 1 and John Oakey Energy Technology Centre, Cranfield University, Cranfield, MK43 0AL, UK 1 Corresponding author: a.bosoaga@cranfield.ac.uk

More information

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Akira Nakamura*, Toshihiko Iwasaki**, Takashi Noto*, Hisanao Hashimoto***, Nobuyuki Sugiyama**** and Masahiro Hattori***** *

More information

Experimental Study on Combustion Characteristics of Unused Biomasses in Compact Combustor

Experimental Study on Combustion Characteristics of Unused Biomasses in Compact Combustor Journal of Energy and Power Engineering 12 (2018) 211-221 doi:10.17265/1934-8975 2018.04.007 D DAVID PUBLISHING Experimental Study on Combustion Characteristics of Unused Biomasses in Compact Combustor

More information

12th International Conference on Fluidized Bed Technology

12th International Conference on Fluidized Bed Technology 12th International Conference on Fluidized Bed Technology PRESSURIZED FLASH DRYING CHARATERISTICS USING SUB- BITUMINOUS COALS FOR CIRCULATING FLUIDIZED BED GASIFIER See Hoon Lee 1*, In Seop Gwak 1 1 Department

More information

Experimental Investigation of Combustible Gases from Primary Combustion Chamber of a High Temperature Air Combustion Incinerator

Experimental Investigation of Combustible Gases from Primary Combustion Chamber of a High Temperature Air Combustion Incinerator 18 th National Conference of Mechanical Engineering Network of Thailand October 18-, 4, KHON KAN, THAILAND Experimental Investigation of Combustible Gases from Primary Combustion Chamber of a High Temperature

More information

ATTRITION OF LIGNITE CHAR DURING FLUIDIZED BED GASIFICATION: EXPERIMENTAL AND MODELING STUDIES. Paola Ammendola and Fabrizio Scala

ATTRITION OF LIGNITE CHAR DURING FLUIDIZED BED GASIFICATION: EXPERIMENTAL AND MODELING STUDIES. Paola Ammendola and Fabrizio Scala ATTRITION OF LIGNITE CHAR DURING FLUIDIZED BED GASIFICATION: EXPERIMENTAL AND MODELING STUDIES Paola Ammendola and Fabrizio Scala Introduction The The urgent need need to to capture and and sequester CO

More information

Services to Technology Providers

Services to Technology Providers Services to Technology Providers Training and Capacity building activities with HP boiler manufacturers Session 3: firing systems Trainer: Frans Baltussen Date: first half 2015 Overview combustion technology

More information

Effect of Bed Temperature, Fuel Density and Particle Size on Hydrodynamic Parameters of 10 MW Fluidized Bed Combustion Power Plant Using Riser Waste

Effect of Bed Temperature, Fuel Density and Particle Size on Hydrodynamic Parameters of 10 MW Fluidized Bed Combustion Power Plant Using Riser Waste Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-4-2011 Effect of

More information

Vinasse a Potential Biomass Cofiring in a Fluidised Bed

Vinasse a Potential Biomass Cofiring in a Fluidised Bed Vinasse a Potential Biomass Cofiring in a Fluidised Bed M. Akram 1, CK. Tan 2, SM. Thai 2, R. Garwood 2 1 University of Sheffield 2 University of South Wales 10 th ECCRIA conference 15 17 September 2014

More information

ScienceDirect. Oxyfuel combustion in a bubbling fluidized bed combustor

ScienceDirect. Oxyfuel combustion in a bubbling fluidized bed combustor Available online at www.sciencedirect.com ScienceDirect Energy Procedia 86 (2016 ) 116 123 The 8th Trondheim Conference on CO2 Capture, Transport and Storage Oxyfuel combustion in a bubbling fluidized

More information

THE ROLE OF FUEL VOLATILES FOR THE EMISSION OF NITROGEN OXIDES FROM FLUIDIZED BED BOILERS A COMPARISON BETWEEN DESIGNS

THE ROLE OF FUEL VOLATILES FOR THE EMISSION OF NITROGEN OXIDES FROM FLUIDIZED BED BOILERS A COMPARISON BETWEEN DESIGNS Twenty-Third Symposium (International) on Combustion/The Combustion Institute, 1990/pp. 927-933 THE ROLE OF FUEL VOLATILES FOR THE EMISSION OF NITROGEN OXIDES FROM FLUIDIZED BED BOILERS A COMPARISON BETWEEN

More information

Laboratory Notes. Heat transfer measurements in fluidized bed combustion reactor (approx. 2-3 hours laboratory exercise)

Laboratory Notes. Heat transfer measurements in fluidized bed combustion reactor (approx. 2-3 hours laboratory exercise) Laboratory Notes Heat transfer measurements in fluidized bed combustion reactor (approx. 2-3 hours laboratory exercise) By Jeevan Jayasuriya /Arturo Manrique Division of Heat and Power Technology STOCKHOLM

More information

Prediction of Gaseous Pollutants and Heavy Metals during Fluidized Bed Incineration of Dye Sludge

Prediction of Gaseous Pollutants and Heavy Metals during Fluidized Bed Incineration of Dye Sludge Korean J. Chem. Eng., 8(4), 565 (2) Prediction of Gaseous Pollutants and Heavy Metals during Fluidized Bed Incineration of Dye Sludge JeongGook Jang*, WooHyun Kim, MiRan Kim, HaiSoo Chun** and JeaKeun

More information

Sorbents Evaluation Testing Facilities. 95% removal efficiency or an emission standard of lbs/gw h by 2012, while

Sorbents Evaluation Testing Facilities. 95% removal efficiency or an emission standard of lbs/gw h by 2012, while Sorbents Evaluation Testing Facilities Several states have enacted Hg emission regulations that are more stringent than the CAMR milestones. For example, Massachusetts will require power plants to achieve

More information

Project Summary Products of Incomplete Combustion from Direct Burning Of Pentachlorophenol-treated Wood Wastes

Project Summary Products of Incomplete Combustion from Direct Burning Of Pentachlorophenol-treated Wood Wastes United States Environmental Protection National Risk Management Research Laboratory Agency Research Triangle Park, NC 27711 Research and Development EPA/600/SR-98/013 Project Summary Products of Incomplete

More information

Sugar Cane Trash Pyrolysis for Bio-oil Production in a Fluidized Bed Reactor

Sugar Cane Trash Pyrolysis for Bio-oil Production in a Fluidized Bed Reactor for Sugar Cane Trash yrolysis for Bio-oil roduction in a Fluidized Bed Reactor Wasakron Treedet 1 and Ratchaphon Suntivarakorn 2* Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen

More information

metals temperature limits.

metals temperature limits. 9:41 Page 39 Richard F. Storm, Stephen K. Storm and Sammy Tuzenew, Storm Technologies, Inc., US, consider how to conduct a comprehensive diagnostic test on a pulverised coal-fuelled boiler. T Tuning of

More information

INDUCED-DRAFT RICE HUSK GASIFIER WITH WET SCRUBBER AND JET-TYPE BURNER: DESIGN AND PERFORMANCE

INDUCED-DRAFT RICE HUSK GASIFIER WITH WET SCRUBBER AND JET-TYPE BURNER: DESIGN AND PERFORMANCE Technical Bulletin No. 41 INDUCED-DRAFT RICE HUSK GASIFIER WITH WET SCRUBBER AND JET-TYPE BURNER: DESIGN AND PERFORMANCE by Alexis T. Belonio and Ted Redelmeier Gasification of biomass is becoming of interest

More information

FLUIDIZED BED CO-GASIFICATION OF COAL AND SOLID WASTE FUELS IN AN AIR GASIFYING AGENT

FLUIDIZED BED CO-GASIFICATION OF COAL AND SOLID WASTE FUELS IN AN AIR GASIFYING AGENT International Journal of Technology (2015) 6: 931-937 ISSN 2086-9614 IJTech 2015 FLUIDIZED BED CO-GASIFICATION OF COAL AND SOLID WASTE FUELS IN AN AIR GASIFYING AGENT I Nyoman Suprapta Winaya 1*, Rukmi

More information

Environmentally Feasible Natural Gas Combustion in Fluidized Beds

Environmentally Feasible Natural Gas Combustion in Fluidized Beds 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 22 Environmentally Feasible Natural

More information

Biomass Combustion Technology

Biomass Combustion Technology Lecture-6 Biomass Combustion Technology Combustion Biomass combustion is a complex process that consists of consecutive heterogeneous and homogeneous reactions. The main process steps are drying, devolatilization,

More information

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed

Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed Steam Gasification of Low Rank Fuel Biomass, Coal, and Sludge Mixture in A Small Scale Fluidized Bed K.H. Ji 1, B.H. Song *1, Y.J. Kim 1, B.S. Kim 1, W. Yang 2, Y.T. Choi 2, S.D. Kim 3 1 Department of

More information

Combustion of Polymers in a Fluidised Bed Reactor

Combustion of Polymers in a Fluidised Bed Reactor Archivum Combustionis Vol. 30 (2010) no. 4 Combustion of Polymers in a Fluidised Bed Reactor J. Połomska *, W. Żukowski **, J. Zabagło ** * Faculty of Environmental Engineering, **Faculty of Chemical Engineering

More information

1-D dynamic modeling of oxygen fired coal combustion in 30MWth CFB boiler

1-D dynamic modeling of oxygen fired coal combustion in 30MWth CFB boiler 3rd Oxyfuel Combustion Conference Ponferrada, Spain, 9th - 13th September 2013 1-D dynamic modeling of oxygen fired coal combustion in 30MWth CFB boiler Jouni Ritvanen*, Jenö Kovacs **, Abraham Fernández

More information

Agglomeration Phenomena during the Fluidized Bed Combustion of Olive Husk

Agglomeration Phenomena during the Fluidized Bed Combustion of Olive Husk Agglomeration Phenomena during the Fluidized Bed Combustion of Olive Husk 1 F. Tartaglione, 2 A. Cammarota, 2 R. Chirone, 2 F. Scala 1 Dipartimento di Ingegneria Chimica - Università Federico II, Naples

More information

Design and Operation of Biomass Circulating Fluidized Bed Boiler with High Steam Parameter

Design and Operation of Biomass Circulating Fluidized Bed Boiler with High Steam Parameter Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-3-2011 Design and

More information

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

MODERN WOOD FIRED BOILER DESIGNS HISTORY AND TECHNOLOGY CHANGES

MODERN WOOD FIRED BOILER DESIGNS HISTORY AND TECHNOLOGY CHANGES A DB RILEY TECHNICAL PUBLICATION MODERN WOOD FIRED BOILER DESIGNS HISTORY AND TECHNOLOGY CHANGES by Kevin Toupin, Group Manager Boiler Design and Results Department DB Riley, Inc. Presented at the Second

More information

R A S C H K A. Compact -Fluidized Bed Incinerator

R A S C H K A. Compact -Fluidized Bed Incinerator R A S C H K A Compact -Fluidized Bed Incinerator Lonza Engineering Ltd Muenchensteinerstrasse 38,CH-4002 Basel, Switzerland phone: +41 61 316 8606 fax:+41 61 316 9606 e-mail: info.engineering@lonza.com

More information

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT JEROD SMEENK 1, GEORGE STEINFELD 2, ROBERT C. BROWN 1, ERIC SIMPKINS 2, AND M. ROBERT DAWSON 1 1 Center for Coal and the Environment

More information

MATHEMATICAL MODELING OF DRYING KINETICS OF CORN IN ELECTRON FIRED FLUIDIZED BED DRYER

MATHEMATICAL MODELING OF DRYING KINETICS OF CORN IN ELECTRON FIRED FLUIDIZED BED DRYER International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 6, June 2017, pp. 51 58, Article ID: IJMET_08_06_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=6

More information

Hamm MW Pyrolysis Plant. Integrated Pyrolysis into Power Plant Plant capacity 100,000 t/a Pre-processed Waste Materials

Hamm MW Pyrolysis Plant. Integrated Pyrolysis into Power Plant Plant capacity 100,000 t/a Pre-processed Waste Materials Integrated Pyrolysis into Power Plant Plant capacity 100,000 t/a Pre-processed Waste Materials Schematic Flow sheet Integrated Pyrolysis for Power Plants Pyrolysis of high calorific solid recovered fuels

More information

Pressure Fluctuation Properties in Combustion of Mixture of Anthracite and Bituminous Coal in a Fluidized Bed

Pressure Fluctuation Properties in Combustion of Mixture of Anthracite and Bituminous Coal in a Fluidized Bed Korean J. Chem. Eng., 20(1), 138-144 (2003) Pressure Fluctuation Properties in Combustion of Mixture of Anthracite and Bituminous Coal in a Fluidized Bed Hyun Tae Jang, Sang Bum Kim*,, Wang Seog Cha**,

More information

OXYFUEL COMBUSTION USING CFBC RECENT CANADIAN WORK

OXYFUEL COMBUSTION USING CFBC RECENT CANADIAN WORK OXYFUEL COMBUSTION USING CFBC RECENT CANADIAN WORK L. Jia, Y. Tan and E.J. Anthony CANMET Energy Technology Centre-Ottawa (CETC-O), Natural Resources Canada, 1 Haanel Drive, Ottawa, Canada K1A 1M1 ABSTRACT

More information

Wet granulation of blast furnace slag has been

Wet granulation of blast furnace slag has been INBA slag granulation system with environmental control of water and emissions As the demand for granulated BF slag continues to grow and environmental constraints become more severe, improvements to slag

More information

New Power Plant Concept for Moist Fuels, IVOSDIG

New Power Plant Concept for Moist Fuels, IVOSDIG ES THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 91-GT-293 345 E. 47 St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings

More information

An Experimental Approached to Investigate Keys Operating Parameters for Thermal Destruction of Major Components of Simulated Infectious Waste

An Experimental Approached to Investigate Keys Operating Parameters for Thermal Destruction of Major Components of Simulated Infectious Waste An Experimental Approached to Investigate Keys Operating Parameters for Thermal Destruction of Major Components of Simulated Infectious Waste Paisan Letsalaluk 1, Woranuch Jangsawang 1 and Somrat Kerdsuwan,*

More information

Technology Specification

Technology Specification Technology Specification GENERAL DESCRIPTION OF PROCESS FEEDSTOCK CORE TECHNOLOGY COMPONENTS DESCRIPTION OF THE MODULES Introduction KENTEC Energy is a technology company supplying and developing gasification

More information

A new biomass based boiler concept for small district heating systems

A new biomass based boiler concept for small district heating systems Presented at 21 Joint International Combustion Symposium, Kauai i, USA A new biomass based boiler concept for small district heating systems J.Lundgren @, R.Hermansson, J.Dahl Division of Energy Engineering,

More information

Impact of Selective Oxygen Injection on NO, LOI, and Flame Luminosity in a Fine Particle, Swirl-Stabilized Wood Flame

Impact of Selective Oxygen Injection on NO, LOI, and Flame Luminosity in a Fine Particle, Swirl-Stabilized Wood Flame Paper # 7CO-63 Topic: Coal and Biomass Combustion and Gasification 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

First Results of an Oxyfuel Combustion Fluidized Bed

First Results of an Oxyfuel Combustion Fluidized Bed First Results of an Oxyfuel Combustion Fluidized Bed Luis M Romeo (luismi@unizar.es), Isabel Guedea, Irene Bolea, Ana Gonzalez, Carlos Lupiañez, Javier Pallares, Enrique Teruel, Luis I. Diez 1st OXYFUEL

More information

CHAPTER 3 BENEFITS OF BETTER BURNING

CHAPTER 3 BENEFITS OF BETTER BURNING Combustion Fundamentals CHAPTER 3 BENEFITS OF BETTER BURNING As every stationary engineer knows, conventional fuels are made up of two elements: carbon and hydrogen, which combine with oxygen, in a process

More information

HELIOSOLIDS FLUIDIZED BED INCINERATOR

HELIOSOLIDS FLUIDIZED BED INCINERATOR HELIOSOLIDS FLUIDIZED BED INCINERATOR THE POWER OF SLUDGE THE POWER OF SLUDGE Tons of sludge are leaving wastewater treatment plants each day. Spreading the sludge on agricultural land or in a sanitary

More information

Effect of co-combustion of chicken litter and coal on emissions in a laboratory-scale fluidized bed combustor

Effect of co-combustion of chicken litter and coal on emissions in a laboratory-scale fluidized bed combustor FUEL PROCESSING TECHNOLOGY 89 (2008) 7 12 www.elsevier.com/locate/fuproc Effect of co-combustion of chicken litter and coal on emissions in a laboratory-scale fluidized bed combustor Songgeng Li, Andy

More information

Internal Recirculation Circulating Fluidized-Bed Boilers

Internal Recirculation Circulating Fluidized-Bed Boilers Internal Recirculation Circulating Fluidized-Bed Boilers High Availability Low Maintenance Proven Flexible Reliable Economical ENERGY ENVIRONMENTAL B&W IR-CFB Boiler Steam Drum Feedwater Reheater Downcomer

More information

IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND

IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND IMPACT OF OPERATING CONDITIONS ON SO 2 CAPTURE IN A SUPERCRITICAL CFB BOILER IN POLAND Artur Blaszczuk, Rafał Kobylecki, Wojciech Nowak, Marcin Klajny, Szymon Jagodzik 18 th Symposium on Fluidization and

More information

AN INTRODUCTION TO FLUIDIZATION BY MILAN CARSKY UNIVERSITY OF KWAZULU-NATAL

AN INTRODUCTION TO FLUIDIZATION BY MILAN CARSKY UNIVERSITY OF KWAZULU-NATAL AN INTRODUCTION TO FLUIDIZATION BY MILAN CARSKY UNIVERSITY OF KWAZULU-NATAL AN INTRODUCTION TO FLUIDIZATION SUMMARY Principle of fluidization (gas-solid fluidization, liquid-solid fluidization, properties

More information

Combustion of lignin-rich residues with coal in a pilot-scale bubbling fluidized bed reactor

Combustion of lignin-rich residues with coal in a pilot-scale bubbling fluidized bed reactor Engineering Conferences International ECI Digital Archives Fluidization XV Proceedings 5-26-216 Combustion of lignin-rich residues with coal in a pilot-scale bubbling fluidized bed reactor Roberto Solimene

More information

AN INDIRECT-FIRED ROTARY SUGARCANE BAGASSE TORREFYER: DESIGN AND PERFORMANCE

AN INDIRECT-FIRED ROTARY SUGARCANE BAGASSE TORREFYER: DESIGN AND PERFORMANCE Technical Bulletin No. 40 AN INDIRECT-FIRED ROTARY SUGARCANE BAGASSE TORREFYER: DESIGN AND PERFORMANCE by Alexis Belonio, Isidore Alcantara and Daniel Belonio Sugar mills basically require a lot of power

More information

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00.

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00. C10J PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES (synthesis gas from liquid or gaseous hydrocarbons C01B; underground gasification

More information

Effect of air flowrate on particle velocity profile in a circulating fluidized bed

Effect of air flowrate on particle velocity profile in a circulating fluidized bed Korean J. Chem. Eng., 24(5), 851-855 (2007) SHORT COMMUNICATION Effect of air flowrate on particle velocity profile in a circulating fluidized bed Sansanee Kumthanasup and Suchaya Nitivattananon Fuel Research

More information

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture 5 th IEA-GHG Network Meeting September 2013 Robert Symonds*, Dennis Lu, and Scott Champagne CanmetENERGY

More information

Gas Measurements and Characterization of Wood Combustion in Two Moving Grate Boilers

Gas Measurements and Characterization of Wood Combustion in Two Moving Grate Boilers Gas Measurements and Characterization of Wood Combustion in Two Moving Grate Boilers Narges Razmjoo, Hamid Sefidari, Michael Strand Departement of Bioenergy Technology, Linnaeus University, Växjö, Sweden

More information

ScienceDirect. Experiences from oxy-fuel combustion of bituminous coal in a 150 kw th circulating fluidized bed pilot facility

ScienceDirect. Experiences from oxy-fuel combustion of bituminous coal in a 150 kw th circulating fluidized bed pilot facility Available online at www.sciencedirect.com ScienceDirect Energy Procedia 51 (214 ) 24 3 7th Trondheim CCS Conference, TCCS-7, June 5-6 213, Trondheim, Norway Experiences from oxy-fuel combustion of bituminous

More information

CZESTOCHOWA UNIVERSITY OF TECHNOLOGY

CZESTOCHOWA UNIVERSITY OF TECHNOLOGY CZESTOCHOWA UNIVERSITY OF TECHNOLOGY Faculty of Environmental Engineering and Biotechnology Institute of Advanced Energy Technologies 3rd Oxyfuel Combustion Conference September 9-13 th 2013 Ponferrada,

More information

Design and commissioning of a 1MW th pilot-scale oxy-fuel circulating fluidized bed with high oxygen concentration

Design and commissioning of a 1MW th pilot-scale oxy-fuel circulating fluidized bed with high oxygen concentration Design and commissioning of a 1MW th pilot-scale oxy-fuel circulating fluidized bed with high oxygen concentration LI Haoyu, LI Shiyuan*, REN Qiangqiang,Li Wei, LIU Jingzhang Institute of Engineering Thermophysics

More information

Combustion Characteristics of Unused Bamboo Using New Compact Combustor

Combustion Characteristics of Unused Bamboo Using New Compact Combustor Combustion Characteristics of Unused Bamboo Using New Compact Combustor Chong Liu *1, Shuichi Torii 2 Department of Mechanical Engineering, Kumamoto UniversityKurokami, 2-39-1, Kumamoto, 860-8555, Japan.

More information

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation Fakultät Maschinenwesen Institut für Energietechnik, Professur für Verbrennung, Wärme- & Stoffübertragung ADECOS II Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 S. Grahl, A. Hiller,

More information

Investigating the Energy Potential from Co-firing Coal with Municipal Solid Waste

Investigating the Energy Potential from Co-firing Coal with Municipal Solid Waste UNIVERSITY OF MAURITIUS RESEARCH JOURNAL Volume 17 2011 University of Mauritius, Réduit, Mauritius Research Week 2009/2010 Investigating the Energy Potential from Co-firing Coal with Municipal Solid Waste

More information

Performance of CLOU process in the combustion of different types of coal with CO 2 capture

Performance of CLOU process in the combustion of different types of coal with CO 2 capture Performance of CLOU process in the combustion of different types of with CO capture I. Adánez-Rubio*, P. Gayán, A. Abad, L. F. de Diego, F. García-Labiano, J. Adánez Instituto de Carboquímica (ICB-CSIC),

More information

INDIRECTLY HEATED FLUIDIZED BED BIOMASS GASIFICATION USING A LATENT HEAT BALLAST

INDIRECTLY HEATED FLUIDIZED BED BIOMASS GASIFICATION USING A LATENT HEAT BALLAST INDIRECTLY HEATED FLUIDIZED BED BIOMASS GASIFICATION USING A LATENT HEAT BALLAST R. Pletka, R. Brown, and J. Smeenk Center for Coal and the Environment Iowa State University 286 Metals Development Building

More information

ACCEPTED MODERN TECHNOLOGY WOOD-FIRED BOILERS FOR POWER STATIONS SOUTHWOOD RESOURCES FORESTRY TASMANIA

ACCEPTED MODERN TECHNOLOGY WOOD-FIRED BOILERS FOR POWER STATIONS SOUTHWOOD RESOURCES FORESTRY TASMANIA ACCEPTED MODERN TECHNOLOGY IN WOOD-FIRED BOILERS FOR POWER STATIONS FOR SOUTHWOOD RESOURCES FORESTRY TASMANIA PREPARED BY JOTT ENGINEERING Thermal Power and Process Consulting Engineers UNIT 8, 796 HIGH

More information

SLUDGE GASIFICATION FOR CHP APPLICATIONS

SLUDGE GASIFICATION FOR CHP APPLICATIONS SEWAGE Applications Thermal Treatment of Sewage 15/16 September 2003, Brussels Sludge for CHP SEWAGE SLUDGE GASIFICATION FOR CHP APPLICATIONS Dr Karen Laughlin FP5 Contract No. ENK5-CT2000-00050 FP5 ENK5-CT2000-00050

More information

Experimental Study on Combustion of Biomass in a Boiler with Gasification

Experimental Study on Combustion of Biomass in a Boiler with Gasification Experimental Study on Combustion of Biomass in a Boiler with Gasification TĂNASE PANAIT, GHEORGHE CIOCEA, ION ION Thermal Systems and Environmental Engineering Department Dunarea de Jos University of Galati

More information

Self-Aspirating Radiant Tube Burner

Self-Aspirating Radiant Tube Burner Self-Aspirating Radiant Tube Burner Chanon Chuenchit and Sumrerng Jugjai * Combustion and Engine Research Laboratory (CERL), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut s

More information

Asian Journal on Energy and Environment

Asian Journal on Energy and Environment As. J. Energy Env. 2005, 6(03), 145-153 Asian Journal on Energy and Environment ISSN 1513-4121 Available online at www.asian-energy-journal.info Investigation of Lignite and Firewood Co-combustion in a

More information

FLUIDIZED BEDS CHEMICAL REACTION ENGINEERING LABORATORY

FLUIDIZED BEDS CHEMICAL REACTION ENGINEERING LABORATORY INTRODUCTION TO FLUIDIZED BEDS Outline/Contents Introduction. Fluidization Flow Regimes. Overall Gas (Voidage) and solids Hold-up. Radial and Axial Solids Hold-Up Profiles. Radial and Axial voidage distribution.

More information

THE ROLE OF CATALYST IN FCC TROUBLESHOOTING

THE ROLE OF CATALYST IN FCC TROUBLESHOOTING FCC MANUAL 5.4 THE ROLE OF CATALYST IN FCC TROUBLESHOOTING SUMMARY Fluidized Catalytic Cracking is a complex process where problems are not easily defined or isolated. This paper presents some background

More information

Effect of fuel particle size on the process of fluidization in a fluidized bed combustion boiler

Effect of fuel particle size on the process of fluidization in a fluidized bed combustion boiler ISSN 2395-1621 Effect of fuel particle size on the process of fluidization in a fluidized bed combustion boiler #1 S. G. Shukre, #2 Dr. V. M. Kale 1 satyajit_shukre@yahoomail.com 2 vinayak.kale@indiraicem.ac.in

More information

Co-firing of Torrefied Biomass and Coal in Oxy FBC with Ilmenite Bed Material

Co-firing of Torrefied Biomass and Coal in Oxy FBC with Ilmenite Bed Material Co-firing of Torrefied Biomass and Coal in Oxy FBC with Ilmenite Bed Material October 24, 2017 Robin Hughes, Robert Symonds, Dennis Lu, Margarita de las Obras Loscertales, Scott Champagne Fluidized Bed

More information

Temperature and pressure effect on gasification process

Temperature and pressure effect on gasification process Temperature and pressure effect on gasification process MAREK BALAS, MARTIN LISY, JIRI MOSKALIK Energy institute Brno University of Technology, Faculty of mechanical engineering Technicka 2, 616 69 Brno

More information

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS. Final Technical Report

FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS. Final Technical Report DOE/FE/40811-7 FUEL LEAN BIOMASS REBURNING IN COAL-FIRED BOILERS Final Technical Report Reporting Period Start Date: July 1, 2000 Reporting Period End Date: June 30, 2002 Principal Author(s): Jeffrey J.

More information

Energy Performance Assessment of CFBC Boiler

Energy Performance Assessment of CFBC Boiler Energy Performance Assessment of CFBC Boiler Rakesh Kumar Sahu G.Ishwar Rao Kirti Maurya Abstract Steam power plant generates electricity by using fuel as input. In steam power plant boiler is a crucial

More information

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing Chapter 13 Thermal Conversion Technologies Fundamentals of Thermal Processing Thermal processing is the conversion of solid wastes into gaseous, liquid and solid conversion products with the concurrent

More information

Packed Bed Combustion: An Overview. William Hallett Dept. of Mechanical Engineering Université d Ottawa - University of Ottawa

Packed Bed Combustion: An Overview. William Hallett Dept. of Mechanical Engineering Université d Ottawa - University of Ottawa Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d Ottawa - University of Ottawa Introduction Packed Bed Combustion: fairly large particles of solid fuel on

More information

A Burning Experiment Study of an Integral Medical Waste Incinerator

A Burning Experiment Study of an Integral Medical Waste Incinerator Energy and Power Engineering, 2010, 2, 175-181 doi:10.4236/epe.2010.23026 Published Online August 2010 (http://www.scirp.org/journal/epe) A Burning Experiment Study of an Integral Medical Waste Incinerator

More information

Gasification of Australian and North Dakota Lignites in a Pressurised Fluidized Bed Gasification Process Development Unit

Gasification of Australian and North Dakota Lignites in a Pressurised Fluidized Bed Gasification Process Development Unit Gasification of Australian and North Dakota Lignites in a Pressurised Fluidized Bed Gasification Process Development Unit Sankar Bhattacharya Ian Beaupeurt Malcolm McIntosh PLANT SCHEMATIC Gas Cooler N

More information

A STAGED FLUIDIZED-BED COMBUSTION AND FILTER SYSTEM

A STAGED FLUIDIZED-BED COMBUSTION AND FILTER SYSTEM A STAGED FLUIDIZED-BED COMBUSTION AND FILTER SYSTEM Inventors: Joseph S. Mei 71 Killarney Drive Morgantown WV 260 John S. Halow 3 Park Avenue Waynesburg PA 1370 DISCLAIMER Portions of this document may

More information

Effect of operating conditions in Chemical-Looping Combustion of coal in a 500 W th unit

Effect of operating conditions in Chemical-Looping Combustion of coal in a 500 W th unit Effect of operating conditions in Chemical-Looping Combustion of coal in a 500 W th unit Ana Cuadrat, Alberto Abad*, Francisco García-Labiano, Pilar Gayán, Luis F. de Diego, Juan Adánez Instituto de Carboquímica

More information

Gas Yields from Coal Devolatilization in a Bench-Scale Fluidized Bed Reactor

Gas Yields from Coal Devolatilization in a Bench-Scale Fluidized Bed Reactor Korean J. Chem. Eng., 18(5), 770-774 (001) Gas Yields from Coal Devolatilization in a Bench-Scale Fluidized Bed Reactor Byung-Ho Song, Yong-Won Jang, Sang-Done Kim* and Soon-Kook Kang** Department of Chemical

More information

IMPROVEMENTS IN P.F. COAL BOILER FOR BEST HEAT RATE PERFORMANCE VOLUME 1, ISSUE 1 AUTHOR :- A. R. KULKARNI, DIRECTOR PUBLISHED DATE :- 19/09/2009

IMPROVEMENTS IN P.F. COAL BOILER FOR BEST HEAT RATE PERFORMANCE VOLUME 1, ISSUE 1 AUTHOR :- A. R. KULKARNI, DIRECTOR PUBLISHED DATE :- 19/09/2009 VOLUME 1, ISSUE 1 AUTHOR :- A. R. KULKARNI, DIRECTOR PUBLISHED DATE :- 19/09/2009 Now with regulatory regime in India and also with many players entering the Power Generation field, it has become utmost

More information

1) ABSORPTION The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control

1) ABSORPTION The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control 1) ABSORPTION The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control of gaseous pollutant emissions. Absorption is a process

More information

BFB (bubbling fluidized bed) Power Plants (CHP) Fuel: RDF or Biomass CHP

BFB (bubbling fluidized bed) Power Plants (CHP) Fuel: RDF or Biomass CHP BFB (bubbling fluidized bed) Power Plants (CHP) Fuel: RDF or Biomass CHP BFB power plant project (CHP) BFB plant is a ready-made, functional power plant. The project is handled from design through to commissioning

More information

Power Generation from Solid Fuels 4) Springer

Power Generation from Solid Fuels 4) Springer Hartmut Spliethoff Power Generation from Solid Fuels 4) Springer Contents 1 Motivation... 1 1.1 Primary Energy Consumption and CO2 Emissions... 1 1.1.1 Development of Primary Energy Consumption in the

More information

C R. ombustion esources, Inc. Evaluation of Stratean Inc. Gasifier System. 18 March Consultants in Fuels, Combustion, and the Environment

C R. ombustion esources, Inc. Evaluation of Stratean Inc. Gasifier System. 18 March Consultants in Fuels, Combustion, and the Environment C R ombustion esources, Inc. 1453 W. 820 N. Provo, Utah 84601 Consultants in Fuels, Combustion, and the Environment 18 March 2016 Submitted To: Stratean Inc. 1436 Legend Hills Drive Clearfield, UT 84015

More information

ATTRITION OF BED MATERIALS AND FUEL PELLETS FOR FLUIDIZED BED GASIFICATION APPLICATION

ATTRITION OF BED MATERIALS AND FUEL PELLETS FOR FLUIDIZED BED GASIFICATION APPLICATION Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 ATTRITION OF BED MATERIALS AND FUEL PELLETS

More information

Making the most of South Africa s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

Making the most of South Africa s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers Making the most of South Africa s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers AD Engelbrecht (aengelbr@csir.co.za), BC North, BO Oboirien CSIR Materials

More information

Fluidized Bed Combustion of MSW

Fluidized Bed Combustion of MSW Fluidized Bed Combustion of MSW Yong CHI, Ph.D Email: chiyong@zju.edu.cn Professor, College of Energy Engineering Zhejiang University, Hangzhou, China Outline 1 2 3 4 Combustion reactors & fluidized bed

More information