The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage

Size: px
Start display at page:

Download "The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage"

Transcription

1 The Nutrient Cycle Atmospheric pool Precipitation Canopy, wood, and root Litter fall SOIL 2 Soil and rock minerals cations Groundwater level Organic material 5 Soil solution storage 4 4 Channel BEDROCK 1 Cation exchange 4 Leaching 2 H + and exudates 5 Acids, chelates, nutrients 3 Nutrients

2 Nutrients Distribution in Soils Source: Jobbagy, EG, and RB Jackson The distribution of soil nutrients with depth: Global patterns and the inprint of plants. Biogeochemistry 53:

3 Litter Production Above ground production is easy to measure. Below ground production is very difficult to assess because of the: Short life and rapid root turnover (duration of root growth). Most roots live less than one year. Difficulty in quantifying rates of root exudation.

4 Nutrient Cycling in Soils and Vegetation Biome Total biomass Mineral elements in biomass Net primary production Net mineral uptake Total litter fall Minerals returned in litter (kg ha -1 ) (kg ha -1 y -1 ) Tropical rainforest 517,000 11,081 34,200 2,029 27,500 1,540 (76%) Forest (Central Europe) 370,000 4,196 13, , (71%) Northern taiga 260, , , (85%) Dry savanna 26, , , (98%) Artic tundra 5, , , (97%) Source: Chorley, RJ, SA Schumm, DE Sugden Geomorphology. Methuen

5 Vertical Distribution of Nutrients Source: Jobbagy, EG, and RB Jackson The distribution of soil nutrients with depth: Global patterns and the inprint of plants. Biogeochemistry 53:

6 Figure Distribution of organic carbon in four soil profiles, two well drained and two poorly drained. Poor drainage results in higher organic carbon content, particularly in the surface horizon.

7 Soil Organic Matter in Soil Amount in mineral soil (w/w) range in A horizon % for North Jersey % for South Jersey % subsoils have less: % Organic Soils > 20%

8 Classification of SOM Soil Organic Matter Living Organisms: BIOMASS Indentifiable dead tissue: DETRITUS Non-living, Non-tissue: HUMUS Humic Substances NonHumic substances

9

10 Humus Complex organic substances in soil not identifiable as organic tissue Amorphous, colloidal non-humic compounds identifiable biomolecules humic compounds product of decomposition + synthesis (polymerization) relatively stable, resistant to further breakdown

11 A Model of SOM Source: modified from

12 Functional Groups in SOM Carboxyl groups: -COOH Phenolic groups: -ArOH Proteinaceous material Alcoholic groups: -ROH Saccharides (sugars) Water Source: modified from

13 Humic Substances Random, complex polymers resistant to breakdown Resulting composition C 50-60% N 5% C:N ratio=10:1 P % S 0.5% Solubility classification Humin, Humic Acids, and Fulvic Acids

14 From Schlesinger, W.H Biogeochemistry. Academic Press.

15 Humin and Fulvic and Humic Acids Component Residence time, y C,% N, % Molecular mass Climate Fulvic Acid (FA) 1,800-4, low Cool, temperate Humic Acid (HA) 1,900 5, high warm Humin 2,900 3,500 > high The long residence time of FA and HA contributes to the memory of a soil. Fulvic acids are soluble in water and are transported to deeper horizons along plant roots. Humic acids form strong complexes with Al, Ca, Mg, and Fe. Chatsworth, NJ

16 Simplified Carbon Cycle Photosynthesis: Numbers represent Pg (10 15 g) of carbon stored in the respective pools. Plants + CO 2 = Organic Molecules + O 2 Respiration: Organic Molecules + O 2 = Humus + CO 2

17 Estimates of Active N Pools Medium Air Form Pg N N 2 N 2 O 3,900, Land Plant Animals SOM ,500 Sea Plant Animals Solution or suspension Dissolved N ,200 22,000

18 The Nitrogen Cycle Figure 12.1

19 Carbon and Nitrogen Balances Soil C and N storage (pools) are in general balanced. Exceptions to this are: Peat bogs (accumulation of carbon). Northern peatlands contain ~30% of the global storage of SOC. Extreme deserts (accumulation of nitrogen) The result is that the amounts change rapidly over limited spans of time and then stabilize (steady state) at levels characteristic of climate, topography, etc.

20

21 Soil Carbon vs. Climate Soil C increases with Mean Annual Precipitation (MAP) and decreases with Mean Annual Temperature (MAT). Pattern is due to balance of inputs and losses as influenced by climate. Source: Amundson, R The Carbon Budget of Soils. Annu. Rev. Earth Planet. Sci :535 62

22

23 US Carbon Budget: Land Use Change Annual net sources and sinks of carbon resulting from different types of land use in the United States. Source: Houghton, RA, JL Hackler, and KT Lawrence The U.S. Carbon Budget: Contributions from Land-Use change. Science 285:

24 In the News: April 2008

25 Carbon Losses Carbon was lost from soils across England and Wales over the period at a mean rate of 0.6% yr -1 (relative to the existing soil carbon content), reaching 2% yr -1 in soils with a carbon content greater than 10%. Source: Bellamy, P. H., P. J. Loveland, R. I. Bradley, R. M. Lark, and G. J. D. Kirk Carbon losses from all soils across England and Wales Nature 437: doi: /nature04038.

26 Carbon Content of Different Soil Groups Soil Group Temperate Forest Temperate Grassland Tropical Forest Tropical Grassland Shallow/saline/arid Wetlands/paddy Histosols Andosols TOTAL C mass virgin (Pg C) C mass cultivated (Pg C) Historic loss ( ) Pg C

27 Anthropogenic Alteration to the N Cycle The main source of alteration to the N cycle derives from the application of fertilizers, which shows the most dramatic rate of increase over the last 40 years. Source: Vitousek, PM et al Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7:

28 Trends in Fertilizer Use Source: Tilman et al., Forecasting agriculturally driven global environmental change. Science 292:

29 Consequences of N Cycle Alteration According to Vitousek et al. (1996) human alteration of the N cycle resulted in: Approximately doubled the rate of input to the terrestrial N cycle, Increased the concentration of N x O gases in the atmosphere, Contributed to the acidification of soils, stream and lakes Increased the quantity of organic C.

30 What is the Effect of Increased N in the Ecosystems? Terrestrial ecosystems: Accumulation in degraded soils. Influences the accumulation (storage) of carbon. Loss in biodiversity In N-saturated systems, N is lost to groundwater (problem in southern NJ), streams, estuaries (eutrophication) and to the atmosphere.

31 Nitrogen Input/Output Relationship in Large Watersheds

32 Organic Carbon in Urban Soils B A A. In the presence of non-native earthworms and higher temperatures, the layer of litter (O horizon) is thinner in urban forest soils, but the amount of C in the soil is greater than in suburban/rural forest soils. Without earthworms the O horizon in urban forest soil is thicker than in suburban/rural soils (lower quality litter in urban stands). B. Well maintained laws (low density residential and institutional land) contained SOC densities similar to forest soils. In the city of Baltimore, Organic matter content in urban soils was negatively correlated with bulk density. Caution: these observations should not be generalized before other similar studies in cities located in different climates. Source: Pouyat, R, P Groffman, I Yesilonisc, and L Hernandez Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution: S107-S118.

33 Decomposition Decomposition and mineralization reactions are microbial enzymatic oxidation and reduction reactions. Enzymes are catalyst that aid decomposition or building of organic material. During decomposition the material is broken down into their organic constituents and finally into CO 2 and H 2 O. Decomposition processes can take place in aerobic or anaerobic conditions.

34 Rate of Decomposition of Organic Materials Organic compound Sugar, starches and single proteins Hemicellulose Rate of decomposition Rapid Cellulose Fats, waxes Lignins and phenolic compounds Slow

35 An Example A mixture of residues from Pinus nigra, P. sylvestry, and Quercus robur % of total %age lost by decomposition by Original litter 1 st year 2 nd year 5 th year 10 th year Sugars Cellulose Hemicellulose Lignins Waxes Phenols

36 Decomposition in Aerobic Soils In the presence of oxygen, the general reaction is: Organic C + O 2 CO 2 + H 2 O + energy First, the cell constituents (aminoacids, proteins, lipids, etc) are released. Then decomposition of the most resistant material occurs in stages. Final products: NH 4+, SO 2-4, NO 3-, and H 2 0.

37 Decomposition in Anaerobic Soils Without oxygen, decomposition proceeds very slowly. Under anaerobic conditions organic matter tends to accumulate. The final products are a variety of partially oxidized compounds: organic acids, alcohol, and methane gas.

38 Sequence of Redox Reactions

39 Factors Controlling Decomposition and Mineralization Environmental conditions promoting mineralization and decompositions are: Temperature: 25-35º C is optimum. Water content: extreme (dry and waterlogged) conditions reduce plant growth and microbial activity (~60% of porosity filled with water is optimum). Soil texture: other conditions being equal, clay tend to retain more humus. Near-neutral ph.

40 The Priming Effect Fresh residue addition fuels microbial activity. Microbial population and metabolic capacity increases Native, stable soil humus is attacked. Slow pool of SOM is depleted, while total SOM has increased.

41 Figure 11.3 Diagram of the general changes that take place when fresh plant residues are added to a soil. The arrows indicate transfers of carbon among compartments. The time required for the process will depend on the nature of the residues and the soil. Most of the carbon released during the initial rapid breakdown of the residues is converted to carbon dioxide, but the smaller amounts of carbon converted into microbially synthesized compounds (biomass) and, eventually, into soil humus should not be overlooked. Although the peak of microbial activity appears to accelerate the decay of the original humus, a phenomenon known as the priming effect, the humus level is increased by the end of the process. Where vegetation, environment, and management remain stable for a long time, the soil humus content will reach an equilibrium level in which, the carbon added to the humus pool through the decomposition of plant residues each year is balanced by carbon lost through the decomposition of existing soil humus.

42 Typical C/N Ratios for Soil-Related Organic Material Young legumes 12-20:1 Young grasses 20-40:1 Manure 20-50:1 Corn stalks 60:1 Oat/wheat straw 80-90:1 Tree leaves :1 Pine needles :1 Woody material :1 A C/N ratio depends on the biochemical composition of a tissue, i.e. relative amounts of protein, cellulose, lignin, etc.

43 Figure 11.4 Changes in microbial activity, in soluble nitrogen level, and in residual C/N ratio following the addition of either high (a) or low (b) C/N ratio organic materials. Where the C/N ratio of added residues is above 25, microbes digesting the residues must supplement the nitrogen contained in the residues with soluble nitrogen from the soil. During the resulting nitrate depression period, competition between higher plants and microbes would be severe enough to cause nitrogen deficiency in the plants. Note that in both cases soluble N in the soil ultimately increases from its original level once the decomposition process has run its course. The trends shown are for soils without growing plants, which, if present, would continually remove a portion of the soluble nitrogen as soon as it is released.

44 Estimates of P Pools Medium Air Land Top 0.5 m Sea Animals Form NOT APPLICABLE Plant SOIL-inorganic P SOIL-organic P Surface (top 300m) Deep Plant (sea and land) Pg P Source: Smil, V Phosphorous in the environment: Natural flows and human interferences. Annu. Rev. Energy Environ. 25:

45 Distinctive Features of the P Cycle Much less attention than the C or N cycles: Between 1979 and 1990 >1,000 papers on the N cycle and <100 on the P cycle. P is not present in the atmosphere: Land- and water-based P cycles are disconnected. It takes longer to notice human interference. There no biotic mechanism to fix the element: Plants rely only on P present in the soil. Litter returns to the soil a large share of the assimilated nutrient.

46 Figure 13.6 The phosphorus cycle in soils. The boxes represent pools of the various forms of phosphorus in the cycle, while the arrows represent translocations and transformations among these pools. The three largest white boxes indicate the principal groups of phosphorus-containing compounds found in soils. Within each of these groups, the less soluble, less available forms tend to dominate.

47 Anthropogenic Alteration of the P Cycle (Smil, 2000) Fluxes Wind Erosion Water Erosion River Transport (particulate) River Transport (dissolved) Biomass combustion Crop Uptake Animal Waste Human Waste Organic Recycling Inorganic Fertilizers 1 Tg: Tera (10 12 ) grams Natural Preindustrial (1800) Recent (2000) Tg 1 P/y <2 <3 >3 >8 >12 >27 >6 >8 >20 >1 <2 >2 <0.1 <0.2 < >1 > <0.5 >6 15

48 Soil P Dynamics The chemical forms of P in soils: organic (20-80%): turned over rapidly (from few days to one year). inorganic: calcium-bound, and iron- or aluminum-bound compounds. The amount of P in solution is very low: Available P 0.01% soil P tot Soil P is immobile: Diffusion to plant root Root extension/mycorrhizae

49 Figure Inorganic fixation of added phosphates at various soil ph values. Average conditions are postulated, and it is not to be inferred that any particular soil would have exactly this distribution. The actual proportion of the phosphorus remaining in an available form will depend upon contact with the soil, time for reaction, and other factors. It should be kept in mind that some of the added phosphorus may be changed to an organic form in which it would be temporarily unavailable.

The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage

The Nutrient Cycle. Atmospheric pool. Organic material. 5 Soil solution storage The Nutrient Cycle Atmospheric pool Precipitation Canopy, wood, and root Litter fall SOIL 2 Soil and rock minerals cations 1 2 3 Groundwater level Organic material 5 Soil solution storage 4 4 Channel BEDROCK

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Lab today Finish Inventory work at Rest Area Site

Lab today Finish Inventory work at Rest Area Site Lubrecht Forest, Montana NREM 301 Forest Ecology & Soils Day 23 Nov 10, 2009 Nutrient Cycling (Chapters 16-18) Lab today Finish Inventory work at Rest Area Site Quiz on Thursday Also record trees & shrubs

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 24 September 2013 Reading: Schlesinger & Bernhardt, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession

TERRESTRIAL ECOLOGY PART DUEX. Biogeochemical Cycles Biomes Succession DO NOW: -GRAB PAPERS FOR TODAY -GET A HIGHLIGHTER -UPDATE HW FOR TONIGHT COMPLETE AQUATIC ECOLOGY PACKET (INCLUDES VIDEO) -BEGIN READING THROUGH THE LECTURE TERRESTRIAL ECOLOGY PART DUEX Biogeochemical

More information

Human perturbations to the global Nitrogen cycle

Human perturbations to the global Nitrogen cycle Human perturbations to the global Nitrogen cycle Lecture for Biogeochemistry and Global Change Edzo Veldkamp The pace of human caused global change has increased in modern history, but none so rapidly

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 18 September 2012 Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 23 September 2014 Reading: Schlesinger & Bernhardt, Chapter 6 2014 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger,, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

How Ecosystems Work Section 2

How Ecosystems Work Section 2 Objectives List the three stages of the carbon cycle. Describe where fossil fuels are located. Identify one way that humans are affecting the carbon cycle. List the tree stages of the nitrogen cycle. Describe

More information

Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile

Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile Soil Organic Matter (SOM) Important component in soil fertility The higher the SOM soil more fertile Advantages of OM Supply nutrients (especially N, P, S) Increase CEC Improve physical properties( soil

More information

Class XII Chapter 14 Ecosystem Biology

Class XII Chapter 14 Ecosystem Biology Question 1: Fill in the blanks. (a) Plants are called as because they fix carbon dioxide. (b) In an ecosystem dominated by trees, the pyramid (of numbers) is type. (c) In aquatic ecosystems, the limiting

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Freshwater Wetlands: Functions & Conservation. ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J.

Freshwater Wetlands: Functions & Conservation. ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J. Freshwater Wetlands: Functions & Conservation ENVIRTHON Workshop 2016 University of Massachusetts Amherst Deborah J. Henson, PhD, CPSS What is a Wetland? Legal Definition:...those areas that are inundated

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 20 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2016 Frank Sansone 1. Nitrogen cycle Soil nitrogen

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

The water cycle describes the continuous movement of water on, above and below the surface

The water cycle describes the continuous movement of water on, above and below the surface Nitrogen and carbon cycles Water cycle The water cycle describes the continuous movement of water on, above and below the surface It is driven by radiation, convection and advection. It includes solid,

More information

Section 2: The Cycling of Materials

Section 2: The Cycling of Materials Section 2: The Cycling of Materials Preview Bellringer Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Managing Soils for Improved Pasture

Managing Soils for Improved Pasture Managing Soils for Improved Pasture Jonathan Deenik, PhD Department of Tropical Plant and Soil Sciences University of Hawaii Rota Grazing and Livestock Management Workshop June 10-12, 12, 2010 1 Water

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles Biogeochemical Cycles refers to the cycling of materials between living things and the environment. Text Pages 50 51, 62 69 1 The Oxygen Cycle the movement of oxygen between the atmosphere

More information

River transport and chemistry

River transport and chemistry OCN 401 Biogeochemical Systems (10.15.15) (Schlesinger & Bernhardt: Chapter 8) River transport and chemistry Lecture Outline 1. Introduction - Overview 2. Soil Hydraulics & Stream Hydrology 3. Stream Load

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

River transport and chemistry. Lecture Outline

River transport and chemistry. Lecture Outline OCN 401 Biogeochemical Systems (10.12.17) (Schlesinger & Bernhardt: Chapter 8) River transport and chemistry Lecture Outline 1. Introduction Overview 2. Soil Hydraulics & Stream Hydrology 3. Stream Load

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

Section 2: The Cycling of Matter

Section 2: The Cycling of Matter Section 2: The Cycling of Matter Preview Classroom Catalyst Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

Ch. 4 Ecosystems. Biology I Loulousis

Ch. 4 Ecosystems. Biology I Loulousis Ch. 4 Ecosystems Biology I Loulousis Objectives 1.) Define ecology, ecosystem, and succession 2.) Identify and distinguish between the levels of organization in ecology 3.)Distinguish between primary and

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Lecture 21: Soil Redox; Hydric Soils; Wetlands

Lecture 21: Soil Redox; Hydric Soils; Wetlands Lecture 21: Soil Redox; Hydric Soils; Wetlands Soil Oxidation-Reduction (Redox) Many Elements Exist in Multiple Oxidation States in Soils Oxygen: O 2 (0), H 2 O (-2) Carbon: CH 4 (-4), Organic C (-3 to

More information

Building Soil Organic Matter: What, Why, How?

Building Soil Organic Matter: What, Why, How? FarmSmart Conference, Guelph Ontario 20 January 2018 Building Soil Organic Matter: What, Why, How? Ray Weil Biosphere-2. A parable about soil organic matter and the carbon cycle. Biospherians in Biosphere2

More information

The Enigma of Soil Nitrogen George Rehm, University of Minnesota

The Enigma of Soil Nitrogen George Rehm, University of Minnesota The Enigma of Soil Nitrogen George Rehm, University of Minnesota 1. Introduction Throughout the northern and western Corn Belt, nitrogen (N) is the most dominant nutrient in the world of plant nutrition.

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes OPEN Wetland Ecology Lectures 14-15-16 Wetland Biogeochemistry What is biogeochemical cycling? Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical,

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Biogeochemical Cycles. Nutrient cycling at its finest!

Biogeochemical Cycles. Nutrient cycling at its finest! Biogeochemical Cycles Nutrient cycling at its finest! Four Criteria for Sustainability Sustainable Ecosystems Need: Reliance on Solar Energy High Biodiversity Population Control Nutrient Cycling This note

More information

David Rowlings Institute for Sustainable Resources Queensland University of Technology

David Rowlings Institute for Sustainable Resources Queensland University of Technology How does carbon influence nitrogen availability and losses? David Rowlings Institute for Sustainable Resources Queensland University of Technology Outline Carbon cycle Global carbon cycle Soil carbon 3

More information

Cycling and Biogeochemical Transformations of N, P, S, and K

Cycling and Biogeochemical Transformations of N, P, S, and K Cycling and Biogeochemical Transformations of N, P, S, and K OCN 401 - Biogeochemical Systems 19 September 2016 Reading: Schlesinger & Bernhardt, Chapter 6 2017 Frank Sansone Outline 1. Nitrogen cycle

More information

Bio 112 Ecology: Final Practice Exam Multiple Choice

Bio 112 Ecology: Final Practice Exam Multiple Choice Final Exam Topics: 1) Basic Ecological Principles a) Biomes, ecosystems, communities and populations i) Biomes: know the major ones and where they occur ii) Ecosystem: communities and physical environment

More information

CHAPTER 14 ECOSYSTEM POINTS TO REMEMBER Startification : Vertical distribution of different species occupying different levels in an ecosystem. Primary Production : Amount of biomas or organic matter produced

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0.

Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0. 1 2 3 4 Ecosystems APES CH 3 But First: Cells Complex organic compounds called macromolecules make up the basic molecular units found in cells. Complex carbohydrates Cellulose and starch Proteins- made

More information

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 The Carbon Cycle The carbon cycle is the movement of carbon from the nonliving environment into living things and back Carbon is the

More information

FACT SHEET. Understanding Soil Microbes and Nutrient Recycling. Agriculture and Natural Resources SAG-16-10

FACT SHEET. Understanding Soil Microbes and Nutrient Recycling. Agriculture and Natural Resources SAG-16-10 FACT SHEET Agriculture and Natural Resources Understanding Soil Microbes and Nutrient Recycling James J. Hoorman Cover Crops and Water Quality Extension Educator Ohio State University Extension Rafiq Islam

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Nutrient Recycling with Manure and Cover Crops

Nutrient Recycling with Manure and Cover Crops Nutrient Recycling with Manure and Cover Crops James J. Hoorman and Dr. Rafiq Islam OSU Extension Center at Lima and OSU Piketon Center Ohio State University Extension Introduction Converting from conventional

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems are chemicals required for growth and other life processes. Nutrients move through the biosphere in Nutrients often accumulate in areas called Without interference, generally

More information

The Soil Community: Managing it. Kristy Borrelli REACCH Extension Specialist

The Soil Community: Managing it. Kristy Borrelli REACCH Extension Specialist The Soil Community: Managing it for Better Crops Kristy Borrelli REACCH Extension Specialist kborrelli@uidaho.edu Outline Soil Community Soil Quality Soil Organic Matter and Carbon Soil Organic Matter

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

BC Science Nutrient Cycles in Ecosystems

BC Science Nutrient Cycles in Ecosystems BC Science 10 2.2 Nutrient Cycles in Ecosystems Notes Nutrients are chemicals required for growth and other life processes. Nutrients move through the biosphere in nutrient cycles (n.c), or exchanges.

More information

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration?

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Warm Up What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Check your answers: What process do plants use to make sugar? photosynthesis What is chemosynthesis? Organisms

More information

Monitoring carbon budgets

Monitoring carbon budgets Monitoring carbon budgets Suess effect on 14 C/ 12 C in CO 2, from Stuiver and Quay, 1981, EPSL 53:349-362 1 Figure from IPCC 4 th assessment report 2 Biogeochemical cycling (on land) Living tissue C H

More information

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is undisturbed and that perpetuates itself for as long as

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

Biogeochemistry of Wetlands

Biogeochemistry of Wetlands Institute of Food and Agricultural Sciences (IFAS) Biogeochemistry of Wetlands Si Science and da Applications Biogeochemical Properties of Wetlands Wetland Biogeochemistry Laboratory Soil and Water Science

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

Bacteria, Fungi, Protozoa and Nematodes: Part of the Carbon to Nitrogen Transformation

Bacteria, Fungi, Protozoa and Nematodes: Part of the Carbon to Nitrogen Transformation 1 Nutrient Recycling with Manure and Cover Crops James J. Hoorman and Dr. Rafiq Islam OSU Extension Center at Lima and OSU Piketon Center Ohio State University Extension Introduction Converting from conventional

More information

Lesson 2.4 Biogeochemical Cycles

Lesson 2.4 Biogeochemical Cycles Lesson 2.4 Biogeochemical Cycles A carbon atom in your body today may have been part of a blade of grass last year, or a dinosaur bone millions of years ago. Fossilized bones in a Colorado dig. Lesson

More information

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere Slide 1 / 40 1 ll of Earth's water, land, and atmosphere within which life exists is known as a Population ommunity iome iosphere Slide 2 / 40 2 ll the plants, animals, fungi living in a pond make up a

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Soils and Global Warming. Temperature and Atmosphere. Soils and Water, Spring Lecture 9, Soils and Global Warming 1

Soils and Global Warming. Temperature and Atmosphere. Soils and Water, Spring Lecture 9, Soils and Global Warming 1 Soils and Global Warming Reading: Lecture Notes Objectives: Introduce climate change Describe measured and expected effects on soil systems Describe prediction of climate change effect on food production.

More information

Application of Waste to Soils

Application of Waste to Soils Application of Waste to Soils Definition of Waste "Wastes are materials that are not prime products (that is products produced for the market) for which the generator has no further use in terms of his/her

More information

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area Ch. 6 - Biomes Section 6.1: Defining Biomes Biome: a group of ecosystems that share similar biotic and abiotic conditions, large region characterized by a specific type of climate, plants, and animals

More information

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES

OPTION C.6 NITROGEN & PHOSPHORUS CYCLES OPTION C.6 NITROGEN & PHOSPHORUS CYCLES C.6 A Cycle INTRO https://www.thewastewaterblog.com/single-post/2017/04/29/-cycle-and-other-graphics IB BIO C.6 3 The nitrogen cycle describes the movement of nitrogen

More information

DECOMPOSITION OF ORGANIC MATTER IN SOIL

DECOMPOSITION OF ORGANIC MATTER IN SOIL DECOMPOSITION OF ORGANIC MATTER IN SOIL The rapidity with which a given organic amendment is decomposed depends on temperature, the supply of oxygen, moisture, and available minerals, the C/N ratio of

More information

BASICS OF WASTEWATER TREATMENT

BASICS OF WASTEWATER TREATMENT BASICS OF WASTEWATER TREATMENT Knowing the decisioning criteria relevant to site and drain field suitability, i.e., soil properties, can be enhanced by an understanding of some of the basics of wastewater

More information

1. Energy to do work 2. Raw material to build/repair things (nutrients)

1. Energy to do work 2. Raw material to build/repair things (nutrients) 1. Energy to do work 2. Raw material to build/repair things (nutrients) Living things are built from water Nutrients: carbon, hydrogen, nitrogen, and oxygen 3. Essential nutrients are cycled through environment

More information

NREM 301 Forest Ecology & Soils Day 25 November 17, Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class

NREM 301 Forest Ecology & Soils Day 25 November 17, Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class NREM 301 Forest Ecology & Soils Day 25 November 17, 2009 Nutrient Cycling Lab Field Quiz/Exercise Quiz Thursday in class Closed Notes - Group Activity On poster paper prepare a Labeled diagram of the N

More information

Food web Diagram that shows how food chains are linked together in a complex feeding relationship

Food web Diagram that shows how food chains are linked together in a complex feeding relationship Energy Flow Food web Diagram that shows how food chains are linked together in a complex feeding relationship The food web has a number of advantages over a food chains including: More than one producer

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move

More information

Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition

Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition Filip Oulehle, Chris Evans, Henning Meesenburg, Jakub Hruska, Pavel Kram, Jiri Kopacek, Bridget Emmett, Jack Cosby,

More information

Matter Cycles How are nutrients recycled through ecosystems?

Matter Cycles How are nutrients recycled through ecosystems? 9. In order to continually use the same area of land for agriculture, some farmers apply fertilizers to improve the level of nitrates in the soil. An alternative to this intensive use of fertilizer is

More information

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk Ecosystem Ecosystems Chapter 47 An association of organisms and their physical environment, interconnected by ongoing flow of energy and a cycling of materials Simple Ecosystem Model energy input from

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

CHEMICAL COMPOSITION OF NATURAL WATERS

CHEMICAL COMPOSITION OF NATURAL WATERS CHEMICAL COMPOSITION OF NATURAL WATERS DISSOVLED GASES Oxygen (and E h ) Why important? product of photosynthesis needed for aerobic respiration - Much of an aquatic organisms energy budget is devoted

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from?

Nutrient Cycles. & how Humans impact nutrient cycling. Accel Bio. Where do energy & nutrients come from? Nutrient Cycles & how Humans impact nutrient cycling Accel Bio Where do energy & nutrients come from? What are nutrients? What else do organisms need to survive and grow? Organisms need, Energy, water

More information

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Biology 1 of 33 2 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15

Determining the f ratio 11/16/2010. Incubate seawater in the presence of trace 15 Plankton production is supported by 2 types of nitrogen: 1) new production supported by external sources of N (e.g. NO 3 and N 2 ), 2) recycled or regenerated production, sustained by recycling of N. Assumptions:

More information

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work?

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work? Nutrient Cycles in Ecosystems Textbook pages 68 91 Section 2. 2 Summary Before You Read Like other organisms, your body relies on nutrients to stay healthy. Based on your current understanding, create

More information