In 2011 burning of fossil fuels provided 83% of mankind s energy resource while nuclear electric power provided 9%, and renewable energy 8% (1).

Size: px
Start display at page:

Download "In 2011 burning of fossil fuels provided 83% of mankind s energy resource while nuclear electric power provided 9%, and renewable energy 8% (1)."

Transcription

1 Hierarchy of Global Energy Sources and Related Risks John Bushell January 2015 Abstract This paper reviews future energy resource options required to provide mankind with the energy to sustain a growing human population demanding increasing living standards. It examines three options: 1 Assuming that anthropogenic (manmade) global warming is occurring as presently predicted by 97% of the world s climate scientists; 2 Assuming that global warming is not occurring at all but that the currently observed global warming is a short-term phenomenon; 3 Assuming that global warming is occurring and that methods of sequestering or otherwise absorbing carbon dioxide are practical and cost-effective. Present Energy Supply When the first Industrial Revolution (fossil fuels) started in England in 1750 the world s human population was 700 million. Global population is currently exceeds 7 billion and is forecast by the United Nations to reach 9 billion by In 2011 burning of fossil fuels provided 83% of mankind s energy resource while nuclear electric power provided 9%, and renewable energy 8% (1). To support this population mankind presently needs primary energy and agricultural activities that produce 65% and 35% respectively of greenhouse gas (GHG) emissions. Continuing GHG emissions in a business as usual scenario has the potential to render our planet uninhabitable (see Climate Science, below). Primary energy is raw energy before conversion to useful energy (eg: through burning coal, creating steam and running an electricity generator, or building and operating a hydro-electricity plant (2). Chief sources and relative percentages of anthropogenic GHG emissions are as follows: Energy Emissions Electricity Generation 24% Industry 14% Transportation 14% Buildings 8% Other energy related 5% Non-Energy Emissions Land Use 18% Agriculture 14% Waste 3% Total 100% 1

2 This paper addresses the options to reduce Energy Emissions listed above to levels that will reduce GHG emissions to levels that will preserve the habitability of the planet. Critical GHGs are carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O). Methane degrades into CO 2 and water up to 12 years after its release to atmosphere. A third of CO 2 emissions remains in the atmosphere for 100 years, a fifth remains in the atmosphere for 1000 years after its release to atmosphere (3). The most pervasive GHG is water vapour that, in the form of clouds, both shield the earth from the sun s radiation and also traps heat generated by solar radiation. In 2010 mankind emitted 50.1 Billion tonnes CO 2 equivalent of greenhouse gasses, an average of 7.2 tonnes CO 2 equivalent per person (t CO 2 e. /pp) (4) (5). On a national basis the major emitters of GHGs in 2010 were just those countries that have developed advanced economies powered by the fossil fuel industry, including the following average per capita emissions: Australia 28 tonnes CO 2 equivalent per person United States of America 21.6 tonnes CO 2 equivalent per person Canada 21.3 tonnes CO 2 equivalent per person Developing countries by contrast: China 8.3 tonnes CO 2 equivalent per person India 2.26 tonnes CO 2 equivalent per person Future Energy Demand In 2004, burning of fossil fuels produced 374 exajoules (EJ) of primary energy at a cost of 26 Billion tonnes of CO 2 released to the atmosphere. If we including non-fossil fuel energy sources a total of 469 EJ of energy was produced in that year (6). Global energy demand in 2014 was approximately 500 EJ. Global demand for primary energy in 2030 is expected to be between 650 EJ to 890 EJ, a range of 30% to 78% increase over the 2014 demand (7). Climate Science The current (2013) situation is that, when compared with the Holocene (last 10,000 years) average, the present average atmospheric concentration of CO 2 is parts per million (116 parts per million, or 41% higher than at any time in the last 15 million years) and average atmospheric temperature is 0.8 C above (plus 5.3%) the Holocene average (8). The European Union has set a target of a maximum of 2 C average atmospheric temperature above the Holocene average which infers a CO 2 concentration of 450 parts per million (60% above the Holocene average). Since the 1997 Kyoto Protocol obtained consensus to reduce manmade GHGs by 80% by 2050, global emissions have increased and there is general climate science agreement that unless there is a concentrated effort to reduce these emissions this target temperature will be exceeded. Based on the volcano-induced CO 2 increase between 2

3 50 to 60 million years ago (which was much slower than the present rate of increase in this gas) even this plus 2 C scenario implies a sea level rise of many metres (9). Burning all fossil fuels would produce a different, practically uninhabitable, planet. (10) This action would release some 13,000 billion tonnes of carbon into the atmosphere which could increase CO 2 by 8 to 16 times and could raise global mean temperatures over land by 20 C and over 30 C at the poles. However, global warming of between 10 C to 12 C which can occur below 4.8 times the present CO 2 concentration, could result in a wet bulb temperature (allowing for humidity) in excess of 35 C across most of the planet. Such a temperature produces intolerable conditions for humans (and most animals) because they are unable to cool themselves (11). There is a general, scientifically agreed, target of a maximum of 350 parts per million CO 2 concentration in the atmosphere. The Potsdam Institute for Climate Impact advised in 2009 that 18 billion tonnes of CO 2 equivalent is the maximum steady state GHG emissions per year that mankind can afford; this is equal to 2 tonnes CO 2 equivalent per person per year (tco 2 e. /pp /py) on an assumed global population of 9 billion people (12). The Institute also advised in 2009 that the maximum amount of GHG emissions that mankind could afford to emit before this steady state needs to be achieved was 1 billion tonnes CO 2 equivalent in coupled with an expected average atmospheric warming of 2 C (13). However, in November 2012 since GHG emissions are still increasing the same Institute, together with the World Bank advised that this limit has been revised down to half a billion tonnes if average warming of 4 C is to be avoided (14). From an average anthropogenic GHG emission of 7.2 tco 2 e. /pp /py (p2) to 2 tco 2 e. /pp /py requires an 80% reduction in anthropogenic GHG emissions to be achieved. Since the lower figure will need to be achieved in the future when even more energy will be demanded by a population requiring an improved standard of living (as noted on page 2) the practical reduction from today s emissions intensity will be even greater than 80%. If zero emissions per unit of electricity generated or distance moved by the major users of fossil fuels, energy generation and transport about 38% reduction could be achieved and that still leaves over 42% of GHG emissions to be achieved from the other anthropogenic GHG emissions listed on page 1. Thus emissions reduction needs to be commenced across all sectors of the economy with the large volume / least-cost sectors being addressed first. Even if a significant decline in anthropogenic GHG emissions is achieved there is considerable uncertainty regarding the commencement of and subsequent sustained reduction in total atmospheric GHGs. This uncertainly is mainly related to the clearing of soot and other fossil fuel contaminate particles from the atmosphere (thus admitting more sunlight and heat) and the geographic distribution of ocean heat uptake (15). The challenge to reduce GHG emissions is therefore all encompassing and delay will only result in further, possibly irreversible, damage to Earth s environment. Options for Reducing GHGs To address the dramatic reductions in GHG emissions required we need to understand the comparable GHG emissions by various energy sources when generating electricity. Table 1 shows the range of comparable GHG emissions for differing electricity generation methods (all 3

4 emissions are measured in CO 2 equivalent). Note that within each fuel source there may be a range of emissions depending on the method of conversion of the fuel, the age and effectiveness of maintenance and operation of the plant. Table 1: Ranges of GHG Emissions per kwh Electricity Production (17) Minimum (kg CO 2 -equiv. /kwh) Maximum (kg CO 2 equiv. /kwh) Lignite (Brown Coal) Hard Coal Oil Industrial Gas Natural Gas Wood Cogeneration Photovoltaic Power Wind Power Nuclear Power Hydro-electric Power Data sourced from European and country specific sources, using a global warming potential of 100 years. Includes the full life cycle of electricity production, construction, operation, decommissioning. The performance of biofuels in reducing GHGs is highly variable and depends on a number of factors. For example: Indirect land use change from US corn ethanol expansion range from small, but not negligible, to several times greater than the life-cycle emissions from gasoline. Biofuels can achieve a 10% - 60% reduction in GHG emissions over the lifecycle when compared with coal electricity generation - but they still produce greenhouse gases when burnt (18). Survivability and Sustainability Achieving significant GHG emissions reductions quickly is therefore urgent and it is evident that the current business as usual primary energy generation scenario is untenable. In developing an acceptable energy generation plan are therefore two critical objectives to be addressed: Survivability and Sustainability. Survivability means avoiding a highly damaging average atmospheric warming in excess of 2 C and associated ocean warming, acidification and excessive sea level rise. Sustainability means the need bring global atmospheric (manmade) GHG emissions to a maximum of 350 parts per million (currently believed to allow a maximum budget of 18 Billion tonnes CO 2 equivalent per annum manmade GHG emissions) once this target has been achieved (16) (16.1). 4

5 Sustainability has received much attention in the popular press and in many scientific papers. However the evidence to date is that, on current projections, we may fail to achieve the first critical objective, survival, for millions of humans. The lifestyles of many others are likely to be negatively affected as dwindling access to food growing and housing resources result in increased conflict and costs necessary just to survive. Table 2 classifies existing and potential primary energy sources by the two critical objectives: Survivability and Sustainability. Table 2 also classifies known and anticipated energy resources by the: The estimated quantity of primary energy available in exajoules (EJ) is also shown either in total or per year (p.y.) in the case of renewable resources; The amount of greenhouse gas emissions produced; The currently known approximate resource life. It should be noted that there is considerable variation in the estimation of potential energy from all the sources quoted in Table 2. For example, there is considerable variation in estimates of remaining fossil fuel resources and reserves. The possible quantum of unconventional fossil fuel resources is separately identified in Table 2. The unsubsidised price of energy production will also impact on the quantum of a particular type of energy produced and consumed. This is particularly applicable to unconventional energy extraction costs and environmental damage as these are under constant review as the industries develop. By the same token the estimate for geothermal energy may be optimistic when practical heat extraction has to be implemented as there is a wide variety in the quantity of extractable energy available, it is subject to low heat flow through rock strata and eventual exhaustion in some areas (20). It is important to note that by no means all of the energy noted in Table 2 can be extracted and used. Some resources will be in such small quantities that it will be impossible to detect them, some will be impossible to extract and some, even with improved technology will be uneconomic to extract and utilise. Similarly with renewable energy an are may have good insolation for, say, 10 months per year an a monsoon for 2 months which severely restricts the efficacy of renewable energy equipment. Note that in Table 2, energy is classified initially by SOURCE and then by the Medium through which the energy is delivered. 5

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at GLOBAL WARMING Global warming is evidenced by a steady rise in average global temperatures, changing climate, the fact that snow cover has decreased 10% over the past half-century and that glaciers have

More information

The Greenhouse Effect

The Greenhouse Effect Name: #: Date: 5.8 The Greenhouse Effect The greenhouse effect traps heat in the atmosphere. This helps the Earth remain warm enough for humans. Without the greenhouse effect, human would not be able to

More information

2. Climate Change: Projections of Climate Change: 2100 and beyond

2. Climate Change: Projections of Climate Change: 2100 and beyond Global Warming: Science, Projections and Uncertainties Global Warming: Science, Projections and Uncertainties An overview of the basic science An overview of the basic science 1. A Brief History of Global

More information

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Climate Disruption. Cengage Learning 2015

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Climate Disruption. Cengage Learning 2015 LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 19 Climate Disruption 19-1 How Is the Earth s Climate Changing? Considerable scientific evidence indicates that the earth s atmosphere is

More information

Greenhouse Effect. The Greenhouse Effect

Greenhouse Effect. The Greenhouse Effect Greenhouse Effect The Greenhouse Effect Greenhouse gases let short-wavelength radiation come into the Earth s atmosphere from the sun. However, they absorb and re-radiate Earth s long-wavelength radiation

More information

Earth s energy balance and the greenhouse effect

Earth s energy balance and the greenhouse effect Earth s energy balance and the greenhouse effect Average incident solar radiation 342 W/m 2 Reflection to space by atmosphere, clouds, and earth surface 102 W/m 2 Infrared radiation emitted to space 240

More information

CAN THE UNITED NATIONS KEEP CLIMATE CHANGE UNDER CONTROL?

CAN THE UNITED NATIONS KEEP CLIMATE CHANGE UNDER CONTROL? CAN THE UNITED NATIONS KEEP CLIMATE CHANGE UNDER CONTROL? Climate change is one of the major challenges of our time and adds considerable stress to our societies and to the environment. From shifting weather

More information

Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan

Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan Renewable Energies and Low-Carbon Society: Application of CGE Model to Toyohashi City in Japan Yuzuru Miyata Department of Architecture and Civil Engineering, Toyohashi University of Technology and Shuai

More information

Chapter 19 Global Change. Wednesday, April 18, 18

Chapter 19 Global Change. Wednesday, April 18, 18 Chapter 19 Global Change Module 62 Global Climate Change and the Greenhouse Effect After reading this module you should be able to distinguish among global change, global climate change, and global warming.

More information

Generating Electricity

Generating Electricity Worksheet 3 Generating Electricity In most power stations, electricity is generated by burning fuels. Coal, oil and natural gas are the common fuels for generating electricity. Major parts of a power station

More information

Greenhouse Effect & Climate Change

Greenhouse Effect & Climate Change Greenhouse Effect & Climate Change Greenhouse Effect Light energy from the sun (solar radiation) is either reflected or absorbed by the Earth. Greenhouse Effect When it is absorbed by the Earth (or something

More information

Figure 1 CO2 Levels vs. Volcanic Activity

Figure 1 CO2 Levels vs. Volcanic Activity Figure 1 CO2 Levels vs. Volcanic Activity Note: Stratospheric Optical Thickness is the measure of aerosols (e.g., urban haze, smoke particles, desert dust, sea salt) distributed within a column of air

More information

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy?

Power Technologies. Question. Answer. Energy is the ability to do work or change the system. Answer. Question. What are the various sources of energy? What is energy? Energy is the ability to do work or change the system. What are the various sources of energy? Fossil fuels Oil (Petroleum) Propane Natural gas Coal Alternative fuels Nuclear Wind Solar

More information

+ Greenhouse Effect Gasses. n Main Gasses: n Water (H 2 O) n Carbon Dioxide (CO 2 ) n Methane (CH 4 ) n Others Gasses:

+ Greenhouse Effect Gasses. n Main Gasses: n Water (H 2 O) n Carbon Dioxide (CO 2 ) n Methane (CH 4 ) n Others Gasses: Climate Change Chapter 16 Section 16.1 Our Dynamic Climate The Greenhouse Effect n A natural process in which greenhouse gases absorb heat and release it slowly back into the atmosphere n Greenhouse effect

More information

Climate Change. Chapter 16

Climate Change. Chapter 16 + Climate Change Chapter 16 + Section 16.1 Our Dynamic Climate + The Greenhouse Effect n A natural process in which greenhouse gases absorb heat and release it slowly back into the atmosphere n Greenhouse

More information

Chapter 19 Global Change

Chapter 19 Global Change Chapter 19 Global Change Global Change Global change- any chemical, biological or physical property change of the planet. Examples include cold temperatures causing ice ages. Global climate change-changes

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore GLO BAL CARBO N EMISSIO NS Investigate carbon dioxide emissions using

More information

UN Climate Council Words in red are defined in vocabulary section (pg. 9)

UN Climate Council Words in red are defined in vocabulary section (pg. 9) UN Climate Council Words in red are defined in vocabulary section (pg. 9) To minimize the negative effects of global climate change, scientists have advocated for action to limit global warming to no more

More information

Comments on Human and Natural Forcings. Climate changes (1900 to 2000) due to human activity. Climate Variability and Climate Change

Comments on Human and Natural Forcings. Climate changes (1900 to 2000) due to human activity. Climate Variability and Climate Change Comments on Human and Natural Forcings Human input of GH gases (carbon dioxide, methane, nitrous oxide, ozone, CFCs ) has warmed the planet: net RF = +2.9 W/m 2 The largest single warming factor is increased

More information

Major Volcanic Eruptions in the past. Major Volcanic Eruptions in the past. Volcanic Eruptions and Global Temperature

Major Volcanic Eruptions in the past. Major Volcanic Eruptions in the past. Volcanic Eruptions and Global Temperature Mechanism of Volcanic Perturbation Amount of sunlight scattered depends greatly on size and amount of aerosol particles The global monitoring of aerosols began in ~1980 Hence, the history of the amplitude

More information

Environmental Impacts of. Energy Production

Environmental Impacts of. Energy Production CH2356 Energy Engineering Environmental Impacts of Energy Production Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

The Bright Prospects of Renewable Energy

The Bright Prospects of Renewable Energy The Bright Prospects of Renewable Energy George Philippidis, Ph.D. Associate Professor Patel College of Global Sustainability University of South Florida (USF) Contact information: gphilippidis@usf.edu

More information

Global Climate Change. The sky is falling! The sky is falling!

Global Climate Change. The sky is falling! The sky is falling! Global Climate Change The sky is falling! The sky is falling! 1 Global Climate Change Radiative Equilibrium, Solar and Earth Radiation Atmospheric Greenhouse Effect Greenhouse Gases Global Climate Change

More information

GE 2211 Environmental Science and Engineering Unit IV Global Warming. M. Subramanian

GE 2211 Environmental Science and Engineering Unit IV  Global Warming.  M. Subramanian GE 2211 Environmental Science and Engineering Unit IV Global Warming M. Subramanian Assistant Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603

More information

- Changes in the concentration of gases can increase or decrease Earth s temperature.

- Changes in the concentration of gases can increase or decrease Earth s temperature. Greenhouse effect Human and natural causes The source of energy that drives the Earth s climate is the radiation of the sun. To balance the incoming energy, the Earth itself must radiate on average the

More information

Earth s Dynamic Climate

Earth s Dynamic Climate UNIT 3 Earth s Dynamic Climate Topic 3.1: What is climate, and how has it changed during Earth s history? Topic 3.2 : Where are the effects of climate change felt, and what is their impact? Topic 3.5:

More information

Chapter 19 Global Change

Chapter 19 Global Change Chapter 19 Global Change Global Change change - any chemical, biological or physical property change of the planet. Examples include cold temperatures causing ice ages. Global change - changes in the climate

More information

08 Energy, Power and climate change review answers

08 Energy, Power and climate change review answers 08 Energy, Power and climate change review answers Power generation 1. Copy and complete: Thermal energy may be completely converted into work in a single process such as the adiabatic expansion of a gas

More information

Draw one line from each energy source in List A to the statement about the energy source in List B.

Draw one line from each energy source in List A to the statement about the energy source in List B. 1 Three energy sources used to generate electricity are given in List A. Statements about the energy sources used to generate electricity are given in List B. Draw one line from each energy source in List

More information

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons

atom biofuel biomass the smallest unit of a chemical element, made up of protons, neutrons, and electrons atom the smallest unit of a chemical element, made up of protons, neutrons, and electrons biofuel any fuel that comes directly from organic matter found in present-day living things biomass organic matter

More information

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface

4.4 CLIMATE CHANGE. Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface 4.4 CLIMATE CHANGE Concentrations of gases in the atmosphere affect climates experiences at the Earth s surface Greenhouse Gases (GHG) Carbon dioxide and water vapour are the most significant greenhouse

More information

Climate Change and Ozone Loss

Climate Change and Ozone Loss Climate Change and Ozone Loss During the past 900,000 years, the earth has undergone a series of cold glacial periods followed by warmer interglacial periods. The past 10,000 years has been an interglacial

More information

Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING

Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING Dr. H.S. Ramesh Professor of Environmental Engineering S.J. College of Engineering, Mysore 570 006 Carbon di-oxide is a natural constituent of atmosphere,

More information

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011

Alternative Energy Resources. Environmental Earth Science Rev 2018, Spds 2011 Alternative Energy Resources Environmental Earth Science Rev 2018, Spds 2011 Energy Sources Sun is the ultimate source of most energy on Earth. The Sun s energy is transferred from photosynthetic organisms

More information

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases GREENHOUSE EFFECT The earth is like a greenhouse The atmosphere acts like the glass which lets the sun s rays pass through. The earth absorbs this as heat energy and keeps it in, only letting a little

More information

Chapter 19: Global Change

Chapter 19: Global Change 1 Summary Of the Case Study Polar Bear population in the Antarctic going down because temperatures are going up and melting the caps. Polar bears are losing their habitat, they also can t get their food

More information

An Empirical Study on Impact of Greenhouse Gas Emissions in Indian Economy

An Empirical Study on Impact of Greenhouse Gas Emissions in Indian Economy An Empirical Study on Impact of Greenhouse Gas Emissions in Indian Economy P.Prema 1 Dr.D.Elango 2 1 Ph.D.Research Scholar, Government College of Arts and Science, Coimbatore, Tamilnadu, India. 2 Associate

More information

Geopolitics of Energy and Climate Change

Geopolitics of Energy and Climate Change Geopolitics of Energy and Climate Change Marilyn A. Brown Brook Byers Professor of Sustainable Systems School of Public Policy Georgia Institute of Technology Great Decision Series February 9, 2017 1 Why

More information

Draft Environmental Impact Statement

Draft Environmental Impact Statement The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021 2026 Passenger Cars and Light Trucks Draft Environmental Impact Statement July 2018 Docket No. NHTSA-2017-0069 Greenhouse Gas

More information

Climate Change and Air Quality

Climate Change and Air Quality Climate Change and Air Quality SW PA Air Quality Action June 6, 2007 Peter J. Adams Associate Professor Civil and Environmental Engineering Engineering and Public Policy Outline Climate Change Primer What

More information

Climate Change, CO 2, and Environmental Stewardship

Climate Change, CO 2, and Environmental Stewardship Climate Change, CO 2, and Environmental Stewardship A Presentation to SWRA By C. David Cooper, PhD, PE University of Central Florida Civil, Environmental and Construction Engineering Outline of Presentation

More information

The Atmospheric System 6.1

The Atmospheric System 6.1 The Atmospheric System 6.1 What is the atmosphere? Layer of gas that surrounds our planet. The atmosphere is a dynamic system with inputs, outputs, storages and flows. Heat and pollutants are carried

More information

Climate Change, Greenhouse Gases and Aerosols

Climate Change, Greenhouse Gases and Aerosols Climate Change, Greenhouse Gases and Aerosols J Srinivasan J Srinivasan is a Professor at the Centre for Atmospheric and Oceanic Sciences at Indian Institute of Science, Bangalore. He was a lead author

More information

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate 1 Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Extra Resources Website: http://waa-science.weebly.com Module 1: The Mechanics of Change 1. What

More information

Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32)

Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32) Lecture 2: Greenhouse Gases - Basic Background on Atmosphere - GHG Emission and Concentration Rise - California Regulation (AB32) METR 113/ENVS 113 Spring Semester 2011 February 15, 2011 Suggested Reading

More information

Possible Exam Questions for Other Topics in Chemistry 10

Possible Exam Questions for Other Topics in Chemistry 10 Climate Change (first exam) Possible Exam Questions for Other Topics in Chemistry 10 1. Convert between the following terms and definitions Anthracite = the highest rank of coal harder, glossy black coal

More information

INDIAN INSTITUTE OF TECHNOLOGY MADRAS NPTEL NPTEL ONLINE CERTIFICATION COURSES ECOLOGY AND ENVIRONMENT. Module on. Energy & Environment

INDIAN INSTITUTE OF TECHNOLOGY MADRAS NPTEL NPTEL ONLINE CERTIFICATION COURSES ECOLOGY AND ENVIRONMENT. Module on. Energy & Environment INDIAN INSTITUTE OF TECHNOLOGY MADRAS NPTEL NPTEL ONLINE CERTIFICATION COURSES ECOLOGY AND ENVIRONMENT Module on Energy & Environment Prof. Sreenivas Jayanthi Department of Chemical Engineering IIT Madras

More information

LAB National Science Teachers Association. Lab Handout. Introduction

LAB National Science Teachers Association. Lab Handout. Introduction LAB 22 Lab Handout Lab 22. Minimizing Carbon Emissions: What Type of Greenhouse Gas Emission Reduction Policy Will Different Regions of the World Need to Adopt to Prevent the Average Global Surface Temperature

More information

Global Warming & Climate Change

Global Warming & Climate Change Global Warming & Climate Change Global Warming & Climate Change What are the layers of the Earth's atmosphere? The atmosphere is divided into five layers. It is thickest near the surface and thins out

More information

Renewable vs Nonrenewable. Energy Sources. Science, Social Science. Planning a Sustainable Future for New Zealand. Curriculum Levels 4-5

Renewable vs Nonrenewable. Energy Sources. Science, Social Science. Planning a Sustainable Future for New Zealand. Curriculum Levels 4-5 Renewable vs Nonrenewable Energy Sources Planning a Sustainable Future for New Zealand Science, Social Science Curriculum Levels 4-5 Activity Description New Zealand has a government policy target to increase

More information

RENEWABLE ENERGY NON-RENEWABLE ENERGY

RENEWABLE ENERGY NON-RENEWABLE ENERGY Hydro Solar Biomass RENEWABLE ENERGY The motion associated with rapidly falling water, waves and tidal currents can be harnessed to drive turbines and generate electricity. RENEWABLE ENERGY Energy from

More information

Period 26 Solutions: Using Energy Wisely

Period 26 Solutions: Using Energy Wisely Period 26 Solutions: Using Energy Wisely Activity 26.1: Comparison of Energy Sources for Generating Electricity 1) Comparison of energy sources a) Fill in the table below to describe the advantages and

More information

Higher temperatures will lead to... Animal extinctions

Higher temperatures will lead to... Animal extinctions what will you do? 1 Humans have been found guilty of damaging the system that maintains life on Earth. World News Why does climate change matter? Polar ice caps melting In the past, we were not sure why

More information

GLOBAL WARMING AND THE EFFECT ON AGRICULTURE

GLOBAL WARMING AND THE EFFECT ON AGRICULTURE GLOBAL WARMING AND THE EFFECT ON AGRICULTURE L. Duckers Agriculture and the environment are closely and inextricably linked to each other. In this paper the changes to the global climate are examined,

More information

How things work college course/cumulative global warming exam/testbank

How things work college course/cumulative global warming exam/testbank How things work college course/cumulative global warming exam/testbank From Wikiversity Contents 1 GlobalWarmingCumulative 1.1 GlobalWarmingCumulative v1s1 1.1.1 Key to GlobalWarmingCumulative v1s1 1.2

More information

11/15. Agenda. Albedo Effect Simulator: Discussion Climate Change Notes

11/15. Agenda. Albedo Effect Simulator: Discussion Climate Change Notes Agenda 11/15 Albedo Effect Simulator: Discussion Climate Change Notes Announcements -Test (11/20) -Notebook check (tomorrow) -Lab due (11.59pm, tomorrow) -No quiz tomorrow Criteria Table of contents labeled

More information

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge

ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge ENVIS- IITM NEWSLETTER The Air Quality: A Global Challenge GLOBAL WARMING Editorial Prof. B.N. Goswami (Director, IITM, Pune) Dr. G. Beig (ENVIS Co-ordinetor) Ms. Neha S. Parkhi (Program Officer) Mr. Rajnikant

More information

Name Class Date. Conventional Energy Resources

Name Class Date. Conventional Energy Resources Energy Resources SECTION 25.1 Conventional Energy Resources In your textbook, read about energy resources on Earth. For each statement below, write true or false. 1. The Sun is the ultimate source of most

More information

Biology 112 Introduction to Ecology. QUIZZAM Energy. Chapter Number 10

Biology 112 Introduction to Ecology. QUIZZAM Energy. Chapter Number 10 Chapter Number 10 1. Which of the following is a true statement regarding sustainable building design? 1. Construction costs are usually less than traditional building practices. 2. There are currently

More information

NEWGEN POWER STATION KWINANA GREENHOUSE GAS ABATEMENT PROGRAMME (GGAP)

NEWGEN POWER STATION KWINANA GREENHOUSE GAS ABATEMENT PROGRAMME (GGAP) NEWGEN POWER STATION KWINANA GREENHOUSE GAS ABATEMENT PROGRAMME (GGAP) December 2006 Page 2 of 16 CONTENTS: 1. Element/issue...4 2. Objective...4 3. Current Status...4 4. Potential emissions...5 5. Program

More information

Earth s Atmosphere Lecture 14 3/6/2014

Earth s Atmosphere Lecture 14 3/6/2014 Earth s Atmosphere Lecture 14 3/6/2014 MRS 1 Due Tuesday Second exam will be postponed until after spring break The sun drives the climate of Earth http://www.spaceweather.com/images2002/18mar02/cme_c3_big.gif

More information

Implications of Abundant Natural Gas

Implications of Abundant Natural Gas Implications of Abundant Natural Gas JAE EDMONDS AND HAEWON MCJEON APRIL 213 April 29, 213 1 Gas and the Global Energy System Gas is has been a growing component of the global energy system for some time.

More information

How Can Thermal Effects Be Explained?

How Can Thermal Effects Be Explained? How Can Thermal Effects Be Explained? Lesson 6, Part 3: Climate Science The Enhanced Greenhouse Effect The Earth will maintain equilibrium (constant stable temperature level) if the energy coming in is.

More information

CREATIVE SPACES INFORMATION PACK THREE SUSTAINABLE DESIGN

CREATIVE SPACES INFORMATION PACK THREE SUSTAINABLE DESIGN SUSTAINABLE DESIGN The information contained in this presentation is for general information purposes only and it is intended that there will be strictly no commercial gain from its production. The content

More information

CREATIVE SPACES 2013 INFORMATION PACK THREE SUSTAINABLE DESIGN

CREATIVE SPACES 2013 INFORMATION PACK THREE SUSTAINABLE DESIGN SUSTAINABLE DESIGN The information contained in this presentation is for general information purposes only and it is intended that there will be strictly no commercial gain from its production. The content

More information

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018

Physics 100 Lecture 17. The Greenhouse Effect and Global Warming April 2, 2018 1 Physics 100 Lecture 17 The Greenhouse Effect and Global Warming April 2, 2018 2 Class Quiz Ch. 7: Suppose your car burned bituminous coal instead of gasoline. How much coal would provide the same energy

More information

Global Heat Budget -Temp of the Earth: Depends on 3 factors The amount of sunlight received

Global Heat Budget -Temp of the Earth: Depends on 3 factors The amount of sunlight received Environmental Geology Chapter 18 GLOBAL CLIMATE CHANGE Climate characteristic atmospheric conditions (precipitation and temperature) over seasons, years, and decades. Climate changes: Contributing to the

More information

Climate change: a development perspective

Climate change: a development perspective Climate change: a development perspective A Note for the Special UN General Assembly Session on Climate Change by Martin Khor, Director, Third World Network A. Background and Latest Scientific Information

More information

To Start Describe this map (3 marks)

To Start Describe this map (3 marks) To Start Describe this map (3 marks) How Can We Manage Climate Change Through Mitigation? Lesson objectives: 1-4 Will be able to state different ways which climate change can be mitigated 5-6 Will be able

More information

UNIT 5: ECOLOGY Chapter 16: Human Impact on Ecosystems

UNIT 5: ECOLOGY Chapter 16: Human Impact on Ecosystems CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Introduction and Methodology

Introduction and Methodology Introduction and Methodology Greenhouse gases are gases that trap heat in the atmosphere. The primary greenhouse gases and their sources are: Carbon Dioxide (CO 2 ): Principal greenhouse gas; emitted through

More information

GLOBAL Energy Flow Thru Atmosphere

GLOBAL Energy Flow Thru Atmosphere GLOBAL Energy Flow Thru Atmosphere Global Atmo Energy Balance In a stable climate, Solar Energy IN = IR Energy OUT IR Out Ahrens, Fig. 2.14 Solar in The Natural Greenhouse Effect: clear sky O 3 8% CH 4

More information

Contents. Permafrost Global Warming: An Introduction...4. Earth Is Getting Hotter...6. Green Homes The Greenhouse Effect...

Contents. Permafrost Global Warming: An Introduction...4. Earth Is Getting Hotter...6. Green Homes The Greenhouse Effect... Contents Global Warming: An Introduction...4 Earth Is Getting Hotter...6 The Greenhouse Effect...8 Greenhouse Gases...10 Ozone Layer Depletion...12 The Carbon Cycle...14 The Kyoto Protocol...16 Climate

More information

Fertilizing biofuel crops may cause release of greenhouse gases Featured scientist: Leilei Ruan from Michigan State University

Fertilizing biofuel crops may cause release of greenhouse gases Featured scientist: Leilei Ruan from Michigan State University Fertilizing biofuel crops may cause release of greenhouse gases Featured scientist: Leilei Ruan from Michigan State University Research Background: Greenhouse gases in our atmosphere, like carbon dioxide

More information

Effects of Greenhouse Gas Emission

Effects of Greenhouse Gas Emission Effects of Greenhouse Gas Emission Reshmi Banerjee Assistant Professor, Dept. of EE, Guru Nanak Institute of Technology, Kolkata, W.B., India ABSTRACT: Gases that trap heat in the atmosphere are called

More information

Evidence and implications of anthropogenic climate change

Evidence and implications of anthropogenic climate change Evidence and implications of anthropogenic climate change Earth s Climate has always been changing 1) Is climate changing now? Global Warming? Sea level rising IPCC 2007 Fig. 5.13 (p. 410) Recontructed

More information

CONTENTS. Introduction x

CONTENTS. Introduction x CONTENTS Introduction x Chapter 1: Climate 1 Solar Radiation and Temperature 2 The Distribution of Radiant Energy from the Sun 2 The Effects of the Atmosphere 3 Average Radiation Budgets 6 Surface-Energy

More information

8. Greenhouse Gas Emissions

8. Greenhouse Gas Emissions 8. Greenhouse Gas Emissions This section provides a summary of the greenhouse gas assessment undertaken, and the potential impacts identified, in regards to the Project (Mine) during construction and operation.

More information

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects.

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects. Page 1 What type of radiation transmits heat energy? Complete this sentence Hotter objects emit infrared radiation than cooler objects. What type of surfaces are good absorbers and good emitters of infrared

More information

Overview of GHG emissions from energy generation

Overview of GHG emissions from energy generation of GHG emissions from energy generation of greenhouse gas emissions and the contribution from energy generation Electricity generation Greenhouse gas emissions by sector Contribution from electricity generation

More information

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface Q& A n The Basics of Greenhouse gases affect Earth s energy balance and climate The Sun serves as the primary energy source for Earth s climate. Some of the incoming sunlight is reflected directly back

More information

Human impact on the environment

Human impact on the environment 1 of 36 Boardworks Ltd 2006 2 of 36 Boardworks Ltd 2006 Human impact on the environment 3 of 36 Boardworks Ltd 2006 How does human activity affect the environment? Population growth 4 of 36 Boardworks

More information

Name SID Number Final VERSION A

Name SID Number Final VERSION A Name SID Number Final VERSION A 1. The main source of energy, that is heating planet earth is (1) renewable energy (2) natural gas (3) the sun (4) oil (5) coal 2. Which of the following mainly causes acid

More information

What is climate change? - BBC News

What is climate change? - BBC News What is climate change? - BBC News Media caption Why we should care about climate change? In December, of cials from across the world will gather in Paris, France, to try to hammer out a deal to tackle

More information

4-9 Chemistry/5-9 Trilogy Chemistry of the atmosphere

4-9 Chemistry/5-9 Trilogy Chemistry of the atmosphere 4-9 Chemistry/5-9 Trilogy Chemistry of the atmosphere.0 This question is about fuels.. There are two main types of diesel fuel used for cars: biodiesel, made from vegetable oils petroleum diesel, made

More information

Understanding the Causes of Global Climate Change

Understanding the Causes of Global Climate Change FACT SHEET I: Attribution Environment Understanding the Causes of Global Climate Change Average air temperatures at the Earth s surface have increased by approximately 0.6 o C (1 o F) over the 20 th century.

More information

INVEST SMART. TRADE WISE. THINK GREEN.

INVEST SMART. TRADE WISE. THINK GREEN. INVEST SMART. TRADE WISE. THINK GREEN. What is a carbon credit? A carbon credit is the financial term used for the reduction of one metric tonne of CO2 emissions. Background The burning of fossil fuels

More information

Climate Dynamics (PCC 587): Climate Forcings

Climate Dynamics (PCC 587): Climate Forcings Climate Dynamics (PCC 587): Climate Forcings DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 7: 10-16-13 Outline of This Topic Climate forcings Things that directly

More information

What Exactly is a Greenhouse Gas?

What Exactly is a Greenhouse Gas? 1 What Exactly is a Greenhouse Gas? You may have stood in a greenhouse and felt the heat, but what do greenhouse gases have to do with greenhouses? A greenhouse gas is any gas that absorbs and re-emits

More information

CO 2, Climate Change, and What We Can Do About it

CO 2, Climate Change, and What We Can Do About it CO 2, Climate Change, and What We Can Do About it Presented By C. David Cooper, PhD, PE, QEP Professor of Engineering University of Central Florida Civil, Environmental and Construction Engineering Outline

More information

Topic 8: Energy, power and climate change

Topic 8: Energy, power and climate change Topic 8: Energy, power and climate change 8.1 Energy degradation and power generation 8.1.1 State that thermal energy may be completely converted to work in a single process, but that continuous conversion

More information

Review for Carbon cycle, Hydrosphere and Space and Energy Types Test

Review for Carbon cycle, Hydrosphere and Space and Energy Types Test Review for Carbon cycle, Hydrosphere and Space and Energy Types Test Cycles and Greenhouse effect 1. Which of the following statements about the Greenhouse effect is true? A) An increase in greenhouse

More information

Study the Carbon Emission Around the Globe with Special Reference to India

Study the Carbon Emission Around the Globe with Special Reference to India Current World Environment Vol. 8(3, 429-433 (2013 Study the Carbon Emission Around the Globe with Special Reference to India ASHWIN MODI 1 and NIMESH P. BHOJAK 1,2 1 BBA Department, Hemchandracharya North

More information

Working Group II: Climate change impacts, adaptation and vulnerability

Working Group II: Climate change impacts, adaptation and vulnerability Fact sheet: Climate change science The status of climate change science today United Nations Framework Convention on Climate Change Enough is known about the earth s climate system and the greenhouse effect

More information

Greenhouse Effect Teacher Notes

Greenhouse Effect Teacher Notes Before our present atmosphere was formed, radiant heat from the Sun was directly reflected from Earth s surface to be lost out into space. The original atmosphere was made up of hydrogen, water vapour,

More information

A n O p p o r t u n i t y f o r R e d u c i n g t h e G r e e n h o u s e E f f e c t IEA OECD

A n O p p o r t u n i t y f o r R e d u c i n g t h e G r e e n h o u s e E f f e c t IEA OECD Heat Pumps A n O p p o r t u n i t y f o r R e d u c i n g t h e G r e e n h o u s e E f f e c t IEA OECD T he Greenhouse Effect 2% 3% 2% 23% At 150 million km from its heat source, the sun, our planet

More information

INTERACTIONS WITH NATURAL SYSTEMS AND RESOURCES GEOLOGY

INTERACTIONS WITH NATURAL SYSTEMS AND RESOURCES GEOLOGY INTERACTIONS WITH NATURAL SYSTEMS AND RESOURCES GEOLOGY INTRODUCTION Interactions of matter and energy through geologic processes have led to the uneven distributions of natural resources. Many of these

More information

5/27/09. Climate Change, Carbon Trading and Cockey s. Contributing Countries in aggregate terms. Best Worst

5/27/09. Climate Change, Carbon Trading and Cockey s. Contributing Countries in aggregate terms. Best Worst Climate Change, Carbon Trading and Cockey s Richard Haire, ICAC, May 009 Global warming is a reality and very likely (>90% probability) human induced Some 700 scientists have documented climate induced

More information

National Revision- Global Issues- Climate Change

National Revision- Global Issues- Climate Change National Revision- Global Issues- Climate Change Our planet is encased in a blanket of gases, held in place by the force of gravity. This mixture gives us our life and makes our planet unique and distinctive.

More information