EFFECT OF NANOPARTICLES ON THIN-FILM COMPOSITE MEMBRANE SURFACE MORPHOLOGY AND PRODUCTIVITY. Abstract. Background and Applicable Literature

Size: px
Start display at page:

Download "EFFECT OF NANOPARTICLES ON THIN-FILM COMPOSITE MEMBRANE SURFACE MORPHOLOGY AND PRODUCTIVITY. Abstract. Background and Applicable Literature"

Transcription

1 EFFECT OF NANOPARTICLES ON THIN-FILM COMPOSITE MEMBRANE SURFACE MORPHOLOGY AND PRODUCTIVITY Steven J. Duranceau, Ph.D., P.E., University of Central Florida, 4000 Central Florida Blvd., POB 62450, Eng.2-Suite 2, Orlando, FL , Ph. (407) Yuming Fang, University of Central Florida, Orlando, FL Abstract To evaluate the significance of thin-film composite membrane surface morphology on water productivity, flat-sheet experiments were conducted with silicon dioxide, titanium dioxide, and cerium dioxide nanoparticles. The polyamide thin-film active layer exhibited a valley and ridge morphology that was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother cellulose acetate membrane surfaces. Reverse osmosis and nanofiltration membrane flux decline was not affected by particle type when the feed water was laboratory grade water; however, when pretreated diluted seawater measuring 4800 μs/cm served as feed water it was found that cerium oxide addition resulted in the least observable flux decline, followed by silicon dioxide and titanium dioxide. Keywords: nanofiltration; nanoparticles; reverse osmosis; water productivity. Background and Applicable Literature Reverse osmosis (RO) and nanofiltration (NF) membranes represent an important set of pressure driven processes for domestic and industrial water treatment. [Zhao and Taylor 2005; Jamal, Khan and Kamil 2004; Zhao, Taylor and Chellam 2005]. The majority of RO membranes are manufactured in a spiral-wound configuration using thin-film composite (TFC) technologies. TFC membranes consist of three layers: a microscopically-thin active polyamide layer surface, a microporous polysulfone backing layer, and a polyester support layer. The polysulfone and polyester layers serve to support the thin-film membrane while the polyamide layer is the portion of the composite actively participating in the rejection of dissolved solutes [Avlonitis, Pavlou and Skourtis 20; Yip et al. 200]. The influence of surface characteristics on membrane process performance is considered significant and is not well understood. Current mass transport models generally assume constant mass transfer coefficients (MTCs) based on a homogeneous flat surface. With the application of atomic force microscopy (AFM), membrane active-layer characteristic such as surface morphology, pore sizes, and surface porosity can be determined and correlated to membrane fouling behavior. The AFM images presented in the work of Vrijerhoek and colleagues [200] show membrane surfaces as having an elevated ridge and depressed valley morphology, and concluded that the fouling behavior was related to the degree of surface roughness.

2 Fouling remains one of the major issues impacting RO and NF membrane process. Research has been conducted to reduce membrane fouling by improving membrane properties, maintaining ideal operating conditions, and implementing advanced pretreatment processes; however, fouling will still occur to some degree [Kim et al. 2003; Liikanen et al. 2002; Shaalan 2002]. Fouling may occur due to accumulation of particles on the membrane surface and depends on the particle s size, density and membrane surface roughness. An increase in particle concentration can lead to an increase in fouling, while smaller particles either causes more, or less, fouling as compared to larger particles [Tarabara, Koyuncu and Wiesner 2004; Zhang and Song 2004]. In addition, the ionic strength of the solution is an additional factor that can affect membrane fouling. As the ionic strength increases, the fouling potential increases as a result of the double layer compression formed around the colloids [Lee, Cho and Elimelech 2004; Lee, Cho and Elimelech 2005; Sing and Song 2005]. However, less research has been conducted that consider the influence of surface morphology on water productivity. The purpose of this study was to investigate the productivity of RO and NF membranes using flat-sheet, bench-scale equipment under laboratory conditions. It is postulated that nanoparticles impact flux decline depending on membrane morphology. To investigate the effects of chemical and physical interactions between the particles and the membranes, silica dioxide (SiO2), titanium dioxide (TiO2), and cerium dioxide (CeO2) served as foulants during the conduct of the experiments. Materials and Methodology Membranes Evaluated in Testing To take into account different membrane surface properties, two RO flat sheets and one NF flat sheet membrane sample representing different surface roughness were obtained for study (Sterlitech, Kent, WA, USA). The specifications of the membranes investigated in this study are shown in Table. The membrane samples were acquired as dry sheets and were stored in distilled (DI) water at room temperature prior to assembly into flat-sheet test cells. Designation Table. Specification of membranes used in the experiments. Membrane type Manufacturer Polymer * MWCO 2 Pressure, psi BW30 RO Dow Polyamide 00D 260 XLE RO Dow Polyamide 00D 30 CK NF GE Osmonics Cellulose Acetate * MWCO: Molecular Weight Cut Off. Nanoparticles Studies Commercial TiO2 (anatase, 99%, 5 nm), CeO2 (99.9%, nm), and SiO2 (99+%, 80 nm) nanoparticles (NanoAmor, Houston, TX, USA) were used in the fouling experiments. The nanoparticles were supplied in powder forms. The actual densities were g/cm 3 for SiO2, 3.9 g/cm 3 for TiO2, and 7. g/cm 3 for CeO2. This size range was selected so that the particles can pass through a typical cartridge filter. Currently, the engineering design standard of care in

3 pretreatment of brackish water RO desalination and groundwater NF pre-treatment is the use of 5-micron nominal pore-size cartridge filters. The nanoparticles used in this research are on the order of 0.2 µm or less and would pass through a standard cartridge filter. Nanoparticle concentrations were determined after several trials until a flux decline was observed. Prior to each experiment, the nanoparticles were dissolved in deionized water and t sonicated in a water bath ultra-sonicator for 30 min to maintain the nanoparticle suspension. Membrane Performance and Surface Properties Membrane productivity tests were performed using a CF042 cross flow flat sheet membrane filtration unit (CF042, Sterlitech, Kent, WA, USA). The membrane cell allows for evaluation of membrane film with an active surface area of 42 cm 2. The cell dimension is cm cm 30 ml. The pre-cut membrane was loaded into the cell and the system was run under recommended pressure for 20 min with DI water to remove any residual chemicals from manufacturing. The water was then drained and the system was filled with testing solution. The schematic flow diagram for the flat sheet testing instrument is shown in Figure. A.5 gal reservoir provided feed water into a high pressure pump. The flow rate and pressure were adjusted by the two valves located on the bypass and concentrate flow tubes. The feed flow was maintained at 757 ml/min, providing a cross flow velocity of 0.8 m/s (corresponding to a Reynolds number of 307). Permeate and concentrate flows were recycled into the feed tank to ensure a constant background electrolyte condition. The temperature was maintained at 2 C with a coil immersed in the feed tank and connected to a chiller unit. After a constant flux was achieved, a premixed sodium chloride solution was added to produce a 0.05 M salt concentration. After the NaCl solution was added, the unit was allowed to equilibrate for 20 h to allow compaction of the new membranes. A dose of the resultant nanoparticle suspension was then added into the feed tank to provide a feed concentration of either 35 mg/l or 405 mg/l. The flux was monitored by a flow meter continuously for the duration of experiment and recorded on a laboratory computer. Figure. Flat sheet unit testing flow diagram. 3

4 Relative flux, f/f0 Three runs were conducted for each membrane under three conditions: () a baseline, (2) a 35 mg/l nanoparticle addition, and (3) a 405 mg/l nanoparticle addition. Each individual run lasted approximately twenty hours. The membranes were tested with different nanoparticles and evaluated in terms of flux decline and salt rejection over time. Table 3 presents the initial flux rates for membranes that were tested with cerium dioxide. Results are presented in Figures 2 and 3 in terms of relative flux as function of time. Relative flux is expressed as the flux at any time during the test divided by the initial flux (f/f0). The baseline represents the runs with the background solution (0.05 M NaCl) and without nanoparticles. The difference between the permeate flux with nanoparticles in the feed stream and the baseline indicates the net contribution of nanoparticles to membrane productivity. Table 3. Initial flux for membranes being tested using CeO2. Initial flux BW30 XLE CK m/s gal/sfd Figure 2. Example of one experiment showing the relative flux as a function of time with CeO2 at three different particle concentrations for the XLE membranes. Similar curves were prepared for silicon dioxide and titanium dioxide but are presented elsewhere (Fang, Y, Duranceau, S.J. (203). Study of the Effect of Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Fouling Behavior in Membranes. Vol(3): ) Base line 35mg/L 405mg/L Time, min 4

5 Relative flux, f/f0 Figure 3. Example of one experiment showing the relative flux as a function of time with CeO2 at three different particle concentrations for the CK membranes. Similar curves were prepared for silicon dioxide and titanium dioxide but are presented elsewhere (Fang, Y, Duranceau, S.J. (203). Study of the Effect of Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Fouling Behavior in Membranes. Vol(3): ) Time, min Base line 35mg/L 405mg/L Similar to SiO2 and TiO2, there is significant flux decline for BW30 and XLE membranes when dosing with CeO2, while no obvious flux decline was observed for CK membranes. The magnitude of flux decline follows the same trend as testing with TiO2: the XLE membrane shows the most severe flux decline over the testing period, followed by the BW30 membrane; the CK membranes exhibit the least flux decline which indicates fouling resistant properties. The surface roughness of the BW30, XLE and CK membranes was measured by a Digital Instruments Nanoscope Atomic Force Microscope (AFM) and are shown in Figure 4. The AFM scans the surface with a cantilevered tip, generating a three-dimensional elevation map. The tip was operated in tapping mode to reduce the sample damage and maximize resolution. Surface elevation data can be used to determine the average roughness and the root mean squared (RMS) roughness. The average roughness is the average deviation of the peaks and valleys from the center plane; the RMS roughness is defined as the standard deviation of the peaks and valleys from the center plane. The parameters obtained from AFM analysis are shown in Table 2. 5

6 Figure 4. UCF atomic force microscopy (AFM) images of (a) DOW BW30 (RO); (b) DOW XLE (RO); (c) GE Osmonics CK (NF). Note the X and Y dimensions are both 0μm (2 μm/div), and the Z scale is μm (500 nm/div). Note that (c) is the cellulose acetate flat sheet membrane. (a) (b) (c) Table 2. AFM analysis of surface roughness. Membrane Average roughness (nm) RMS * (nm) Mean (nm) BW XLE CK * RMS: root mean square. Results & Discussion The results from the BW30 and XLE membranes show that greater flux decline is obtained at a higher SiO2 particle dosage, while no obvious flux decline was observed for the CK membranes. With an increasing particle concentration, the rate of mass transport of particles toward the membrane surface increases, thereby, the overall rate of particle deposition onto the membrane surface increases. As a result, the total mass of deposited particles increases, which resulting in higher resistance to water permeating the membrane and thus reduced water flux. The BW30 and XLE membranes were found to have a higher relative flux decline rate, while the flux through the CK membrane decreases at a much lower rate relative to the other three membranes. It is also noted that initial flux also plays a role in determining the flux decline rate. Typically a higher initial flux results in a higher flux decline rate [Zhu and Elimelech 997]. The initial flux for the BW30 membrane is slightly higher than the XLE membrane, but the flux decline rate is similar for these two membranes due to the differences in their surface morphology. 6

7 Relative flux, f/f0 Relative flux, f/fo Fouling Under Salinity Conditions Two different salinity waters, one made of 0.05 M NaCl in a laboratory, and a second prepared from pretreated seawater from Tampa Bay Water desalination s plant were evaluated. The particles were dosed into the feed tank at 35 mg/l after 20 h of particle free solution testing. The fouling behavior of the BW30 membranes were investigated and the relative flux with each of the three particles based on a 0.05 M NaCl solution was also determined. When using RO feed water from the Tampa Bay desalination plant, the permeate flux was found to decline at different rates; however, feeding with TiO2 resulted in the highest flux decline, and CeO2 appeared to relieve the fouling as compared to other two particles. It is noted that the flux decline between the laboratory-grade and diluted seawater feed solutions were found to be different. It is noted that the ionic strength differences may help explain the trends observed. Figure 3. Relative flux as a function of time using different source water: (a) 0.05 M NaCl; (b) diluted reverse osmosis (RO) feed water from Tampa Bay desalination plant Base line SiO2 TiO2 CeO Time, min (a) Base line SiO2 TiO2 CeO Time, min (b) 7

8 Conclusions In this work, bench scale membrane productivity experiments were conducted to investigate the role of membrane surface properties on the productivity of RO and NF. The following conclusions were reached. The severity of flux decline was influenced by membrane surface morphology. The polyamide thin-film active layer exhibited a valley and ridge morphology that was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother cellulose acetate membrane surfaces. Particles accumulate within the valley components of thin-film surface morphologies, causing more flux decline than in smoother membranes. Flux decline in laboratory-grade water occurred at a similar rate for the nanomaterials tested that included CeO2, SiO2 and TiO2. On the other hand, when pretreated diluted seawater measuring 4800 μs/cm served as feed water it was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2 particles. Continuing Work This study is a component of ongoing flat-sheet, bench-scale studies being conducted in the Civil, Environmental and Construction Engineering Department within the College of Engineering and Computer Sciences at the University of Central Florida. Portions of this paper were in part published as an open access article by Y. Fang and S.J. Duranceau as Study of the Effect of Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Fouling Behavior in Membranes [Volume (3): ] in 203. Acknowledgments The research was funded, in part, by UCF s Research Foundation through a grant provided by the Jones Edmunds Research Fund (Project ; RF047820), as well as Funding Agreement with the city of Sarasota, Florida. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of UCF (Orlando, FL), its Research Foundation, Jones Edmunds Associates, Inc. (Gainesville, FL) or the city of Sarasota, Florida. The mention of trade names or commercial products does not constitute endorsement or recommendation. The authors acknowledge the contribution of Hydranautics (Oceanside, CA) and UCF s Advanced Materials Processing and Analysis (AMPAC) in their provision of AFM membrane images, without which this work would not have been made possible. The authors would like to thank the City of Sarasota's Utilities and Utilities Department (Sarasota, FL) for providing full-scale reverse osmosis membrane process operations data that was relied upon for model development and validation. 8

9 References Avlonitis, S. A., Pavlou, D. G., & Skourtis, S. (20). Simulation of the spiral wound RO membranes deformation under operating conditions. Desalination and Water Treatment (25), Fang, Y, Duranceau, S.J. (203). Study of the Effect of Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Fouling Behavior in Membranes. Vol(3): Jamal, K., Khan, M. A., & Kamil, M. (2004). Mathematical modeling of reverse osmosis system. Desalination (60), Kim, S.; Kwak, S.; Sohn, B.; Park, T. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. 2003, 2, Lee, S.; Cho, J.; Elimelech, M. Influence of colloidal fouling and feed water recovery on salt rejection of reverse osmosis and nanofiltration membranes. Desalination 2004, 60, 2. Lee, S.; Cho, J.; Elimelech, M. Combined influence of natural organic matter and colloid particles on nanofiltration membrane fouling. J. Membr. Sci. 2005, 262, Liikanen, R.; Yli-Kuivila, J.; Laukkanen, R. Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. J. Membr. Sci. 2002, 95, Singh, G.; Song, L. Quantifying the effect of ionic strength on colloidal fouling potential in membrane filtration. J. Colloid Interface Sci. 2005, 284, Shaalan, H.F. Development of fouling control strategies pertinent to nanofiltration membranes. Desalination 2002, 53, Tarabara, V.; Koyuncu, I.; Wiesner, M. Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: Direct experimental observation of filter cake cross-sections. J. Membr. Sci. 2004, 24, Vrijenhoek, E.M.; Hong, S.; Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 200, 88, Yip, N. Y., Tiraferri, A., Phillip, W. A., Schiffman, J. D., & Elimelech, M. (200). High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. (44), Zhang, M.; Song, L. Mechanisms and parameters affecting flux decline in cross-flow microfiltration and ultrafiltration of colloids. Environ. Sci. Technol. 2004, 34, Zhao, Y., & Taylor, J. S. (2005). Incorporation of osmotic pressure in an integrated incremental model for predicting RO or NF permeate concentration. Desalination (74), Zhao, Y., Taylor, J. S., & Chellam, S. (2005). Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks. Journal of Membrane Science, (263), Zhu, X.; Elimelech, M. Colloidal fouling of reverse osmosis membranes: Measurements and fouling mechanism. Environ. Sci. Technol. 997, 3,

Reverse Osmosis. Background to Market and Technology

Reverse Osmosis. Background to Market and Technology Reverse Osmosis Background to Market and Technology 1 Technology and Applications Reverse osmosis has been commercial for over 25 years. 60MLD plants built in Saudi Arabia 20 years ago. Current sales of

More information

Supporting Information

Supporting Information Supporting Information Influence of Natural Organic Matter Fouling and Osmotic Backwash on Pressure Retarded Osmosis Energy Production from Natural Salinity Gradients NGAI YIN YIP AND MENACHEM ELIMELECH*

More information

Engineering & Equipment Division

Engineering & Equipment Division Since their development as practical unit operations in the late 1950 s and early 1960 s, reverse osmosis (RO) and ultra filtration (UF) have been continually expanding the scope of their applications.

More information

Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes

Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes Desalination 202 (2007) 45 52 Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes David Norberg a, Seungkwan Hong b *, James Taylor a, Yu Zhao

More information

Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray

Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray Texas Desal 2014 Reverse Osmosis Membrane Basics How and Why Membranes Work Dan Muff - Toray Spiral Module History 1960 s - 2012 1964 - Spiral Wound Module Patented 1969 - Global RO Module Sales $1 million

More information

Comparison of Fouling Mechanisms of Four Nanofiltration Membranes: Optimal Membrane Selection for Stephenfield Regional WTP, MB, Canada

Comparison of Fouling Mechanisms of Four Nanofiltration Membranes: Optimal Membrane Selection for Stephenfield Regional WTP, MB, Canada Comparison of Fouling Mechanisms of Four Nanofiltration Membranes: Optimal Membrane Selection for Stephenfield Regional WTP, MB, Canada I. Moran*, B. Gorczyca University of Manitoba Department of Civil

More information

PRESENTATION OF DESALINATION VIA REVERSE OSMOSIS

PRESENTATION OF DESALINATION VIA REVERSE OSMOSIS Via Pietro Nenni, 15-27058 VOGHERA ITALY Tel. +39 0383 3371 Fax +39 0383 369052 E-mail: info@idreco.com PRESENTATION OF DESALINATION VIA REVERSE OSMOSIS Reverse osmosis is the finest level of filtration

More information

Forward Osmosis: Progress and Challenges

Forward Osmosis: Progress and Challenges Forward Osmosis: Progress and Challenges Menachem Elimelech Department of Chemical and Environmental Engineering Yale University New Haven, Connecticut 2014 Clarke Prize Conference, November 7, 2014, Huntington

More information

IMPROVING PERFORMANCE AND ECONOMICS OF RO SEAWATER DESALTING USING CAPILLARY MEMBRANE PRETREATMENT

IMPROVING PERFORMANCE AND ECONOMICS OF RO SEAWATER DESALTING USING CAPILLARY MEMBRANE PRETREATMENT Mark Wilf Ph. D. and Kenneth Klinko IMPROVING PERFORMANCE AND ECONOMICS OF RO SEAWATER DESALTING USING CAPILLARY MEMBRANE PRETREATMENT ABSTRACT RO seawater systems that operate on a surface feed water

More information

Water Treatment Technology

Water Treatment Technology Lecture 4: Membrane Processes Technology in water treatment (Part I) Water Treatment Technology Water Resources Engineering Civil Engineering ENGC 6305 Dr. Fahid Rabah PhD. PE. 1 Membrane Processes Technology

More information

Design Parameters Affecting Performance

Design Parameters Affecting Performance Design Parameters Affecting Performance The performance of membrane elements operating in a reverse osmosis system is affected by the feed water composition, feed temperature, feed pressure, and permeate

More information

Some Standard Membranes: Filmtec Membrane, Hydronatics Membrane, Torry membrane and Koch Membrane.

Some Standard Membranes: Filmtec Membrane, Hydronatics Membrane, Torry membrane and Koch Membrane. REVERSE OSMOSIS (RO) water treatment process involves water being forced under pressure ( Osmatic Pressure ) through a semipermeable membrane. Temporary and permanent hardness, Total Dissolved Soilds (TDS),

More information

Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources

Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources KEY POINT: Appropriate pre-treatment can prevent fouling and scaling, optimize membrane performance, and extend membrane

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Reverse Osmosis. Lecture 17

Reverse Osmosis. Lecture 17 Reverse Osmosis Lecture 17 Reverse osmosis Reverse osmosis is a membrane technology used for separation also reffered as Hyperfiltration. In a typical RO system the solution is first filtered through a

More information

By: Curt Roth Vice President, Engineering EconoPure Water Systems, LLC. Desalination Pre Treatment with LFNano. An EconoPure White Paper

By: Curt Roth Vice President, Engineering EconoPure Water Systems, LLC. Desalination Pre Treatment with LFNano. An EconoPure White Paper An EconoPure White Paper 2024 N. Broadway Santa Ana, CA 92706 USA 1+(714) 258 8559 www.econopure.com Desalination Pre Treatment with LFNano By: Curt Roth Vice President, Engineering EconoPure Water Systems,

More information

Overview of Desalination Techniques

Overview of Desalination Techniques Overview of Desalination Techniques The objective of this chapter is to present an overview of current and future technologies applied to the desalination of brackish and seawater to produce freshwater

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Membrane Technique MF UF NF - RO

Membrane Technique MF UF NF - RO Membrane Technique MF UF NF - RO AquaCare GmbH & Co. KG Am Wiesenbusch 11 45966 Gladbeck, Germany +49-20 43-37 57 58-0 +49-20 43 37 57 58-90 www.aquacare.de e-mail: info@aquacare.de Membrane Technique

More information

BENCH-SCALE TESTING OF SEAWATER DESALINATION USING NANOFILTRATION

BENCH-SCALE TESTING OF SEAWATER DESALINATION USING NANOFILTRATION BENCH-SCALE TESTING OF SEAWATER DESALINATION USING NANOFILTRATION Catherine J. Harrison 1, Amy E. Childress 1, Yann A. Le Gouellec 2, and Robert C. Cheng 3 1 University of Nevada, Reno Department of Civil

More information

Brackish Ground Water Desalination: Challenges to Inland Desalination Technologies (It sure ain t seawater desalination)

Brackish Ground Water Desalination: Challenges to Inland Desalination Technologies (It sure ain t seawater desalination) Brackish Ground Water Desalination: Challenges to Inland Desalination Technologies (It sure ain t seawater desalination) Bruce Thomson Dept. of Civil Engineering University of New Mexico (bthomson@unm.edu)

More information

Rania Sabry, A. G. Gadallah, Sahar S. Ali, Hanaa M. Ali, Hanaa Gadallah*

Rania Sabry, A. G. Gadallah, Sahar S. Ali, Hanaa M. Ali, Hanaa Gadallah* International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN: 0974-4290 Vol.8, No.11, pp 102-112,2015 Application of Forward/Reverse Osmosis Hybrid System for Brackish Water Desalination using El-Salam

More information

Membrane Treatment Technologies for Wastewater Treatment

Membrane Treatment Technologies for Wastewater Treatment www.cartwright-consulting.com pscartwright@msn.com United States Office European Office 8324 16th Avenue South President Kennedylaan 94 Minneapolis, MN 55425-1742 2343 GT Oegstgeest Phone: (952) 854-4911

More information

Lecture 11 Water pollution control by membrane based technologies

Lecture 11 Water pollution control by membrane based technologies Lecture 11 Water pollution control by membrane based technologies MEMBRANE Membrane can be described as a thin layer of material that is capable of separating materials as a function of their physical

More information

Understanding Reverse Osmosis Mark Rowzee Mark Rowzee

Understanding Reverse Osmosis Mark Rowzee Mark Rowzee Understanding Reverse Osmosis Mark Rowzee Mark Rowzee RO produces some of the highest-purity water and is a workhorse technology for drinking water applications. Many people have heard of reverse osmosis

More information

Evaluation of the ppm h concept for end-of-life RO membrane into recycled NF and UF membranes

Evaluation of the ppm h concept for end-of-life RO membrane into recycled NF and UF membranes Evaluation of the ppm h concept for end-of-life RO membrane into recycled NF and UF membranes Raquel García Pacheco PhD researcher raquel.pacheco@imdea.org Introduction What is a reverse osmosis membrane?

More information

Membranes & Water Treatment

Membranes & Water Treatment Latest Membrane Technologies in Industrial Water & Wastewater treatment Ajay Jindal Larsen & Toubro Limited, Mumbai CII Water India 2011 New Delhi, February 11-12, 12, 2011 Membranes & Water Treatment

More information

APPLICATION OF LOW FOULING RO MEMBRANE ELEMENTS FOR RECLAMATION OF MUNICIPAL WASTEWATER.

APPLICATION OF LOW FOULING RO MEMBRANE ELEMENTS FOR RECLAMATION OF MUNICIPAL WASTEWATER. Mark Wilf Ph. D. and Steven Alt APPLICATION OF LOW FOULING RO MEMBRANE ELEMENTS FOR RECLAMATION OF MUNICIPAL WASTEWATER. Abs tract Membrane fouling encountered in reclamation of municipal wastewater represents

More information

Operating Guidelines Cleaning

Operating Guidelines Cleaning Technical Bulletin Operating Guidelines Cleaning Cleaning Pure Water Membrane Elements Introduction Regular cleaning of Desal membrane elements is important because foulants can build up on membrane surfaces,

More information

FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for High-Pressure Desalination Applications

FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for High-Pressure Desalination Applications Tech Fact FILMTEC Membranes How FILMTEC Seawater Membranes Can Meet Your Need for Desalination Higher pressure operation of seawater desalination plants can deliver many benefits, including higher recoveries,

More information

Membrane-Based Technologies for Sustainable Production of Power

Membrane-Based Technologies for Sustainable Production of Power Membrane-Based Technologies for Sustainable Production of Power Menachem Elimelech Department of Chemical & Environmental Engineering Yale University Water-Energy Nexus Symposium, January 29, 213, Exhibition

More information

Solutions Industry pioneers in spiral membrane technology

Solutions Industry pioneers in spiral membrane technology Water & Wastewater Spiral Wound Solutions Industry pioneers in spiral membrane technology Lenntech info@lenntech.com Tel. +31-152-610-900 www.lenntech.com Fax. +31-152-616-289 The Market Nobody knows spiral

More information

Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources

Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources Summary of Issues Strategies Benefits & Costs Key Uncertainties Additional Resources KEY POINT: The selection of a membrane treatment process for desalinating brackish water depends on the quality of the

More information

Novel Low Fouling Nanofiltration Membranes. Craig Bartels, PhD, Hydranautics, Oceanside, CA Warren Casey, PE, Hydranautics, Houston, TX

Novel Low Fouling Nanofiltration Membranes. Craig Bartels, PhD, Hydranautics, Oceanside, CA Warren Casey, PE, Hydranautics, Houston, TX Novel Low Fouling Nanofiltration Membranes Abstract Craig Bartels, PhD, Hydranautics, Oceanside, CA Warren Casey, PE, Hydranautics, Houston, TX Nanofiltration (NF) has become a standard process to treat

More information

FOUR MEMBRANE CLEANING PROFILES WITH MICRO-90 CONCENTRATED CLEANING SOLUTION AND MICRO A07 CITRIC ACID CLEANER

FOUR MEMBRANE CLEANING PROFILES WITH MICRO-90 CONCENTRATED CLEANING SOLUTION AND MICRO A07 CITRIC ACID CLEANER FOUR MEMBRANE CLEANING PROFILES WITH MICRO-90 CONCENTRATED CLEANING SOLUTION AND MICRO A07 CITRIC ACID CLEANER Jennifer Sun, Ph.D. Research Scientist jsun@ipcol.com June 10, 2014 SUMMARY Fouling and cleaning

More information

A NOVEL HYBRID FORWARD OSMOSIS- NANOFILTRATION TECHNOLOGY FOR SEAWATER DESALINATION

A NOVEL HYBRID FORWARD OSMOSIS- NANOFILTRATION TECHNOLOGY FOR SEAWATER DESALINATION A NOVEL HYBRID FORWARD OSMOSIS- NANOFILTRATION TECHNOLOGY FOR SEAWATER DESALINATION New Shi Lin Serene, Wee Lay Kit Jasmine Hwa Chong Institution (College) 661, Bukit Timah Road, Singapore 269734 Mentored

More information

Dow Water & Process Solutions. FILMTEC Reverse Osmosis Membranes. Technical Manual

Dow Water & Process Solutions. FILMTEC Reverse Osmosis Membranes. Technical Manual Dow Water & Process Solutions FILMTEC Reverse Osmosis Membranes Technical Manual The contents of this manual are for reference purposes and for a better understanding of reverse osmosis equipment and operations.

More information

Overview. Commercial High-Purity Water Systems and Applications. Quality Water Is Our Business

Overview. Commercial High-Purity Water Systems and Applications. Quality Water Is Our Business Commercial High-Purity Water Systems and Applications Quality Water Is Our Business Overview High-purity water: definitions High-purity water: methods o Distillation o Deionization o Membrane filtration

More information

New prototype prefilter for seawater RO

New prototype prefilter for seawater RO Techneau January 2007 New prototype prefilter for seawater RO Protocol for bench-scale testing Techneau January 2007 New prototype prefilter for seawater RO Protocol for bench-scale testing 2006 is an

More information

Investigating Membrane Biofouling from perspectives of Bacterial Size and Shape, using Field-Flow Flow Fractionation

Investigating Membrane Biofouling from perspectives of Bacterial Size and Shape, using Field-Flow Flow Fractionation 1/29 Investigating Membrane Biofouling from perspectives of Bacterial Size and Shape, using Field-Flow Flow Fractionation Eunkyung Lee, Sungyun Lee, Jihee Moon, Suhan Kim, Jaeweon Cho* NOM ecology laboratory

More information

Evaluation of New Generation Brackish Water Reverse Osmosis Membranes. William Pearce City of San Diego. Manish Kumar MWH, Pasadena

Evaluation of New Generation Brackish Water Reverse Osmosis Membranes. William Pearce City of San Diego. Manish Kumar MWH, Pasadena Evaluation of New Generation Brackish Water Reverse Osmosis Membranes William Pearce City of San Diego Manish Kumar MWH, Pasadena Since the development of brackish water reverse osmosis (RO) membranes

More information

Use of Spiral Wound UF in RO Pretreatment

Use of Spiral Wound UF in RO Pretreatment Use of Spiral Wound UF in RO Pretreatment Authors: Harry Dalaly, Asia Pacific Sales Manager, Hydranautics and Yeoh Cheik How, Facilities Senior Engineer, Hewlett-Packard Singapore The Hewlett-Packard Singapore

More information

Evaluation of membrane fouling for in-line filtration of oil sands. process-affected water: The effects of pretreatment conditions

Evaluation of membrane fouling for in-line filtration of oil sands. process-affected water: The effects of pretreatment conditions SUPPORTING INFORMATION Evaluation of membrane fouling for in-line filtration of oil sands process-affected water: The effects of pretreatment conditions Eun-Sik Kim, Yang Liu *, Mohamed Gamal El-Din *

More information

Effluent Treatment Methods And Reverse Osmosis and its Rejects Handling

Effluent Treatment Methods And Reverse Osmosis and its Rejects Handling Effluent Treatment Methods And Reverse Osmosis and its Rejects Handling Dr P P Lal Krishna Chief Executive Officer Ramky Pharma City (India) Ltd Developer of Jawaharlal Nehru Pharma City - Vizag TREATMENT

More information

Reduced Footprint Water Treatment Technology

Reduced Footprint Water Treatment Technology H 2 Oil & Gas An Group Company Reduced Footprint Water Treatment Technology Up to 50% footprint saving compared to conventional technology. www.h2oilandgas.com REDft REDft How it works In the REDft process,

More information

Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 4. Page 1

Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 4. Page 1 Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 4 Page 1 Reverse Osmosis (RO) Introduction. RO membrane structures & materials (general overview) RO membranes modules. RO system

More information

Continuous Water Recycling For Reusable Plastic Containers

Continuous Water Recycling For Reusable Plastic Containers Continuous Water Recycling For Reusable Plastic Containers *Miroslav Colic, Ariel Lechter Clean Water Technology Inc., Los Angeles, CA ABSTRACT The pilot study and full scale installation of UF-RO based

More information

ACUMER ACUMER 4450 ACUMER 4800

ACUMER ACUMER 4450 ACUMER 4800 ACUMER 4035 - ACUMER 4450 ACUMER 4800 Polymer scale inhibitors and dispersants for membrane separation processes. Membrane systems demand high performance scale inhibitors to treat industrial water and

More information

REJECTION OF CHLORIDE SALTS BY NANOFILTRATION MEMBRANES IN BRACKISH DESALINATION

REJECTION OF CHLORIDE SALTS BY NANOFILTRATION MEMBRANES IN BRACKISH DESALINATION REJECTION OF CHLORIDE SALTS BY NANOFILTRATION MEMBRANES IN BRACKISH DESALINATION A. A. Abuhabib¹,*, A. W. Mohammad², RakmiAbd.Rahman², and Ahmad H. El-Shafie¹ ¹Department of Civil and Strutcture Engineering,

More information

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY

HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY HEAVY INDUSTRY PLANT WASTEWATER TREATMENT, RECOVERY AND RECYCLE USING THREE MEMBRANE CONFIGURATIONS IN COMBINATION WITH AEROBIC TREATMENT A CASE STUDY ABSTRACT Francis J. Brady Koch Membrane Systems, Inc.

More information

Low Fouling and Energy Consumption two-stage Forward and Reverse Osmosis desalination Process

Low Fouling and Energy Consumption two-stage Forward and Reverse Osmosis desalination Process Low Fouling and Energy Consumption two-stage Forward and Reverse Osmosis desalination Process Malak Hamdan Energy and Water Security Workshop, 15-17 February 2015, (Doha) Qatar 1 Overview of Presentation

More information

Advanced Treatment by Membrane Processes

Advanced Treatment by Membrane Processes Advanced Treatment by Membrane Processes presented by Department of Hydraulic and Environmental Engineering 1 Fundamentals of membrane technology Definition: A membrane is a permselective barrier, or interface

More information

27 th ANNUAL WATEREUSE SYMPOSIUM CHALLENGES OF HIGH-SULFATE WASTEWATER RECYCLE. Abstract. Introduction

27 th ANNUAL WATEREUSE SYMPOSIUM CHALLENGES OF HIGH-SULFATE WASTEWATER RECYCLE. Abstract. Introduction 27 th ANNUAL WATEREUSE SYMPOSIUM CHALLENGES OF HIGH-SULFATE WASTEWATER RECYCLE William Matheson, Duraflow, Tewksbury, MA Abstract A cement products manufacturer, having a sulfate and total dissolved solid

More information

Nanofiltration: New Developments Show Promise. Dr Graeme K Pearce, Membrane Consultancy Associates

Nanofiltration: New Developments Show Promise. Dr Graeme K Pearce, Membrane Consultancy Associates Nanofiltration: New Developments Show Promise Dr Graeme K Pearce, Membrane Consultancy Associates www.membraneconsultancy.com Introduction There has been a dramatic evolution in the application of membranes

More information

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges

Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Membrane Filtration Technology: Meeting Today s Water Treatment Challenges Growing global demand for clean water and increasing environmental concerns make membrane filtration the technology of choice

More information

SYNTHESIS AND EVALUATION OF FUNCTIONALIZED CARBON NANOTUBES (CNT) BASED POLYMER COMPOSITE NANOFILTRATION MEMBRANES FOR DESALINATION

SYNTHESIS AND EVALUATION OF FUNCTIONALIZED CARBON NANOTUBES (CNT) BASED POLYMER COMPOSITE NANOFILTRATION MEMBRANES FOR DESALINATION SYNTHESIS AND EVALUATION OF FUNCTIONALIZED CARBON NANOTUBES (CNT) BASED POLYMER COMPOSITE NANOFILTRATION MEMBRANES FOR DESALINATION D. Deepa 1, V. Nehrukumar 2, V. Chidambaranathan 3. 1 Research Scholar,

More information

MEMBRANE CHEMICALS Presented by: Majid Karami

MEMBRANE CHEMICALS Presented by: Majid Karami MEMBRANE CHEMICALS Presented by: Majid Karami Introduction Water shortage is becoming a worldwide problem One of the main solutions to this problem is : Desalination of seawater or brackish water Desalination

More information

SEPARATION OF OIL WATER EMULSION FROM CAR WASHES

SEPARATION OF OIL WATER EMULSION FROM CAR WASHES SEPARATION OF OIL WATER EMULSION FROM CAR WASHES S. Panpanit, C. Visvanathan, and S. Muttamara. Environmental Engineering Program, Asian Institute of Technology, P.O. Box: 4, Klong Luang 12120, Pathumthani,

More information

NIPPON PAPER RO SYSTEM + 2 Others

NIPPON PAPER RO SYSTEM + 2 Others NIPPON PAPER RO SYSTEM + 2 Others 1 March 2014 Greg Wyrick District Account Manager John Zora District Account Manager 2 Purpose: Review the design, function, layout, and operation of the RO system. Process:

More information

Webcast August 9, R. Shane Trussell, Ph.D., P.E., BCEE Principal Investigator. Gordon J. Williams, Ph.D., P.E.

Webcast August 9, R. Shane Trussell, Ph.D., P.E., BCEE Principal Investigator. Gordon J. Williams, Ph.D., P.E. Reclaimed Water Desalination Technologies: A Full-Scale Performance and Cost Comparison Between Electrodialysis Reversal and Microfiltration/ Reverse Osmosis Webcast August 9, 2012 R. Shane Trussell, Ph.D.,

More information

Application of supercritical CO 2 for cleaning of reverse osmosis membrane biofouling

Application of supercritical CO 2 for cleaning of reverse osmosis membrane biofouling Application of supercritical CO 2 for cleaning of reverse osmosis membrane biofouling Sungmin Mun, Youn-Woo Lee, Jeyong Yoon * School of Chemical and Biological Engineering, College of Engineering, Seoul

More information

Membrane distillation and novel integrated membrane process for reverse osmosis drained wastewater treatment

Membrane distillation and novel integrated membrane process for reverse osmosis drained wastewater treatment Desalination and Water Treatment www.deswater.com 19-399 / 19-39 Desalination Publications. All rights reserved. doi:./dwt..17 1 () 91 June Membrane distillation and novel integrated membrane process for

More information

FILMTEC Membranes. FILMTEC Membranes Reclaim Waste Water at 86% Recovery in Singapore. Case History

FILMTEC Membranes. FILMTEC Membranes Reclaim Waste Water at 86% Recovery in Singapore. Case History Case History Reclaim Waste Water at 86% Recovery in Singapore Site Information Location Singapore Purpose Supply low-cost, highgrade industrial water from tertiary-treated waste water. Comparative Performance

More information

FILMTEC Membranes System Design: Introduction

FILMTEC Membranes System Design: Introduction Tech Manual Excerpt FILMTEC Membranes System Design: Introduction Introduction An entire reverse osmosis (RO)/nanofiltration (NF) water treatment system consists of the pretreatment section, the membrane

More information

FILMTEC Membranes. Case History. Retrofitting Hollow Fiber Elements with Spiral Wound RO Technology in Agragua, Spain

FILMTEC Membranes. Case History. Retrofitting Hollow Fiber Elements with Spiral Wound RO Technology in Agragua, Spain Case History FILMTEC Membranes Retrofitting Hollow Fiber Elements with Spiral Wound RO Technology in Agragua, Spain Site Information Location: Agragua (Galdar), Canary Islands, Spain Size: 3 x 4,700 m

More information

REQUEST FOR PROPOSALS DESAL ANTISCALANT/CLEAN-IN-PLACE CHEMICALS BID NO: ADDENDUM 1

REQUEST FOR PROPOSALS DESAL ANTISCALANT/CLEAN-IN-PLACE CHEMICALS BID NO: ADDENDUM 1 REQUEST FOR PROPOSALS DESAL ANTISCALANT/CLEAN-IN-PLACE CHEMICALS BID NO: 18-18006 ADDENDUM 1 BIDS DUE: April 30, 2018 @ 3:00 PM Central Time To report suspected ethics violations impacting the San Antonio

More information

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Osmotic Separations: Reverse and Forward Osmosis

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Osmotic Separations: Reverse and Forward Osmosis CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W Osmotic Separations: Reverse and Forward Osmosis Objective: The objective of this experiment is to evaluate the performance of various membranes when used

More information

RO System Design & CSMPRO v6.0 Program

RO System Design & CSMPRO v6.0 Program RO System Design & CSMPRO v6.0 Program CONTENTS 1 System Design 2 CSMPRO v6.0 Introduction 1 1 System Design 2 Consideration of Feed Source, Application The membrane system design depends on Feed Source,

More information

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras

Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Water and Wastewater Engineering Dr. Ligy Philip Department of Civil Engineering Indian Institute of Technology, Madras Advanced Wastewater Treatment Lecture # 33 Last class we were discussing about various

More information

Desalination. Section 10 SECTION TEN. Desalination

Desalination. Section 10 SECTION TEN. Desalination SECTION TEN Desalination Section 10 Desalination SECTION 10 Desalination West Basin s experience in recycled water treatment includes substantial knowledge on methods used for the removal of salt from

More information

Separation of oil water emulsion from car washes

Separation of oil water emulsion from car washes Separation of oil water emulsion from car washes S. Panpanit, C. Visvanathan and S. Muttamara Environmental Engineering Program, Asian Institute of Technology, P.O. Box: 4, Klong Luang 12120, Pathumthani,

More information

A NANOFILTRATION MEMBRANE FOR THE REMOVAL OF COLOR AND DISINFECTION BYPRODUCTS FROM SURFACE WATER TO MEET STATE AND FEDERAL STANDARDS

A NANOFILTRATION MEMBRANE FOR THE REMOVAL OF COLOR AND DISINFECTION BYPRODUCTS FROM SURFACE WATER TO MEET STATE AND FEDERAL STANDARDS A NANOFILTRATION MEMBRANE FOR THE REMOVAL OF COLOR AND DISINFECTION BYPRODUCTS FROM SURFACE WATER TO MEET STATE AND FEDERAL STANDARDS Rich N. Franks, Hydranautics/Nitto Denko, 401 Jones Rd., Oceanside,

More information

Dow Water Process Solutions Filmtec Reverse Osmosis Membranes Technical Manual

Dow Water Process Solutions Filmtec Reverse Osmosis Membranes Technical Manual Dow Water Process Solutions Filmtec Reverse Osmosis Membranes Technical Manual DOW FILMTEC SEAMAXX Seawater Reverse Osmosis Element. Features membrane quality with automated precision fabrication facilitating

More information

Wind and Solar Energy Driven RO Brackish Water Desalination

Wind and Solar Energy Driven RO Brackish Water Desalination Southern Illinois University Carbondale OpenSIUC 2006 Conference Proceedings 7-18-2006 Wind and Solar Energy Driven RO Brackish Water Desalination Clark C. K. Liu Krispin Fernandes Follow this and additional

More information

Commercial Reverse Osmosis System

Commercial Reverse Osmosis System Commercial Reverse Osmosis System Aqua Clear Water Treatment Specialists manufacturers and engineers standard and custom commercial reverse osmosis systems water to accomodate many different water conditions.

More information

ULTRAFILTRATION FOR REVERSE OSMOSIS-PRETREATMENT

ULTRAFILTRATION FOR REVERSE OSMOSIS-PRETREATMENT ULTRAFILTRATION FOR REVERSE OSMOSIS-PRETREATMENT Ajay Popat Chief Executive Officer Ion Exchange Waterleau Ltd. BASIC CONCEPTS OF ULTRAFILTRATION Ultrafiltration Pre-treatment is the best pre-treatment

More information

DESIGN AND OPERATION OF A HYBRID RO SYSTEM USING ENERGY SAVING MEMBRANES AND ENERGY RECOVERY TO TREAT SOUTHERN CALIFORNIA GROUND WATER.

DESIGN AND OPERATION OF A HYBRID RO SYSTEM USING ENERGY SAVING MEMBRANES AND ENERGY RECOVERY TO TREAT SOUTHERN CALIFORNIA GROUND WATER. DESIGN AND OPERATION OF A HYBRID RO SYSTEM USING ENERGY SAVING MEMBRANES AND ENERGY RECOVERY TO TREAT SOUTHERN CALIFORNIA GROUND WATER Alex Anit, Rich Franks, Craig Bartels, Ph.D. Hydranautics Srinivas

More information

Membrane Desalination Technology

Membrane Desalination Technology Membrane Desalination Technology Desalination, or demineralization is a treatment process that removes salt and other minerals from brackish water and seawater to produce high quality drinking water. Various

More information

Optimum RO System Design with High Area Spiral Wound Elements

Optimum RO System Design with High Area Spiral Wound Elements Optimum RO System Design with High Area Spiral Wound Elements Craig Bartels Ph. D, Masahiko Hirose, Stefan Rybar Ph. D and Rich Franks Hydranautics A Nitto Denko Company. Oceanside, CA Abstract The membrane

More information

Reuse of Refinery Treated Wastewater in Cooling Towers

Reuse of Refinery Treated Wastewater in Cooling Towers Iran. J. Chem. Chem. Eng. Vol. 27, No. 4, 28 euse of efinery Treated Wastewater in Cooling Towers Nikazar, Manouchehr* + ; Jamshidi, Mishana Faculty of Chemical Engineering, Amirkabir University of Technology,

More information

A Study of Water Flux through Forward Osmosis Membrane Using Brine\Fresh Water System

A Study of Water Flux through Forward Osmosis Membrane Using Brine\Fresh Water System Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.14 No.4 (December 2013) 11-18 ISSN: 1997-4884 University of Baghdad College of Engineering A

More information

Make Water Anywhere with Pall Integrated Membrane Systems

Make Water Anywhere with Pall Integrated Membrane Systems Make Water Anywhere with Pall Integrated Membrane Systems Tim Lilley, Pall Corporation Portsmouth, April 2012 COPYRIGHT 2012 The information contained in this document is the property of the Pall Corporation,

More information

BOOMERANG FROM BIO-EFFLUENT TO POTABLE WATER

BOOMERANG FROM BIO-EFFLUENT TO POTABLE WATER BOOMERANG FROM BIO-EFFLUENT TO POTABLE WATER FROM BIO-EFFLUENT TO POTABLE WATER Waterleau uses state of the art membrane technology for closing the loop in the water cycle. A double barrier membrane concept

More information

Factors Affecting Filtration Characteristics in Submerged Membrane Bioreactor for Wastewater Treatment

Factors Affecting Filtration Characteristics in Submerged Membrane Bioreactor for Wastewater Treatment Factors Affecting Filtration Characteristics in Submerged Membrane Bioreactor for Wastewater Treatment Dr V S SAPKAL 1 ; D J GARKAL 2 ; Dr R S SAPKAL 3 ; P V SAPKAL 4 1 Vice Chancellor, RTM Nagpur University,

More information

Sea Water & Brackish Water Reverse Osmosis System

Sea Water & Brackish Water Reverse Osmosis System Sea Water & Brackish Water Reverse Osmosis System Technology for Sea Water Desalination Process & Maintenance Reliability Costs- CAPEX & OPEX Product Recovery THERMAL (MSF) Simple Pretreatment Product

More information

Gregory E. Choryhanna and Alan R. Daza, SEPROTECH SYSTEMS INC. Process Development Division Ottawa, Canada

Gregory E. Choryhanna and Alan R. Daza, SEPROTECH SYSTEMS INC. Process Development Division Ottawa, Canada SUCCESSFUL IMPLEMENTATION OF MEMBRANE TECHNOLOGY IN DYE ASTEATER RECYCLING Gregory E. Choryhanna and Alan R. Daza, SEPROTECH SYSTEMS INC. Process Development Division Ottawa, Canada ABSTRACT A pilot test

More information

Water reuse and waste water minimization

Water reuse and waste water minimization Volvo Cars Gent Water reuse and waste water minimization Reverse osmosis process on rinsing waters after the phosphating process for water and raw material recuperation Michel Schauwvliege (senior engineer

More information

Studying Flux Decline in Hollow fiber Microfiltration unit using Domestic Wastewater

Studying Flux Decline in Hollow fiber Microfiltration unit using Domestic Wastewater Research Journal of Recent Sciences ISSN 2277-2502 Res.J.Recent Sci. Studying Flux Decline in Hollow fiber Microfiltration unit using Domestic Wastewater Abstract Shigidi Ihab and Danish Mohd Department

More information

Cleaning. DATA Monitoring

Cleaning. DATA Monitoring Cleaning Over time, membrane systems can become fouled with any of a number of foulants such as colloids, organic matter, metallic scales, and biological constituents. (See Pretreatment). These materials

More information

Experimental Investigation of Adsorption-Flocculation-Microfiltration Hybrid System in Wastewater Reuse

Experimental Investigation of Adsorption-Flocculation-Microfiltration Hybrid System in Wastewater Reuse Experimental Investigation of Adsorption-Flocculation-Microfiltration Hybrid System in Wastewater Reuse W.S. Guo a, H. Chapman b, S. Vigneswaran c * and H.H. Ngo d a,b,c,d Faculty of Engineering, University

More information

Ultrafiltration Technical Manual

Ultrafiltration Technical Manual Ultrafiltration Technical Manual Copyright by: inge AG Flurstraße 17 86926 Greifenberg (Germany) Tel.: +49 (0) 8192 / 997 700 Fax: +49 (0) 8192 / 997 999 E-Mail: info@inge.ag Internet: www.inge.ag Contents

More information

Industrial Waste Management and Water Treatment Opportunities November Saudi Aramco: Public

Industrial Waste Management and Water Treatment Opportunities November Saudi Aramco: Public Industrial Waste Management and Water Treatment Opportunities November 2018 Disclaimer The next slides contain forward-looking statements regarding future events based on current expectations, estimates,

More information

Split partial second pass design for SWRO plants

Split partial second pass design for SWRO plants Desalination and Water Treatment 13 (21) 186 194 www.deswater.com January 1944-3994/1944-3986 # 21 Desalination Publications. All rights reserved doi: 1.54/dwt.21.989 Split partial second pass design for

More information

Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 3. Page 1

Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 3. Page 1 Advanced Water Treatment (DESALINATION) معالجة مياه متقدمة EENV 5330 PART 3 Page 1 Membrane Desalination Overview Electordialysis (ED) Historical information Technology illustration Examples Page 2 1.5.1

More information

Water supplied by Marafiq does not meet the process requirements.

Water supplied by Marafiq does not meet the process requirements. WATER TREATMENT In Industries Water is used for: a. Drinking b. Cleaning c. Cooling d. Producing Steam e. Process requirement Why we need to treat water? For human consumption a. Water to be purified (Make

More information

Membranes for Industrial Applications. Claudia Staudt, GMM/M BASF SE Ludwigshafen

Membranes for Industrial Applications. Claudia Staudt, GMM/M BASF SE Ludwigshafen Membranes for Industrial Applications Claudia Staudt, GMM/M BASF SE Ludwigshafen claudia.staudt@basf.com Content Introduction Membrane materials Membrane types for industrial applications Approaches for

More information

Magnetic Resonance Imaging of Membrane Fouling Dr Einar Fridjonsson

Magnetic Resonance Imaging of Membrane Fouling Dr Einar Fridjonsson Magnetic Resonance Imaging of Membrane Fouling Dr Einar Fridjonsson Fluid Science & Resources School of Mechanical and Chemical Engineering University of Western Australia Mobile NMR technology Research

More information

Demineralization (RO, NF, UF, MF, ED, IE)

Demineralization (RO, NF, UF, MF, ED, IE) Demineralization (RO, NF, UF, MF, ED, IE) The purpose of demineralization is to separate minerals from water 1 Predominant Constituents of Dissolved Solids 2 Water Supply Classification Fresh Water, less

More information

WATER TREATMENT ENERGIZED BY

WATER TREATMENT ENERGIZED BY WATER TREATMENT ENERGIZED BY LEWABRANE Reverse osmosis (RO) membrane elements for industrial and potable water treatment LEWABRANE PREMIUM PRODUCTS FOR WATER TREATMENT LANXESS has designed Lewabrane RO

More information

Membrane Technology: From Manufacture to. May Production

Membrane Technology: From Manufacture to. May Production Membrane Technology: From Manufacture to May 2018 Production Osmosis Graphic pulled from https://earthobservatory.nasa.gov/features/water/page2.php Water Sources Surface Waters Ground Water Seawater Lakes

More information