BIOHAVEN FLOATING ISLANDS: DURABILITY, BUOYANCY AND PROJECTED LIFE

Size: px
Start display at page:

Download "BIOHAVEN FLOATING ISLANDS: DURABILITY, BUOYANCY AND PROJECTED LIFE"

Transcription

1 BIOHAVEN FLOATING ISLANDS: DURABILITY, BUOYANCY AND PROJECTED LIFE Natural floating islands occur in a number of unique settings around the world. These include mangrove mats in coastal equatorial settings, pools and other waterways associated with volcanic activity, and waterways associated with arboreal forests (typically around the 45th parallel in both the Northern and Southern Hemispheres). Variations of floating islands have been built by humans for at least 2,000 years. However, until the advent of BioHaven floating islands, none of the human-designed systems purposely biomimicked nature's floating island models. Instead, they relied upon conventional buoyancy factors to achieve freeboard (the volume of a floating structure that lies above the waterline) to grow crops or provide communal living space. BioHaven floating islands are designed to replicate arboreal forest-based islands (Van Duzer, 2004). Natural floating islands are typically peat-based and are essentially biofilm reactors. Biofilmgenerating bacteria grow on the surface area of plant roots within the peat and on the surface area of the peat itself. Much of the island buoyancy is not associated with conventional factors such as low-density materials or entrained air. Instead, these islands float because of biogas (gases produced by bacteria within a biofilm) contained between the water table and the top of the island. This zone of trapped biogas can actually extend below the waterline on the inside of the island. This buoyancy contributes substantially to floating islands durability, longevity and size, which can encompass dozens of acres and support thousands of full-size trees. Figure 1. Large natural island at Chippewa Flowage, Wisconsin 1

2 Based on research funded by the State of Montana and Floating Island International (FII) and carried out at Montana State University's Center for Biofilm Engineering, aerobic, anoxic and anaerobic zones quickly develop on the matrix of BioHaven floating islands, when the surface area of the matrix is exposed to nutrient-laden water, especially when combined with circulation. Biofilm-generating microbes typically grow so fast that they are the only common life form to potentially take up nutrients more rapidly than phytoplankton (algae). The primary biogases associated with floating islands are carbon dioxide (most microbial processes) and nitrogen (anoxic denitrification). Gases produced only by anaerobic processes are hydrogen sulfide and methane. FII can model nutrient cycling through BioHavens, and accordingly can estimate the volume of buoyant gas that can be generated within a cubic foot of island under variable nutrient loading conditions. Figure 2. FTW schematic For water quality improvement using BioHavens, FII has developed a spreadsheet model to estimate either the floating island size(s) required to meet water quality objectives, or the effect on a waterway of a given floating island size. Capital costs can then be estimated. Water quality parameters that dictate floating island requirements include ammonia, nitrate, phosphorus, total suspended solids and Biochemical Oxygen Demand. BioHaven floating islands cycle nutrients from water into periphyton, which is a base material representing an alternative to free-floating algae. Periphyton is the microfloral and microfaunal community (bacteria, algae, protozoa, etc.) living attached to submerged surfaces. One of its primary values is that periphyton does not experience the massive bloom and die-off cycle of free-floating algae. Instead, it provides a continuous and perennial source of both food and oxygen for higher forms of life. Numerous studies have documented periphyton's relative value in triggering massive fish production (Azim 2005). With some stewardship, nutrients that would otherwise cycle into algae and ultimately reduce dissolved oxygen levels can be instead transitioned into fish. This cycling of nutrients contributes to BioHavens ongoing buoyancy. FACTORS REDUCING BIOHAVEN FLOATING ISLAND BUOYANCY Microbes that colonize a BioHaven are resilient. When seasonal or other environmental conditions are not optimal, these microbes have evolved strategies to ensure survival. When conditions become more favorable, microbes rapidly resume their nutrient cycling abilities. However, certain environmental conditions, such as exposure to broad-spectrum biocides or herbicides, can affect even resilient microbial populations. When this occurs, BioHavens generate less of the biogas that accounts for their ongoing buoyancy. As a design safety measure and means by which to provide initial buoyancy prior to mature biofilm development, typically a period of about one full growing season, BioHavens incorporate a proprietary blend of marine-based polyurethane foam as added buoyancy. To date, 4,800 BioHavens have been installed in a wide range of settings around the world, including wastewater ponds, stormwater ponds, lakes, streams, rivers and oceans. FII has seen no documented cases of island buoyancy 2

3 failure. While there have been instances of reduced buoyancy associated with addition of chemicals such as biocides, BioHavens have always recovered. Figure 3. Periphyton on the FTW matrix Figure 4. Dutchy Lake, Oregon, where a 20,000-ft 2 FTW is covered with six inches of crushed rock 3

4 Other factors can lead to partial island submergence. These include exposure to heavy rainfall and snow loads as well as exceptional wildlife events, like large alligators that have used islands as convenient sunning locations. In all cases, BioHavens have fully recovered. For example, when the freeboard becomes saturated after a large rainfall event, an island will ride somewhat lower in the water until evaporation reduces the added weight. Figure 5. Dutchy Lake FTW partially submerged after rainfall Island freeboard can also decrease with high atmospheric pressure. This is due to the corresponding reduction in the diameter of gas bubbles contained within biofilm coating the BioHaven matrix surface area. Figure 6. The Elfin Cove walkway in southeast Alaska that experienced up to a 45-inch snowfall load 4

5 Figure 7. Seawater biota thriving on the underside of the floating island, which did not reduce buoyancy It should be noted that marine FTWs have withstood up to a five-foot tidal surge. FACTORS DAMAGING BIOHAVENS Beaver, nutria, Canada geese and alligators have been known to dig holes into BioHavens. While such holes represent a cosmetic blemish, in no instances has such damage resulted in island failure. Muskrat are also suspected of damaging BioHavens on occasion but again, in no instances has this resulted in catastrophic failure or sinking of an island. PROJECTED LONGEVITY As BioHavens mature, they develop biofilm, diatom and phytoplankton forms of periphyton, which produce biogases and serve to maintain island buoyancy. Islands also become thicker as they mature. This results from plant humus accumulating on top of islands and other organic residue growing within islands. FII believes that young BioHavens correspond to the earlystage, peat-based, naturally occurring islands that they biomimic. Such islands do not normally create the pressurized vadose zone seen in older, mature natural islands. Large, mature natural islands can be as much as six meters thick within 20 meters of their perimeter. Because of their low permeability, this thickness serves to contain biogas and contributes to long-term 5

6 buoyancy. Accordingly, FII predicts that BioHavens will also develop pressurized vadose zones over time as they mature. Monitoring of BioHavens indicates that their dry weight can nearly double over the course of a single growing season, with a 72% increase in mass measured over an 11-week period (Kania, 2013). However, based on monitoring of the same 520-square-foot island, thickness only expands slightly to accommodate this mass buildup. Currently the 520 island located at FII s research center in Shepherd, MT has grown about nine centimeters thicker over an eight-year period, or approximately one half-inch per year. BioHavens are composed almost entirely of a polyester-based, nonwoven, filter-like material. This material is composed of fine threads of matrix and is vulnerable to ultraviolet light degradation. FII and its seven island manufacturers provide quality assurance guidelines that call for islands to be covered with either bedding soil or a blanket-like material (typically composed of coir or jute) at island launch. In some settings, where islands tend to very quickly develop a carpet of macrophyte cover, clients have opted to not incorporate this protective material. To date, FII knows of no island failures associated with any of these protection strategies. Figure 8. A recently launched floating island with full UV protection BioHaven floating island lifespan is anticipated to be at least ten years (Stewart, 2013) but the maximum life is still unknown. Most of FII s island manufacturers offer five-year warranties. Others offer seven-year warranties and one offers a ten-year warranty. If the design continues 6

7 to successfully biomimic naturally occurring peat-based islands, BioHavens will experience a life span much longer than ten years. Indications now are that current BioHavens are similar to early-stage natural islands. However, most naturally occurring islands grow in mesotrophic or oligotrophic waterways, while most BioHavens have been placed in eutrophic waterways (which is where they provide the most benefit). The added nutrients associated with eutrophic water suggests that BioHavens in such settings may outpace their naturally occurring counterparts in both growth and buoyancy. Current indications are that BioHavens become more buoyant over time. In hyper-eutrophic settings, BioHavens could potentially extend all the way to the bottom of a waterway. If aerobic conditions are present in these conditions (which is unlikely), it is possible that macrophyte roots could tie into such a waterway s benthic zone and permanently bond to the bottom of the waterway. In several settings, including high mountain spring creeks and streams associated with agricultural runoff, FII has successfully attached islands onto stream banks. In seasonal ponds, islands that were fully desiccated and apparently bonded to the dry waterway s bottom have again floated after the waterway refilled. Where plants present on such islands were sustained and could continue developing roots, it appears likely that islands could mate permanently into the waterway s benthic zone. It is unknown whether BioHaven s biogasbased buoyancy, in combination with buoyancy from the polyurethane foam, would cause such an island to free itself. Figure 9. Shoreline islands 20 months after installation REFERENCES 1. Azim, M.E., Periphyton: Ecology, Exploitation and Management. 2. Kania, B., Personal communication. 3. Stewart, F.M., Estimate of the Useful Lifespan of BioHaven Floating Treatment Wetlands. 4. Van Duzer, C., Floating Islands: A Global Bibliography. Cantor Press, California, USA. 7

BioHaven Floating Islands

BioHaven Floating Islands BioHaven Floating Islands Natural wetlands have long been recognized for their ability to clean water. More recently, constructed wetlands have become a common best management practice (BMP) for maintaining

More information

BioHaven Floating Wetland Technology White Paper

BioHaven Floating Wetland Technology White Paper BioHaven Floating Wetland Technology White Paper Rev 2; 7-12-17 1 EXECUTIVE SUMMARY 3 BACKGROUND 6 TECHNOLOGY OPTIONS AND USES 8 BioHaven Floating Islands 9 STORM WATER MANAGEMENT 10 HABITAT & FISHERIES

More information

WaterShapes May 2007 Slug: Bruce Kania 5. Microbes Rule! By Bruce Kania

WaterShapes May 2007 Slug: Bruce Kania 5. Microbes Rule! By Bruce Kania WaterShapes May 2007 Slug: Bruce Kania 5 Microbes Rule! By Bruce Kania For as long as liquid water has supported life on our planet, a range of factors have played dynamic roles in sustaining balanced,

More information

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment.

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Explain how human impact is affecting biogeochemical cycles

More information

Wastewater Treatment clarifier

Wastewater Treatment clarifier Wastewater Treatment Pretreatment During pretreatment, items would normally be removed that would hinder the further processes of treatment. Items commonly removed include roots, rags, cans, or other large

More information

The Dead Zone. Use the notes provided (attached to this sheet) to answer the following questions.

The Dead Zone. Use the notes provided (attached to this sheet) to answer the following questions. The Dead Zone Use the notes provided (attached to this sheet) to answer the following questions. 1. Re-define Eutrophication: 2. What are the risks associated with an excess of Nitrogen? 3. What is a Dead

More information

FACTS ABOUT GL BAL WARMING. gogreen. Shop visit An Ekotribe Initiative

FACTS ABOUT GL BAL WARMING. gogreen. Shop   visit   An Ekotribe Initiative FACTS ABOUT GL BAL WARMING Shop Online @ www.thegreenecostore.com Definition The earth is a natural greenhouse and is kept warm by water vapors, carbon dioxide (CO2), and other gases in the atmosphere,

More information

Lesson Overview 4.5 Aquatic Ecosystems

Lesson Overview 4.5 Aquatic Ecosystems Lesson Overview 4.5 Conditions Underwater What factors affect life in aquatic ecosystems? Aquatic organisms are affected primarily by the water s depth, temperature, flow, and amount of dissolved nutrients.

More information

Hydrology and Water Quality. Water. Water 9/13/2016. Molecular Water a great solvent. Molecular Water

Hydrology and Water Quality. Water. Water 9/13/2016. Molecular Water a great solvent. Molecular Water Hydrology and Water Quality Water Molecular Water Exists as an equilibrium But equilibrium altered by what is dissolved in it Water Molecular Water a great solvent In reality, water in the environment

More information

Hydrology and Water Quality. Water. Water 9/11/2018. Molecular Water a great solvent. Molecular Water

Hydrology and Water Quality. Water. Water 9/11/2018. Molecular Water a great solvent. Molecular Water Hydrology and Water Quality Water Molecular Water Exists as an equilibrium But equilibrium altered by what is dissolved in it Water Molecular Water a great solvent In reality, water in the environment

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Josette M. La Hée, Ph.D. Limnologist Research and Development

Josette M. La Hée, Ph.D. Limnologist Research and Development Aeration: A key tool in aquatic system restoration and management Josette M. La Hée, Ph.D. Limnologist Research and Development http://www.vertexwaterfeatures.com Aeration Aeration the process by which

More information

Biogeochemical Cycles

Biogeochemical Cycles Biogeochemical Cycles Biogeochemical Cycles refers to the cycling of materials between living things and the environment. Text Pages 50 51, 62 69 1 The Oxygen Cycle the movement of oxygen between the atmosphere

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions

Chapter 6. Aquatic Biodiversity. Chapter Overview Questions Chapter 6 Aquatic Biodiversity Chapter Overview Questions Ø What are the basic types of aquatic life zones and what factors influence the kinds of life they contain? Ø What are the major types of saltwater

More information

13.5. Cycling of Matter. Water cycles through the environment.

13.5. Cycling of Matter. Water cycles through the environment. 13.5 Cycling of Matter VOCABULARY hydrologic cycle biogeochemical cycle nitrogen fixation KEY CONCEPT Matter cycles in and out of an ecosystem. Main Ideas Water cycles through the environment. Elements

More information

WASA Quiz Review. Chapter 2

WASA Quiz Review. Chapter 2 WASA Quiz Review Chapter 2 Question#1 What is surface runoff? part of the water cycle that flows over land as surface water instead of being absorbed into groundwater or evaporating Question #2 What are

More information

How Ecosystems Work Section 2

How Ecosystems Work Section 2 Objectives List the three stages of the carbon cycle. Describe where fossil fuels are located. Identify one way that humans are affecting the carbon cycle. List the tree stages of the nitrogen cycle. Describe

More information

CBF Water Quality Interactive Map

CBF Water Quality Interactive Map CBF Water Quality Interactive Map Student and adult groups that take part Often, they measure the water chemistry to evaluate the be doing it when you come out with us! By compiling these points on a map

More information

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle.

The rest of this article describes four biogeochemical cycles: the water cycle, carbon cycle, nitrogen cycle, and phosphorous cycle. BIOGEOCHEMICAL CYCLES The chemical elements and water that are needed by living things keep recycling over and over on Earth. These cycles are called biogeochemical cycles. They pass back and forth through

More information

Ecology Part 2. Living Environment

Ecology Part 2. Living Environment Ecology Part 2 Living Environment Recycling in the Biosphere Matter is recycled within and between ecosystems Elements, chemical compounds, and other forms of matter are passed from one organism to another

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Nitrogen cycle Important steps

Nitrogen cycle Important steps Nitrogen cycle Nitrogen cycle Important steps Stage1 Entry and Accumulation Ammonia is introduced into the water via tropical fish waste, uneaten food, and decomposition. These will break down into ammonia

More information

AP Environmental Science

AP Environmental Science AP Environmental Science Types of aquatic life zones MARINE Estuaries coral reefs mangrove swamps neritic zone pelagic zone FRESHWATER lakes and ponds streams and rivers wetlands Distribution of aquatic

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Section 2: The Cycling of Materials

Section 2: The Cycling of Materials Section 2: The Cycling of Materials Preview Bellringer Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

Tina Laidlaw US EPA 1

Tina Laidlaw US EPA 1 Tina Laidlaw US EPA 1 Many states have developed approaches for listing waterbodies for nutrient-related impairments based on the narrative standard Existing state approaches are similar to CO s proposal

More information

Duffin Creek Water Pollution Control Plant Technical Information

Duffin Creek Water Pollution Control Plant Technical Information Duffin Creek Water Pollution Control Plant Technical Information Plant History The Duffin Creek Water Pollution Control Plant (WPCP) is located on the northern shore of Lake Ontario in the City of Pickering

More information

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458

LIMNOLOGY. Inland Water Ecosystems. JACOB KALFF McGill University. Prentice Hall. Upper Saddle River, New Jersey 07458 LIMNOLOGY Inland Water Ecosystems JACOB KALFF McGill University Prentice Hall Prentice Hall Upper Saddle River, New Jersey 07458 Contents CHAPTER 1 Inland Waters and Their Catchments: An Introduction and

More information

These values can be considered from the perspective of three hierarchical levels:

These values can be considered from the perspective of three hierarchical levels: Wetland Ecology Lectures 19-20 Wetland Values Wetland Values These values can be considered from the perspective of three hierarchical levels: Population Ecosystem Global Populations easiest value to identify

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 The Carbon Cycle The carbon cycle is the movement of carbon from the nonliving environment into living things and back Carbon is the

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

Update on Straits Pond

Update on Straits Pond Update on Straits Pond Presented to the Board of Selectmen July 27, 2017 Issues of Concern raised by citizens along Straits Pond: Midges (?) Offensive odor Excessive Algae Background: Straits Pond is a

More information

CHEMICAL: CARBON and OXYGEN (read 44-45; in Dodson)

CHEMICAL: CARBON and OXYGEN (read 44-45; in Dodson) BIOE 155, Fall BACKGROUND INFORMATION CHEMICAL: CARBON and OXYGEN (read -5; 3-39 in Dodson) Types of molecules Organic: compounds containing Carbon-Hydrogen bonds Inorganic: everything else. Photosynthesis

More information

Ecosystems. 6.L.2.2 Explain how plants respond to external stimuli (including dormancy and forms of tropism) to enhance survival in an environment.

Ecosystems. 6.L.2.2 Explain how plants respond to external stimuli (including dormancy and forms of tropism) to enhance survival in an environment. Ecosystems Date: 6.L.2 Understand the flow of energy through ecosystems and the responses of populations to the biotic and abiotic factors in their environment. 6.L.2.1 Summarize how energy derived from

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

EUTROPHICATION. Student Lab Workbook

EUTROPHICATION. Student Lab Workbook EUTROPHICATION Student Lab Workbook THE SCIENTIFIC METHOD 1. Research Background literature research about a topic of interest 2. Identification of a problem Determine a problem (with regards to the topic)

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Ch. 7 Aquatic Ecology

Ch. 7 Aquatic Ecology Ch. 7 Aquatic Ecology 1.Coral Reefs: the aquatic equal to the tropical rain forests 2.The two major aquatic life zones A. saltwater or marine (estuaries, coastlines, coral reefs, coastal marshes, mangrove

More information

1. Global Climate. Latitude and Sunlight Intensity 12/4/2014. Chapter 52: Introduction to Ecology and the Biosphere. 1.

1. Global Climate. Latitude and Sunlight Intensity 12/4/2014. Chapter 52: Introduction to Ecology and the Biosphere. 1. Chapter 52: Introduction to Ecology and the Biosphere 1. Global Climate 2. Terrestrial Biomes 3. Aquatic Biomes 4. Factors Affecting Species Distribution 1. Global Climate Latitude and Sunlight Intensity

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

WASTEWATER TREATMENT SYSTEM

WASTEWATER TREATMENT SYSTEM WASTEWATER TREATMENT SYSTEM PrintStudioOne.com Nelson Environmental Inc. The Nelson Environmental OPTAER system is an efficient pond-based wastewater treatment solution utilized in a broad spectrum of

More information

Ecosystem Consulting Service, Inc. July 15, P a g e

Ecosystem Consulting Service, Inc. July 15, P a g e Prepared for: Normanoch Association Prepared by: Robert W. Kortmann, Ph.D. Ecosystem Consulting Service, Inc. July 17, 2014 Culver Lake Status 2014 (a brief mid-summer report) Cold water fish need water

More information

Why Water Quality? FOR IMMEDIATE RELEASE March 26, 2013

Why Water Quality? FOR IMMEDIATE RELEASE March 26, 2013 Nutrients Nutrients Microbes Rulers of the World Microbes and Redox Potential Dissolved Oxygen Nitrogen Cycle From Waste to Gas Phosphorus Cycle or Recycle Algae The Miracle of Life Stormwater - Loadings

More information

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains.

Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Objectives Explain how human activities can impact chemical cycles. Explain how pollution can affect food chains. Key Terms deforestation greenhouse effect global warming eutrophication acid rain pollution

More information

OCEANS AND AQUATIC ECOSYSTEMS- Vol. I - Geographic Information Systems Applied to the Analysis of Riparian Buffer Zones and Lakes - Norio Tanaka

OCEANS AND AQUATIC ECOSYSTEMS- Vol. I - Geographic Information Systems Applied to the Analysis of Riparian Buffer Zones and Lakes - Norio Tanaka GEOGRAPHIC INFORMATION SYSTEMS APPLIED TO THE ANALYSIS OF RIPARIAN BUFFER ZONES AND LAKES Norio Tanaka Saitama University, Saitama, Japan Keywords: GIS, remote sensing, riparian buffer zone, aquatic macrophytes,

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

Appendix X: Non-Point Source Pollution

Appendix X: Non-Point Source Pollution Appendix X: Non-Point Source Pollution Sources Nonpoint source of pollution, unlike pollution from industrial and sewage treatment plants, comes from many different sources. Nonpoint source pollution is

More information

This is the site setup with the bioreactor located at the west side and the wetlands at the east side. The area draining to the bioreactor via the

This is the site setup with the bioreactor located at the west side and the wetlands at the east side. The area draining to the bioreactor via the 1 2 This is the site setup with the bioreactor located at the west side and the wetlands at the east side. The area draining to the bioreactor via the west pump station includes a southern portion outside

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Life in Water. Chapter 3

Life in Water. Chapter 3 Life in Water Chapter 3 Outline Hydrologic Cycle Oceans Shallow Marine Waters Marine Shores Estuaries, Salt Marshes, and Mangrove Forests Rivers and Streams Lakes 2 The Hydrologic Cycle Over 71% of the

More information

Global Warming. By William K. Tong. Adjunct Faculty, Earth Science Oakton Community College

Global Warming. By William K. Tong. Adjunct Faculty, Earth Science Oakton Community College Global Warming By William K. Tong Adjunct Faculty, Earth Science Oakton Community College What Is Global Warming? According to the National Academy of Sciences, the Earth's surface temperature has risen

More information

What factors affect life in aquatic ecosystems?

What factors affect life in aquatic ecosystems? Aquatic Ecosystems: Notes Outline Today s Objective: Students will explain that different types of organisms exist within aquatic systems due to chemistry, geography, light, depth, salinity, and/or temperature.

More information

Think About It (not on notes)

Think About It (not on notes) Aquatic Ecosystems Think About It (not on notes) We call our planet Earth, yet nearly three-fourths of Earth s surface is covered with water. Despite the vital roles aquatic ecosystems play in the biosphere,

More information

Osher Course. What Lies Beneath the Inland Bays?

Osher Course. What Lies Beneath the Inland Bays? Osher Course What Lies Beneath the Inland Bays? Objectives for Course Describe the Delaware Inland Bays and their tributaries Illustrate the ecology and importance of estuaries Demonstrate the threats

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

biology Slide 1 of 39 End Show Copyright Pearson Prentice Hall

biology Slide 1 of 39 End Show Copyright Pearson Prentice Hall biology 1 of 39 2 of 39 4-4 Aquatic Ecosystems Nearly three-fourths of the Earth s surface is covered with water. Almost all bodies of water contain a wide variety of communities governed by biotic and

More information

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or

Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or Water is a solid, liquid, & gas. 71% of earth s surface is water. Our body is two-thirds water. Fresh water water that is not salty and has little or no taste, color, or smell. Salt water water that contains

More information

4-4 Aquatic Ecosystems

4-4 Aquatic Ecosystems biology 1 of 39 2 of 39 Nearly three-fourths of the Earth s surface is covered with water. Almost all bodies of water contain a wide variety of communities governed by biotic and abiotic factors including

More information

The GHG Club. Water vapour

The GHG Club. Water vapour Trace gases in our atmosphere act like the glass in a greenhouse. These trace gases trap much of the heat from the sun close to earth at night. These gases are called Greenhouse Gases (GHGs) and they help

More information

IMPACT OF INCREASING OXYGEN IN STORMWATER PONDS. Astha Vashisht, WCI Environmental Solutions Inc.*

IMPACT OF INCREASING OXYGEN IN STORMWATER PONDS. Astha Vashisht, WCI Environmental Solutions Inc.* IMPACT OF INCREASING OXYGEN IN STORMWATER PONDS Astha Vashisht, WCI Environmental Solutions Inc.* *WCI Environmental Solutions Inc., 1680 Woodward Drive, Suite 203, Ottawa, Ontario, K2C 3R7, avashisht@wcienvironmental.ca

More information

BIOLOGICAL WATER TREATMENT SYSTEMS. Sarah A. White, Ph.D. 25 Oct 2016

BIOLOGICAL WATER TREATMENT SYSTEMS. Sarah A. White, Ph.D. 25 Oct 2016 BIOLOGICAL WATER TREATMENT SYSTEMS Sarah A. White, Ph.D. 25 Oct 2016 Water challenges & concerns Treatment technologies for runoff Sediment basins Filter strips Vegetative buffers Vegetative waterways

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Lake Washington. Water Quality Assessment Report. Copyright 2012 PLM Lake & Land Management Corp.

Lake Washington. Water Quality Assessment Report. Copyright 2012 PLM Lake & Land Management Corp. Lake Washington 2012 Water Quality Assessment Report Copyright 2012 PLM Lake & Land Management Corp. Water Quality Report On May 22nd, June 18th, July 30th, August 29th, and September 27 th, 2012, PLM

More information

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA

Ecosphere. Background Information on Organisms ALGAE BRINE SHRIMP BACTERIA Background Information on Organisms ALGAE Ecosphere Algae are photosynthetic organisms that occur in most habitats, ranging from marine and freshwater to desert sands and from hot boiling springs in snow

More information

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ).

The Nitrogen Cycle. ) in the atmosphere is converted into ammonium ions ( NH 4 + ). The Nitrogen Cycle Nitrogen is essential for many processes; it is crucial for all life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic

More information

CHAPTER 4: CHARACTERISTICS IN ECOSYSTEMS

CHAPTER 4: CHARACTERISTICS IN ECOSYSTEMS 1 CHAPTER 4: CHARACTERISTICS IN ECOSYSTEMS 4.3. FACTORS AFFECTING ECOSYSTEMS Pages 101-107 Nelson 1. ABIOTIC FACTORS IN TERRESTRIAL ECOSYSTEMS 2 abiotic factors are the non-living components of an ecosystem

More information

Water Pollution. And Humans are 70% Water! A. Facts 1. 71% of the Earth s surface is water I. Water and the Planet Earth

Water Pollution. And Humans are 70% Water! A. Facts 1. 71% of the Earth s surface is water I. Water and the Planet Earth Water Pollution Water Pollution I. Water and the Planet Earth A. Facts 1. 71% of the Earth s surface is water. 3 0.5.003 2. Of the 100% of water on the planet, % is fresh water, % is available fresh water

More information

Carbon/Oxygen Cycle. By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan

Carbon/Oxygen Cycle. By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan Carbon/Oxygen Cycle By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan Background When animals breathe, they take in oxygen and exhale carbon dioxide. Plants use carbon dioxide (along with water

More information

STACKING FUNCTIONS: Floating island technology

STACKING FUNCTIONS: Floating island technology STACKING FUNCTIONS: Floating island technology by Christina Ishoj We live in an exciting time when ideas from nature can be adapted by a keen mind, developed over time, studied, and then finally made available

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Understanding the Environmental Requirements for Fish

Understanding the Environmental Requirements for Fish Lesson C3 2 Understanding the Environmental Requirements for Fish Unit C. Animal Wildlife Management Problem Area 3. Fish Management Lesson 2. Understanding the Environmental Requirements for Fish New

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Aquatic Science Unit 1. Introduction to Freshwater Ecology

Aquatic Science Unit 1. Introduction to Freshwater Ecology Aquatic Science Unit 1 Introduction to Freshwater Ecology Water is essential to life Water is essential to the survival of all living things No living organism can survive without water Humans cannot go

More information

CORAL REEFS. Coral reefs are home to many organisms Provide habitat and shelter for 25 percent of all fish species in the deeper parts of the ocean.

CORAL REEFS. Coral reefs are home to many organisms Provide habitat and shelter for 25 percent of all fish species in the deeper parts of the ocean. CORAL REEFS We have looked at the development of coral reefs starting with a volcanic island on which coral starts to appear. Coral is a kind of animal that needs to be in water. Being an animal, it also

More information

By Deepak Chopra. May Watch Water GmbH Fahrlachstraße Mannheim Germany

By Deepak Chopra. May Watch Water GmbH Fahrlachstraße Mannheim Germany Algaecide Treatment Method for Swimming pools Filtration and decorative fountains, wastewater lagoons, storage reserviors, Ornamental lakes, Ponds and and water features on Golf courses with I-SOFT OXYDES

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

B1 Biogeochemical Systems

B1 Biogeochemical Systems B1 Biogeochemical Systems Carbon Cycle What elements makes life possible? Carbon based life Key component of all known naturally occurring life on Earth Unique properties make it ideal for construction

More information

Scientific overview: Water quality functions of coastal buffers

Scientific overview: Water quality functions of coastal buffers Scientific overview: Water quality functions of coastal buffers Caitlin Chaffee, Coastal Policy Analyst RI Coastal Resources Management Council November 21, 2013 Buffer Zone Setback = Minimum Distance

More information

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems Name: Teacher: Pd. Date: STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems TEK 8.11D: Recognize human dependence on ocean systems and explain how human activities such as runoff, artificial

More information

ALMY POND TMDL MANAGEMENT PLAN

ALMY POND TMDL MANAGEMENT PLAN ALMY POND TMDL MANAGEMENT PLAN PUBLIC WORKSHOP Presented by: City of Newport Department of Utilities And Pare Corporation May 7, 2014 Presentation Overview Introduction to Almy Pond Project Introduction

More information

SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY

SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY SECTION 1 FRESHWATER SYSTEMS UNIT 4: AQUATIC ECOLOGY CENTRAL CASE STUDY: STARVING THE LOUISIANA COAST OF SEDIMENT LOUISIANA IS LOSING 25MI2 OF COASTAL WETLANDS ANNUALLY WETLANDS SUPPORT A DIVERSITY OF

More information

/ Marley MARPAK Modular Biomedia /

/ Marley MARPAK Modular Biomedia / / Marley MARPAK Modular Biomedia / The Marley MARPAK Difference SPX Cooling Technologies is a world leader in the design, manufacturing and construction of cooling products. The design and production of

More information

Sanibel Golf Course Fertilizer and Lake Management Recommendations Annual Report Card. July This report was specifically prepared for:

Sanibel Golf Course Fertilizer and Lake Management Recommendations Annual Report Card. July This report was specifically prepared for: Sanibel Golf Course Fertilizer and Lake Management Recommendations Annual Report Card July 2012 This report was specifically prepared for: The Dunes Golf and Tennis Club Introduction Stormwater runoff

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

Human Impact on the Environment: Part I

Human Impact on the Environment: Part I Human Impact on the Environment: Part I The late Alan Gregg pointed out that human population growth within the ecosystem was closely analogous to the growth of malignant tumor cells, that man was acting

More information

WASTE TREATMENT LAGOON

WASTE TREATMENT LAGOON 359-1 NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD WASTE TREATMENT LAGOON (No.) CODE 359 DEFINITION A waste treatment impoundment made by constructing an embankment and/or excavating

More information

Matter Cycles How are nutrients recycled through ecosystems?

Matter Cycles How are nutrients recycled through ecosystems? 9. In order to continually use the same area of land for agriculture, some farmers apply fertilizers to improve the level of nitrates in the soil. An alternative to this intensive use of fertilizer is

More information

Climate Vulnerability Assessment: Wild Rice. Wild rice, known as Manoomin by the Ojibwe of northern Wisconsin, is a cultural

Climate Vulnerability Assessment: Wild Rice. Wild rice, known as Manoomin by the Ojibwe of northern Wisconsin, is a cultural Hansen 1 Hans Hansen ES 600 Conaway, Hitch Capstone Paper Draft 13 April 2015 Climate Vulnerability Assessment: Wild Rice Introduction Wild rice, known as Manoomin by the Ojibwe of northern Wisconsin,

More information

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water

ECO Smart Aerobic Waste Water Treatment System. Optimising the re-use and recycling of waste water Optimising the re-use and recycling of waste water The ECO Smart aerobic wastewater treatment system is a selfcontained wastewater treatment system that utilizes a combination of anaerobic as well as aerobic

More information

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk

Ecosystem. Ecosystems. Consumers. Simple Ecosystem Model. Trophic Levels. Food Chain marsh hawk Ecosystem Ecosystems Chapter 47 An association of organisms and their physical environment, interconnected by ongoing flow of energy and a cycling of materials Simple Ecosystem Model energy input from

More information

Module 2 Understanding Prairie Dugouts. Understanding Prairie Dugouts

Module 2 Understanding Prairie Dugouts. Understanding Prairie Dugouts Understanding Prairie Dugouts 5 It is much easier to design, operate, and maintain high quality dugouts if you understand the natural processes that control them. This module explains some of these processes.

More information

Sandy Wyman Rangeland Management Specialist National Riparian Service Team SRM, Feb. 6, 2013

Sandy Wyman Rangeland Management Specialist National Riparian Service Team SRM, Feb. 6, 2013 Assessing Proper Functioning Condition (PFC) of Lentic Areas Sandy Wyman Rangeland Management Specialist National Riparian Service Team SRM, Feb. 6, 2013 TR 1737-16 What is PFC? How well physical processes

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

Central Case: The Gulf of Mexico s Dead Zone

Central Case: The Gulf of Mexico s Dead Zone Central Case: The Gulf of Mexico s Dead Zone The Gulf of Mexico brings in a billion pounds/year of shrimp, fish, and shellfish Gulf dead zone = a region of water so depleted of oxygen that marine organisms

More information