State of the Oceans: 2011

Size: px
Start display at page:

Download "State of the Oceans: 2011"

Transcription

1 State of the Oceans: 2011 Jim Galasyn University Congregational United Church of Christ 20 November 2011

2 Agenda Background Overfishing Biogeochemical cycles Prospects

3 Background Biography Exponential growth Predator-prey relationship Mass extinction events Permian-Triassic extinction

4 Soylent Green

5 Exponential function The greatest shortcoming of the human race is our inability to understand the exponential function. Albert Allen Bartlett

6 Exponential growth y = e x

7 Exponential decay y = e -x

8 Predator-prey relationship Prey Population N h Predator population N p

9 Predator-prey relationship dn h dt = r h N h pn h N p Prey Population N h Predator population N p

10 Predator-prey relationship equals increase in prey population Rate of change in prey population dn h dt = r h N h pn h N p minus number of prey killed by predators Prey Population N h Predator population N p

11 Predator-prey relationship equals increase in prey population Rate of change in prey population dn h dt = r h N h pn h N p minus number of prey killed by predators Prey Population N h Predator population N p dn p dt = cpn h N p d p N p

12 Predator-prey relationship equals increase in prey population Rate of change in prey population minus number of prey killed by predators dn h dt = r h N h pn h N p Prey Population N h Predator population N p dn p Rate of change in predator population dt = cpn h N p d p N p minus number of predator deaths equals rate at which prey are converted to predator offspring

13 Predator-prey relationship equals increase in prey population Rate of change in prey population minus number of prey killed by predators dn h dt = r h N h pn h N p N h = ½τ ± (τ 2 4Ce τ ) ½ Prey Population N h Predator population N p N p = ½τ (τ 2 4Ce τ ) ½ dn p Rate of change in predator population dt = cpn h N p d p N p minus number of predator deaths equals rate at which prey are converted to predator offspring

14 Predator-prey relationship equals increase in prey population Rate of change in prey population minus number of prey killed by predators dn h dt = r h N h pn h N p N h = ½τ ± (τ 2 4Ce τ ) ½ Prey Population N h Predator population N p N p = ½τ (τ 2 4Ce τ ) ½ dn p Rate of change in predator population dt = cpn h N p d p N p minus number of predator deaths equals rate at which prey are converted to predator offspring

15 Predator-prey curves

16 Predator-prey curves

17 Predator-prey curves

18 Marine food web

19 Mass extinction events

20 Permian-Triassic extinction

21 Permian-Triassic extinction

22 Permian-Triassic extinction

23 Permian-Triassic extinction

24 Overfishing Pelagic longlines Bottom trawling Trophic cascades: top-down Trophic cascades: bottom-up

25 Overfishing: pelagic longlines

26 Pelagic longlines

27 Pelagic longlines

28 Pelagic longlines

29 Bottom trawling

30 Bottom trawling

31 Bottom trawling

32 Bottom trawling

33 Bottom trawling

34 Bottom trawling

35 Bottom trawling

36 Overfishing

37 Overfishing

38 Trophic cascade

39 Trophic cascade

40 Trophic cascade

41 Marine mammal decline

42 Marine mammal decline

43 Marine mammal decline

44 Marine mammal decline

45 Marine mammal decline

46 Fishing down the food web

47 Plankton

48 Global plankton decline

49 Global plankton decline

50 Global plankton decline

51 Global plankton decline

52 Krill decline

53 Krill decline

54 Shellfish decline

55 Ocean overexploitation

56 Element cycles Phosphorus eutrophication Nitrogen eutrophication, acid rain Sulfur anoxia, acid rain Carbon warming, euxinia, acidification

57 Element cycle perturbations Element cycle Anthropogenic perturbation Perturbation source Nitrogen 80 megatons/year Fertilizer production transfers 80 Tg of N per year from atmosphere to soil. 1 Sulfur 108 megatons/year 1 Tmol from transfer of oxidized and reduced sediments from mining to soil; 2 Tmol from transfer of reduced sediments to atmosphere from burning fossil fuels. 2 Phosphorus 9-32 megatons/year Fertilizer production transfers 9-32 Tg of P per year from mining to the oceans. 3 Carbon 9000 megatons/year 33 Gt of CO 2 (9 Gt C) released from burning fossil fuels in

58 Element cycle perturbations Element cycle Anthropogenic perturbation Perturbation source Nitrogen 80 megatons/year Fertilizer production transfers 80 Tg of N per year from atmosphere to soil. 1 Sulfur 108 megatons/year 1 Tmol from transfer of oxidized and reduced sediments from mining to soil; 2 Tmol from transfer of reduced sediments to atmosphere from burning fossil fuels. 2 Phosphorus 9-32 megatons/year Fertilizer production transfers 9-32 Tg of P per year from mining to the oceans. 3 Carbon 9000 megatons/year 33 Gt of CO 2 (9 Gt C) released from burning fossil fuels in

59 Earth movement by humans

60 Ocean stressors: element cycles

61 Phosphorus

62 Phosphorus

63 Phosphorus

64 Phosphorus

65 Phosphorus in Chesapeake Bay

66 Phosphorus in Chesapeake Bay

67 Nitrogen in Spain

68 Nitrogen in Spain

69 Nitrogen in Europe

70 Nitrogen

71 Nitrogen in the Gulf of Mexico

72 Nitrogen in the Gulf of Mexico

73 Gulf of Mexico dead zone

74 Global nitrogen perturbation

75 Global dead zones 1995: 195 hypoxia events

76 Global dead zones 2008: 400 hypoxia events

77 Global dead zones Number of dead zones doubles every 10 years 2008: 400 hypoxia events

78 Carbon: ocean warming

79 Ocean warming

80 Ocean phenology changes

81 Ocean warming: invasive species

82 Chinstrap penguin decline

83 Chinstrap penguin decline

84 Chinstrap penguin decline

85 Hydrologic cycle A warmer world is a wetter world. Increased nutrient deposition into oceans Drives phenology

86 Hydrologic cycle

87 Ocean acidification

88 Ocean acidification

89 Ocean acidification Before PETM: Sediment is 10% clay and rich in tiny calcareous shells.

90 Ocean acidification 55 million years ago: Large CO 2 release abruptly changes ocean ph.

91 Ocean acidification Sediments from this 50,000 year period are almost all red clay. Ocean acidity prevents formation of carbonate shells.

92 Ocean acidification and krill

93 Ocean acidification and mollusks

94 Permian-Triassic extinction

95 Permian-Triassic extinction

96 Permian-Triassic extinction Siberian trap emissions: 3 trillion tons C over 1 million years 3 million tons C per year

97 Permian-Triassic extinction Siberian trap emissions: 3 trillion tons C over 1 million years 3 million tons C per year Human emissions: 1 trillion tons C over 100 years 9 billion tons C per year

98 Permian-Triassic extinction Human C emissions: 3,000 times greater than P-T mass extinction

99 Marine food web

100 Acidification Marine food web

101 Marine food web Bottom trawling Acidification

102 Marine food web Pelagic longlines Bottom trawling Acidification

103 Marine food web Pelagic longlines Fisheries, acidification Bottom trawling Acidification

104 Marine food web Pelagic longlines Fisheries, acidification Acidification Opportunistic Species Bottom trawling

105 Marine food web Pelagic longlines Fisheries, acidification Opportunistic Species Bottom trawling Acidification Microbes

106 Anaerobic microbes

107 Ocean-wide anoxia

108 Ocean anoxia

109 Ocean anoxia

110 Microbe-dominated oceans The future is bright for dinoflagellates. Jeremy Jackson

111 Microbe-dominated oceans The future is bright for dinoflagellates. Jeremy Jackson

112 Prospects King Coal Human population Solutions: realistic, scalable Wastewater treatment Atmospheric vortex engines Sequestering ocean carbon What you can do

113 Prospects

114 Isolated reindeer population

115 Population overshoot

116 Human population

117 Human population 7

118 Fossil fuel industry

119 Fossil fuel industry

120 Fossil fuel industry

121 Wastewater treatment Globally, 2 million tons of sewage and industrial and agricultural waste are poured into the world s waters every day 730 million tons per year 90% of sewage in the developing world goes untreated

122 Wastewater treatment

123 Wastewater treatment Tertiary treatment: $67b/yr, $870b total

124 Wastewater treatment Tertiary treatment: $67b/yr, $870b total Cost of Iraq War: $800b

125 Hurricane Carnot cycle

126 Supercell

127 Atmospheric Vortex Engine

128 Ocean sequestration

129 Prospects

130 Prospects

131 Carbon fast and carbon offsets

132 Carbon fast and carbon offsets

133 What you can do right now Buy only sustainable seafood. Don t use pesticides, herbicides, or fertilizers. Use phospate-free detergent. Buy organic and locally grown food. Recycle aggressively. Prefer public transportation to driving. Reduce or eliminate air travel.

134 Resources Desdemona Despair: Blogging the End of the World Ecumenical Lenten Carbon Fast Creation Care NativeEnergy Atmospheric Vortex Engine Cquestrate Census of Marine Life Hypoxia in the Northern Gulf of Mexico Jeremy Jackson: Brave New Ocean

OCEAN DEFENDERS. A little more help for your research!

OCEAN DEFENDERS. A little more help for your research! OCEAN DEFENDERS A little more help for your research! OCEANS Humans both depend on it and threaten it with their activities OCEANS Water covers nearly ¾ of the Earth s surface More than 50% of the world

More information

Global Warming leads to Underwater Deserts. SUHAS.E.P I Year.Dept of Mechanical engineering RVCE

Global Warming leads to Underwater Deserts. SUHAS.E.P I Year.Dept of Mechanical engineering RVCE Global Warming leads to Underwater Deserts SUHAS.E.P I Year.Dept of Mechanical engineering RVCE Introduction Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor

More information

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems Name: Teacher: Pd. Date: STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems TEK 8.11D: Recognize human dependence on ocean systems and explain how human activities such as runoff, artificial

More information

THE CYCLING OF NUTRIENTS

THE CYCLING OF NUTRIENTS Unit 4 THE CYCLING OF NUTRIENTS LEARNING OBJECTIVES 1. Recognize the need for the recycling of the earth s chemicals and the consequences if this is not done. 2. Learn the difference between a global cycle

More information

Bell Ringer AP Practice

Bell Ringer AP Practice Bell Ringer AP Practice 1) Reasons that the population size of an exotic species often grows rapidly when the species is introduced in a new environment include which of the following? i. The exotic species

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information

Central Case: The Gulf of Mexico s Dead Zone

Central Case: The Gulf of Mexico s Dead Zone Central Case: The Gulf of Mexico s Dead Zone The Gulf of Mexico brings in a billion pounds/year of shrimp, fish, and shellfish Gulf dead zone = a region of water so depleted of oxygen that marine organisms

More information

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline Ecology and Ecosystems I. What is ecology? A. Derived from the Greek: 1. oikos house 2. logos study of 3. study of the house in which

More information

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages ,

NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS. Pages , NOTES 12.4: HUMAN ISSUES, IMPACTS, & SOLUTIONS Pages 435-437, 440-452 ENVIRONMENTAL SCIENCE The study of the interactions between humans and their own environment Earth s Layers Geosphere Earth s rock

More information

3 3 CYCLES OF MATTER

3 3 CYCLES OF MATTER 3 3 CYCLES OF MATTER REVIEW: 1. What is an element? 2. What is a compound? 3. What are the 6 elements that are most important to living things? Matter = a substance that takes up space. BIOGEOCHEMICAL

More information

ECOLOGY PART TWO REVIEW

ECOLOGY PART TWO REVIEW Name: KEY Date: NOVEMBER 30, 2016 Hour: ECOLOGY PART TWO REVIEW BIOGEOCHEMICAL CYCLES 1.What percentage of the atmosphere is made up of Nitrogen gas? 78% 2. In the process of nitrogen fixation and denitrification

More information

How Ecosystems Work Section 2

How Ecosystems Work Section 2 Objectives List the three stages of the carbon cycle. Describe where fossil fuels are located. Identify one way that humans are affecting the carbon cycle. List the tree stages of the nitrogen cycle. Describe

More information

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment.

Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Objectives: Define the term biogeochemical cycles. Compare and contrast how carbon, phosphorus, nitrogen, and water cycle through the environment. Explain how human impact is affecting biogeochemical cycles

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Ecosystem = groups of organisms living together

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed MLA Header: s worksheet Please answer the following using the words in the text box. Carbon coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

More information

Chapter 14. Water Pollution

Chapter 14. Water Pollution Chapter 14 Water Pollution The Chesapeake Bay Chesapeake Bay largest estuary in the US Pollutants: Excess nitrogen and phosphorus From 3 major sources: Consequence of increased nutrients Sediment increase

More information

SNC1D BIOLOGY 9/24/2013. SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems

SNC1D BIOLOGY 9/24/2013. SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems SNC1D BIOLOGY SUSTAINABLE ECOSYSTEMS L Cycling of Matter in Ecosystems (P.22-27) Cycling of Matter in Ecosystems Energy flows through ecosystems when organisms consume other organisms. Unlike energy, which

More information

Section 2: The Cycling of Materials

Section 2: The Cycling of Materials Section 2: The Cycling of Materials Preview Bellringer Objectives The Carbon Cycle How Humans Affect the Carbon Cycle The Nitrogen Cycle Decomposers and the Nitrogen Cycle The Phosphorus Cycle Section

More information

B1 Biogeochemical Systems

B1 Biogeochemical Systems B1 Biogeochemical Systems Carbon Cycle What elements makes life possible? Carbon based life Key component of all known naturally occurring life on Earth Unique properties make it ideal for construction

More information

Bio 112 Ecology: Final Practice Exam Multiple Choice

Bio 112 Ecology: Final Practice Exam Multiple Choice Final Exam Topics: 1) Basic Ecological Principles a) Biomes, ecosystems, communities and populations i) Biomes: know the major ones and where they occur ii) Ecosystem: communities and physical environment

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1

How Ecosystems Work Section 2. Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 Chapter 5 How Ecosystems Work Section 2: Cycling of Materials DAY 1 The Carbon Cycle The carbon cycle is the movement of carbon from the nonliving environment into living things and back Carbon is the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Studying organisms in their environment

Studying organisms in their environment Ecosystems (Ch. 3) Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How does energy move through the

More information

Population Biology. Biology 2201 Unit IV

Population Biology. Biology 2201 Unit IV Population Biology Biology 2201 Unit IV Population Biology The study of populations is referred to as demography. The characteristics of populations usually studied are size, density and growth rate. Important

More information

To diagram the nitrogen cycle and provide examples of human actions that affect this cycle.

To diagram the nitrogen cycle and provide examples of human actions that affect this cycle. Purpose: Summary: Background: To diagram the nitrogen cycle and provide examples of human actions that affect this cycle. Students will learn about the nitrogen cycle through discussion and the construction

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Ecology the study of the interactions between organisms and the living and nonliving components of the environment

Ecology the study of the interactions between organisms and the living and nonliving components of the environment Ecology the study of the interactions between organisms and the living and nonliving components of the environment 5/23/14 1 1. Levels of Ecological organization A. Biosphere- Earth, atmosphere and all

More information

Ecology Part 2. Living Environment

Ecology Part 2. Living Environment Ecology Part 2 Living Environment Recycling in the Biosphere Matter is recycled within and between ecosystems Elements, chemical compounds, and other forms of matter are passed from one organism to another

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Human impact on the environment

Human impact on the environment 1 of 36 Boardworks Ltd 2006 2 of 36 Boardworks Ltd 2006 Human impact on the environment 3 of 36 Boardworks Ltd 2006 How does human activity affect the environment? Population growth 4 of 36 Boardworks

More information

Global warming, population growth, acid rain, eutrophication, CFCs/environmental toxins HUMAN IMPACTS

Global warming, population growth, acid rain, eutrophication, CFCs/environmental toxins HUMAN IMPACTS Global warming, population growth, acid rain, eutrophication, CFCs/environmental toxins HUMAN IMPACTS GLOBAL WARMING GLOBAL WARMING Trapping of warm air close to the Earth s surface due to emission of

More information

GLOBAL WARMING LEADS TO UNDERWATER DESERTS" AND COASTAL DEAD ZONES

GLOBAL WARMING LEADS TO UNDERWATER DESERTS AND COASTAL DEAD ZONES GLOBAL WARMING LEADS TO UNDERWATER DESERTS" AND COASTAL DEAD ZONES Suhas E.P RVCE (VTU) No. 4/1 Golden Residency, Rmv 2 stage, Sanjaynagar, Bangalore SYNOPSIS Oxygen-poor waters occupy large volumes of

More information

Do Now. Take out your activity you completed on Friday when I wasn t here!

Do Now. Take out your activity you completed on Friday when I wasn t here! Do Now Take out your activity you completed on Friday when I wasn t here! Biogeochemical Cycles 37.18-37.23 Objectives Identify and describe the flow of nutrients in each biogeochemical cycle Explain the

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

Examining Human Impacts on Global Biogeochemical Cycling via the Coastal Zone & Ocean Margins

Examining Human Impacts on Global Biogeochemical Cycling via the Coastal Zone & Ocean Margins Examining Human Impacts on Global Biogeochemical Cycling via the Coastal Zone & Ocean Margins L. Talaue-McManus Rosenstiel School of Marine & Atmospheric Science University of Miami JGOFS Open Science

More information

Chapter 4 Biogeochemical Cycles

Chapter 4 Biogeochemical Cycles Chapter 4 Biogeochemical Cycles ENERGY FLOW THROUGH ECOSYSTEMS Nature s Building Blocks Matter Energy Laws of Nature Earth s Major Components Ecosystems Ecology and biodiversity Organisms Components and

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Biology 2201 Populations. Unit 4

Biology 2201 Populations. Unit 4 Biology 2201 Populations Unit 4 Population Growth The study of populations is referred to as demography. The characteristics of populations usually studied are size, density and growth rate. A population

More information

Carbon/Oxygen Cycle. By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan

Carbon/Oxygen Cycle. By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan Carbon/Oxygen Cycle By Ethan Hempel, Jess Meyers, Hannah Park, and Kelly Chan Background When animals breathe, they take in oxygen and exhale carbon dioxide. Plants use carbon dioxide (along with water

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Population Biology. Biology 2201 Unit IV

Population Biology. Biology 2201 Unit IV Population Biology Biology 2201 Unit IV Population Biology The study of populations is referred to as demography. The characteristics of populations usually studied are size, density and growth rate. Important

More information

Human Impacts on Marine Ecosystems. Types of Human Impacts. Diverse Human Impacts. Overharvesting

Human Impacts on Marine Ecosystems. Types of Human Impacts. Diverse Human Impacts. Overharvesting Human Impacts on Marine Ecosystems I. Types of Impacts II. Overharvesting III. Invasions IV. V. Physical Alterations VI. What we see today is not the pristine state of nature How does this observation

More information

Ch18,19_Ecology, populations & human

Ch18,19_Ecology, populations & human Basic Ecological Concepts What is ecology? A branch of biology that involves The study of the relationships between organisms and their environment Biotic factors: living part of the ecosystem, all the

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

Climate Change & Ocean Acidification

Climate Change & Ocean Acidification Climate Change & Ocean Acidification Scott Doney Woods Hole Oceanographic Institution Thus human beings are now carrying out a large scale geophysical experiment Revelle and Suess, Tellus, 1957 Ice core

More information

Today: Dinner Time! Yum Yum

Today: Dinner Time! Yum Yum Today: Productivity in the marine world Food webs and trophic levels Chemotrophic communities Dinner Time! Yum Yum Oceans are brimming with life Not a lot of diversity But a great abundance of organisms

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D. Ecosystem Ecology for Wildlife Scientists Don White, Jr., Ph.D. Key Concepts: An ecosystem is an association of organisms and their environment Every ecosystem is an open system, in that it has inputs

More information

5/12/15. We depend on environment for. Food Water Air Shelter Fuel, etc. Environmental science the study of the impact of humans on the environment

5/12/15. We depend on environment for. Food Water Air Shelter Fuel, etc. Environmental science the study of the impact of humans on the environment List examples of chemical pollution from industry, agriculture, or everyday use. What are some possible effects that these pollutants can have on the environment? Doerfler Biology I How are humans and

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

Climate Change and Coral Bleaching

Climate Change and Coral Bleaching Rising ocean temperatures may push coral reefs to their limits. Climate Change and Coral Bleaching http://www.nova.org.au/coral-bleaching Essentials! Corals are animals that live in a mutually beneficial

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

Today: Dinner Time! Yum Yum. Primary Producers = base of food web

Today: Dinner Time! Yum Yum. Primary Producers = base of food web Today: Productivity in the marine world Food webs and trophic levels Chemotrophic communities Dinner Time! Yum Yum Oceans are brimming with life Not a lot of diversity But a great abundance of organisms

More information

NUTRIENT CYCLES AND HUMAN IMPACT NOTES

NUTRIENT CYCLES AND HUMAN IMPACT NOTES NUTRIENT CYCLES AND HUMAN IMPACT NOTES I. Nutrient Cycles Unlike energy in an ecosystem, which flows in one direction and decreases as it flows, matter is recycled within the biosphere. Matter passes through

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

Living organisms are composed of mainly four elements: Oxygen, Carbon, Hydrogen, Nitrogen In smaller amounts: Sulfur & Phosphorus Organisms cannot

Living organisms are composed of mainly four elements: Oxygen, Carbon, Hydrogen, Nitrogen In smaller amounts: Sulfur & Phosphorus Organisms cannot Living organisms are composed of mainly four elements: Oxygen, Carbon, Hydrogen, Nitrogen In smaller amounts: Sulfur & Phosphorus Organisms cannot make any of these elements and do not use them up Question:

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

Ecology, populations & human

Ecology, populations & human Basic Ecological Concepts What is ecology? A branch of biology that involves The study of the relationships between organisms and their environment Biotic factors: living part of the ecosystem, all the

More information

EFFECTS OF CARBON, NITROGEN, AND PHOSPHORUS

EFFECTS OF CARBON, NITROGEN, AND PHOSPHORUS EFFECTS OF CARBON, NITROGEN, AND PHOSPHORUS Hannah Ross December 10th, 2016 Pollution that causes carbon dioxide and other pollutant buildup in oceans is a main issue that surrounds the increasing temperature

More information

Chapter: Conserving Resources

Chapter: Conserving Resources Table of Contents Chapter: Conserving Resources Section 1: Resources Section 2: Pollution Section 3: The Three Rs of Conservation *Problems related to the use of Fossil Fuels Limited availability Pollution

More information

Biogeochemical Cycles. Nutrient cycling at its finest!

Biogeochemical Cycles. Nutrient cycling at its finest! Biogeochemical Cycles Nutrient cycling at its finest! Four Criteria for Sustainability Sustainable Ecosystems Need: Reliance on Solar Energy High Biodiversity Population Control Nutrient Cycling This note

More information

IB Biology HL Year 2 Summer Assignment

IB Biology HL Year 2 Summer Assignment IB Biology HL Year 2 Summer Assignment Your Task: Read Chapter 4 Ecology Unit thoroughly. Complete the Cornell notes. Notes must be HAND WRITTEN. Answer end of section exercise questions. Type your responses.

More information

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL

Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü. PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Yakın Doğu Üniversitesi Mimarlık Fakültesi Peyzaj Mimarlığı Bölümü PM 317 Human and Environment Assoc. Prof. Dr. Salih GÜCEL Composition of Living Organisms All organisms are composed of matter, and although

More information

Ecology. David Mellor, PhD. Citizen Science Coordinator Virginia Master Naturalists

Ecology. David Mellor, PhD. Citizen Science Coordinator Virginia Master Naturalists Ecology David Mellor, PhD Citizen Science Coordinator Virginia Master Naturalists Alycia Crall Steven Gray Rebecca Jordan Greg Newman Cindy Hmelo-Silver Collaborative Conservation Research Adaptive Land

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. Permission required for reproduction

More information

Trout Lake Big Lake Lake Balance NO 3

Trout Lake Big Lake Lake Balance NO 3 1. You are a limnologist studying several lakes in northern Ontario. The lakes have little input of nutrients from streams. You measure the concentrations of nitrate and phosphate every two months, and

More information

California Current Ecosystem Plankton Food Web

California Current Ecosystem Plankton Food Web What role do plankton play in the food web? : California Current Ecosystem Plankton Food Web and the Beth Simmons Education and Outreach Coordinator, CCE LTER, Scripps Institution of Oceanography, and

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Chapter 3 Reading/Homework Quiz

Chapter 3 Reading/Homework Quiz Name Chapter 3 Reading/Homework Quiz Date APES 1. Scientists estimate that tropical rain forests contain up to half of the earth s land plants and animal species. What percentage of the world s land surface

More information

Human perturbations to the global Nitrogen cycle

Human perturbations to the global Nitrogen cycle Human perturbations to the global Nitrogen cycle Lecture for Biogeochemistry and Global Change Edzo Veldkamp The pace of human caused global change has increased in modern history, but none so rapidly

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an ecosystem involve two processes: energy flow

More information

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22

Pennsylvania Senior Environment Corps. Table of Contents Part 2 Getting Started:. 21 Chemical Analysis... 22 Table of Contents Part 2 Getting Started:. 21 Chemical Analysis.... 22 3 Chapter 2: Getting Started 21 Chemical Analysis of the Water Dependent on your area, you may measure for several parameters. In

More information

Ch 3 - The Biosphere. 3.1 What is Ecology?

Ch 3 - The Biosphere. 3.1 What is Ecology? Ch 3 - The Biosphere 3.1 What is Ecology? Ecology The study of the interactions between organisms, and between organisms and their environment Levels of Organization of Living Things Organisms individual

More information

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed?

Prepare for Learning. A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Prepare for Learning A 4000 year old corpse preserved in ice. Why hasn t it decomposed? Why is carbon important? Carbon is the main constituent of all living cells (biochemistry, organic chemistry) Component

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

A great deal of this topic revolves around the concept of SUSTAINABILITY

A great deal of this topic revolves around the concept of SUSTAINABILITY A great deal of this topic revolves around the concept of SUSTAINABILITY Here s a good short introduction to what sustainability means. 2:00 What can you do at home to make our world more sustainable?

More information

OCN201 Fall Exam 3 (Biological Secton / Final) 75 Points

OCN201 Fall Exam 3 (Biological Secton / Final) 75 Points Name: Section: ID# _ OCN201 Fall 2008 - Exam 3 (Biological Secton / Final) 75 Points True/False (1 point each) Indicate whether the statement is true or false 1 Tropical oceans typically have very low

More information

The speed of Earth is constant regardless of its distance from the sun.

The speed of Earth is constant regardless of its distance from the sun. 1 Which statement describes the motion of Earth around the sun? The speed of Earth is constant regardless of its distance from the sun. The speed of Earth is constant because the distance remains the same

More information

time Which factors would cause region X on the graph to become steeper? A

time Which factors would cause region X on the graph to become steeper? A 1 The graph shows a population growth curve. population size X time Which factors would cause region X on the graph to become steeper? decrease in predation, decrease in food supply increase in food supply,

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

Trout Lake Big Lake Lake Balance NO 3

Trout Lake Big Lake Lake Balance NO 3 1. You are a limnologist studying several lakes in northern Ontario. The lakes have little input of nutrients from streams. You measure the concentrations of nitrate and phosphate every two months, and

More information

Biogeochemical Cycles. {Living World

Biogeochemical Cycles. {Living World Biogeochemical Cycles {Living World What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth s life. Earth's Spheres Atmosphere layer of air that surrounds the Earth

More information

Ecological succession process consisting of consecutive changes in species composition in a given area

Ecological succession process consisting of consecutive changes in species composition in a given area Unit 3 Interactions Among Living Things Ch. 7 Population Dynamics 7.1 Populations, Communities, and Ecosystems (see Figure 7.1, p. 208) - population group of individuals of the same species living in the

More information

California Current Ecosystem Plankton Food Web

California Current Ecosystem Plankton Food Web TEACHER PAGES What role do plankton play in the food web? California Current Ecosystem Plankton Food Web and the Beth Simmons Education and Outreach Coordinator, CCE LTER, Scripps Institution of Oceanography,

More information

CHAPTER 15 WATER POLLUTION. INTO THE GULF Researchers try to pin down what s choking the Gulf of Mexico

CHAPTER 15 WATER POLLUTION. INTO THE GULF Researchers try to pin down what s choking the Gulf of Mexico CHAPTER 15 WATER POLLUTION INTO THE GULF Researchers try to pin down what s choking the Gulf of Mexico SAVING THE BAY Teams of researchers try to pin down what s choking the Chesapeake Water pollution

More information

Student Exploration: Coral Reefs 1 Abiotic Factors

Student Exploration: Coral Reefs 1 Abiotic Factors Name: Date: Per. Student Exploration: Coral Reefs 1 Abiotic Factors Vocabulary: consumer, coral, coral bleaching, coral reef, filter feeder, food chain, food web, grazer, nutrients, ocean acidification,

More information

Section 6.2 Notes. Renewable and Non-Renewable Resources

Section 6.2 Notes. Renewable and Non-Renewable Resources Section 6.2 Notes Renewable and Non-Renewable Resources Classifying Resources Environmental goods and services may be classified as either renewable or nonrenewable Renewable resources are those that natural

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

Brief Contents III. PART Processes that Generate Pattern in Marine Communities 9. PART Community Types 201. PART Conservation 401

Brief Contents III. PART Processes that Generate Pattern in Marine Communities 9. PART Community Types 201. PART Conservation 401 Brief Contents 1 A Short History of Marine Community Ecology 1 I PART Processes that Generate Pattern in Marine Communities 9 2 The Physical Context of Marine Communities 11 3 Foundation Species in Marine

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work?

2. 2. Nutrient Cycles in Ecosystems. Before You Read. How are nutrients cycled in the biosphere? How does the carbon cycle work? Nutrient Cycles in Ecosystems Textbook pages 68 91 Section 2. 2 Summary Before You Read Like other organisms, your body relies on nutrients to stay healthy. Based on your current understanding, create

More information