CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5

Size: px
Start display at page:

Download "CEE ENVIRONMENTAL QUALITY ENGINEERING PROBLEM SET #5"

Transcription

1 CEE ENVIRONMENTAL UALITY ENGINEERING PROBLEM SET #5 Problem 1. (adapted from Water uality by Tchobanoglous and Schroeder) A stream has a nearly uniform cross section, although it passes through a number of curves. The average width is 20 m and the average depth is 1.5 m. A slug of rhodamine dye tracer is added over an interval of 10 seconds to the stream when the flow rate is 30 m 3 /s and the tracer concentration is measured 2 km downstream. The slug of tracer is added in a manner that provides rapid lateral mixing and the measured initial concentration is 0.5 g/l (i.e., 500 g/m 3 ). The downstream results are shown below: Concentration of dye Time in seconds in river, g/m a) Using the above data, calculate the average residence time in the river. Compare this value to the theoretical value for reactor θ. Ans. θ from data = 2,130 sec. b) Plot a graph of the observed concentration vs. time for fluid in the stream. On the same graph, plot the concentration vs. time distributions that you would expect for an ideal completely-mixed flow reactor and for an ideal plug flow reactor, each having the same theoretical residence time as the real reactor tested (the ideal PFR response can be represented as a spike that goes off scale at the appropriate time). Note that your CSTR 1

2 model calculations should be based on a C o calculated with the assumption that the dye mass added was distributed over the entire river volume not just the first 300 m 3. c) Use the data for dye concentration vs. time to estimate the dispersion coefficient for the river. Use your value of the dispersion coefficient and the AFR model we developed in class to create a plot of what the model prediction of the dye concentration vs. time would be, and plot the real data on this same graph so that you can compare the model simulation to the actual behavior. Partial answer E = 262 m 2 /sec. Problem 2 [Adapted from Wastewater Engineering by Metcalf and Eddy] Bacterial removal in disinfection tanks can be modeled as a first order reaction where dx = kx, dt X = cell concentration, and k is a rate constant. Determine the number of completely mixed chlorine contact chambers each having an average hydraulic retention time of 30 min. that would be required in a series arrangement to reduce the bacterial count of a polluted water sample from 10 6 organisms/ml to 14.5 organisms/ml if the first-order rate constant for bacterial removal by the chlorine disinfectant is equal to 6.1/hour and each CSTR is operating at steady state. If a plug-flow chlorine contact chamber were used with the same detention time as the sum of the average detention times of the series of completely mixed chambers, what would the bacterial count be after treatment? Explain the difference in your answers. Partial ans.: you need 8 CSTRs in series. Problem 3. Consider the following body of water that is receiving a continuous input of BOD L. C p= 100 mg/l BODL p =.3 m 3 X /s L = 10 km r = 3.0 m 3 /s C r = 0 A = 100 m 2 upstream downstream It is desired to determine the concentration of BOD L at point X assuming steady-state conditions of flow and waste concentration. Assume that the BOD reaction rate constant (k 1 ) equals 0.23 day -1. Compute and compare the BOD L concentration at point X for each of the following cases: 2

3 a) Assume complete mixing in the body of water. Ans. L = 5.03 mg/l b) Assume plug flow (no longitudinal mixing). Ans. L = 4.06 mg/l c) Assume partial longitudinal mixing, with E = 200 m 2 /sec (estuarine-type mixing often results in such high dispersion coefficients). Ans. L = 2.92 mg/l d) For the last case above, what would be the pollutant concentration at a distance upstream equal to 100 m from the point of discharge? Assume the flow velocity of the stream is the same upstream from the discharge points as it is downstream. Ans. L = 5.17 mg/l Problem 4 (Adapted from Water uality by Tchobanoglous and Schroeder.) A series of salinity measurements has been made on a 5-km section of an estuary. The section can be considered a uniform cross section, and during the period of interest, the freshwater flow rate was 13 m 3 /s and the freshwater velocity was 0.13 m/s. Estimate the tidal dispersion coefficient from the data given below. Chloride concentration at the ocean end of the estuary is 18.2 kg/m 3. Samples were all taken at high water slack tide. Distance from mouth of estuary, km chloride conc., kg/m Ans. E = 252 m 2 /sec. Problem 5. (Adapted from Water uality by Tchobanoglous and Schroeder.) The river and tributary shown on the next page have flow rates of 4.0 m 3 /s and 0.5 m 3 /s respectively. Under the conditions given, the flow split at point A is 0.7 to AB and 0.3 to AC. Tracer studies have peen performed and the flow from A to B to C can be characterized as a PFR between A and B - followed by a CSTR at point B - followed by a PFR from B to C. The flow from A to C behaves as a single PFR. Volumes of these reactors are given below: Reactor Volume (m 3 ) PFR AB 15,000 BC 10,000 AC 30,000 CSTR 135,000 3

4 T (tributary) B R (river) A island Island C R + T Determine the concentration of reactant A at point C for the following conditions: steady state, first order decay rate for A =.5/day; C A of the tributary input = 50 g/m 3 and C A of the river at point A = 100 g/m 3. Ans g/m 3 Problem 6. A small, completely-mixed pond (volume = V) is fed by a single, clean stream (flow = ). Once every three days an industry discharges a slug of BOD L directly into this pond. If this frequency of BOD L inputs continues indefinitely, and the concentration of BOD L in the pond before each discharge (L 1 ) is routinely found to be 20 mg/l, what amount (in kg) of BOD L must be discharged? w Ans. W = 4.47 x 10 4 kg Assume k 1 = 0.25 day -1 = 8 x 10 7 L/d V = 10 8 liters slug amount =??? The expected form of the response for a CSTR with this type of loading is illustrated on the following page. 4

5 L This line indicates the trend in 2 the data, not the actual concentrations L 2 L 2 reactor effluent concentration L1 L1 L1 L1 Eventually, a pseudo "steady-state" is attained with 37 day-interval fluctuations between BOD concentration levels L 2 and L 1. Problem 7. Do STELLA Exercise #4. Please remember to turn it in separately (with a separate transmittal letter). time 5

Module 1: CHAPTER FOUR PHYSICAL PROCESSES

Module 1: CHAPTER FOUR PHYSICAL PROCESSES Module 1: CHAPTER FOUR PHYSICAL PROCESSES Objectives: To know physical processes that are important in the movement of pollutants through the environment and processes used to control and treat pollutant

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering Lafayette College Department of Civil and Environmental Engineering CE 321: Environmental Engineering and Science Fall 2014 Homework #3 Due: Monday, 9/15/16 SOLUTIONS 1. Calculate the hydraulic residence

More information

STELLA Assignment #2 - BOD

STELLA Assignment #2 - BOD STELLA Assignment #2 - BOD 1) In this problem, you will be tracking the biochemical oxygen demand (BOD) impact of a waste discharged from the Watapiti waste facility. The plant discharges 7.5 x 10 5 liters/day

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering Lafayette College Department of Civil and Environmental Engineering CE 321: Environmental Engineering and Science Fall 2013 Homework #3 Due: Monday, 9/16/13 SOLUTIONS 1. Calculate the hydraulic residence

More information

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD as modeled in the previous assignment. and t is the time in days.

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD as modeled in the previous assignment. and t is the time in days. STELLA Assignment #3 - Dissolved Oxygen and BOD Now that you have a good grasp of the STELLA basics, let's begin to expand the BOD model developed in the past assignment. One concern of an environmental

More information

CE3502. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS. Inflow. Outflo

CE3502. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS. Inflow. Outflo CE35. ENVIRONMENTAL MONITORING, MEASUREMENTS & DATA ANALYSIS Lab exercise: Statistics topic: Distributions Environmental Engineering Topic: Plug Flow Reactors Environmental Engineering Background There

More information

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days.

BOD(t) is the instantaneous concentration of BOD (recall, BOD(t) = BOD *e ) as modeled in the previous assignment. t is the time in days. STELLA Assignment #3 - Dissolved Oxygen and BOD Now that you have a good grasp of the STELLA basics, let's begin to expand the BOD model developed in the past assignment. Often the concern of an environmental

More information

Physical water/wastewater treatment processes

Physical water/wastewater treatment processes Physical water/wastewater treatment processes Tentative schedule (I) Week 1: Introduction Week 2: Overview of water/wastewater treatment processes Week 3: Major contaminants (Chemicals and pathogens) Week

More information

ENVE EXAM II Help Session DCC pm

ENVE EXAM II Help Session DCC pm ENVE-2110 EXAM II Help Session DCC337 10-8-13 4-5 pm Abbreviations Look through lecture notes, book and assignments Examples: (sample test Q1) V, Q, MW, L, CSTR, PFR, batch reactor, C, k, EPA, OSHA, G,

More information

Tidal Dilution of the Stockton Regional Wastewater Control Facility Discharge into the San Joaquin River

Tidal Dilution of the Stockton Regional Wastewater Control Facility Discharge into the San Joaquin River Tidal Dilution of the Stockton Regional Wastewater Control Facility Discharge into the San Joaquin River Prepared for: City of Stockton Department of Municipal Utilities 2500 Navy Drive Stockton, CA 95206

More information

sodium salt of metham C S -, Na+ S C S - H 2

sodium salt of metham C S -, Na+ S C S - H 2 Fechner - Levy 2-27 - Vapam Spill - Sacramento River - July 14, 1991 On July 14, 1991 a train derailment resulted in the spill of approximately 13,000 gal of the soil fumigant sodium metham (Vapam) to

More information

Course: Wastewater Management

Course: Wastewater Management Course: Wastewater Management Prof. M. M. Ghangrekar Questions 1 1. Describe advantages and disadvantages offered by the water carriage system. 2. What are the possible adverse effects when untreated or

More information

Modeling Surface Water Contamination

Modeling Surface Water Contamination Modeling Surface Water Contamination A municipal wastewater treatment facility is planning to locate upstream on a popular fishing river. The wastewater facility will continuously discharge wastewater

More information

Prepared for: KEO International Consultants, Abu Dhabi UAE. Effect of Increased Flow Rate on the Microbial Population in the Waterloo Biofilter

Prepared for: KEO International Consultants, Abu Dhabi UAE. Effect of Increased Flow Rate on the Microbial Population in the Waterloo Biofilter Prepared for: KEO International Consultants, Abu Dhabi UAE Effect of Increased Flow Rate on the Microbial Population in the Waterloo Biofilter Craig Jowett, Heather Millar, Kris Pataky Waterloo Biofilter

More information

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.)

Module 19 : Aerobic Secondary Treatment Of Wastewater. Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.) 1 P age Module 19 : Aerobic Secondary Treatment Of Wastewater Lecture 26 : Aerobic Secondary Treatment Of Wastewater (Contd.) 2 P age 19.1.5 Process Analysis of Completely Mixed Reactor with Sludge Recycle

More information

Systematic approach to modelling water quality in estuaries

Systematic approach to modelling water quality in estuaries Journal of Biodiversity and Environmental Sciences (JBES) ISSN: 2220-6663 (Print) 2222-3045 (Online) Vol. 1, No. 4, p. 43-47, 2011 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Systematic approach

More information

Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8.

Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8. Homework #7 Topic: Disinfection Due Tues., April 12 Assignment for 2018: Answer problem 1; then choose two of problems 4, 5, 8. 1. (20 pts) a. Answer question 13-4 in the Crittenden text (3 rd edition).

More information

National University of Singapore Institute of Mathematical Sciences. Spring School on Fluid Mechanics and Geophysics of Environmental Hazards

National University of Singapore Institute of Mathematical Sciences. Spring School on Fluid Mechanics and Geophysics of Environmental Hazards National University of Singapore Institute of Mathematical Sciences Spring School on Fluid Mechanics and Geophysics of Environmental Hazards River Pollution By Catherine C. Abon, National Institute of

More information

Linking field measurements and numerical modeling to understand fluvial transport processes and nitrate retention in the Suncook River, NH

Linking field measurements and numerical modeling to understand fluvial transport processes and nitrate retention in the Suncook River, NH Linking field measurements and numerical modeling to understand fluvial transport processes and nitrate retention in the Suncook River, NH March 8, 26 Presented by Meghan Arpino, MS Hydrology Candidate,

More information

OXYGEN DEFICIENCIES IN THE SCHELDE AND ELBE

OXYGEN DEFICIENCIES IN THE SCHELDE AND ELBE OXYGEN DEFICIENCIES IN THE SCHELDE AND ELBE ESTUARY: SAME DIFFICULTIES, DIFFERENT CAUSES Geerts L 1, Soetaert K 2, Maris T 1, Wolfstein K 3, Meire P 1 (lindsay.geerts@uantwerpen.be) 1) Ecosystem Management

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Spring 2015 Final Examination Monday, April 27, 2015 University of South Florida Civil & Environmental Engineering Prof JA Cunningham Instructions: 1. You may

More information

OCEN 475/677. Environmental Fluid Mechanics Problems. CIVIL 3136 TAMU College Station, Texas (979) FAX (979)

OCEN 475/677. Environmental Fluid Mechanics Problems. CIVIL 3136 TAMU College Station, Texas (979) FAX (979) OCEN 475/677 Environmental Fluid Mechanics Problems CIVIL 3136 TAMU College Station, Texas 77843-3136 (979) 845-4517 FAX (979) 862-8162 1 Concentration, Diffusion, and the Diffusion Equation 2 1.1 Environmental

More information

Lecture 5: River Water Quality

Lecture 5: River Water Quality Lecture 5: River Water Quality (Jan 16 th, 2015) by Dr. Arun Kumar (arunu@civil.iitd.ac.in) Objective: To introduce river water quality concepts and fundamentals January 15, 2015 Arun Kumar (arunu@civil.iitd.ac.in)

More information

Surface Water and Seawater Interactions in the Coastal Environment of Biscayne Bay, Southeast Florida

Surface Water and Seawater Interactions in the Coastal Environment of Biscayne Bay, Southeast Florida Surface Water and Seawater Interactions in the Coastal Environment of Biscayne Bay, Southeast Florida William C. Hutchings, MS, PG Nicholas Albergo, PE, DEE Paper No. 191-8 2005 Salt Lake City Annual Meeting

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Spring 2015 Quiz #2 Wednesday, March 18 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

ASSESSMENT OF AIR CHANGE RATE AND CONTRIBUTION RATIO IN IDEALIZED URBAN CANOPY LAYERS BY TRACER GAS SIMULATIONS

ASSESSMENT OF AIR CHANGE RATE AND CONTRIBUTION RATIO IN IDEALIZED URBAN CANOPY LAYERS BY TRACER GAS SIMULATIONS Topic B4: Ventilation ASSESSMENT OF AIR CHANGE RATE AND CONTRIBUTION RATIO IN IDEALIZED URBAN CANOPY LAYERS BY TRACER GAS SIMULATIONS Qun WANG 1, Mats SANDBERG 2, Jian HANG 1* 1 Department of Atmospheric

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Final Examination Monday, December 4, 2017 University of South Florida Civil & Environmental Engineering Prof JA Cunningham Instructions: 1. You may

More information

Modeling chlorine residuals in Water Distribution Network Using EPANET 2.0 software.

Modeling chlorine residuals in Water Distribution Network Using EPANET 2.0 software. Modeling chlorine residuals in Water Distribution Network Using EPANET. software. Ms. Kashfina Kapadia* *Reader in Acropolis institute of technology and research Indore. kashfina@rediffmail.com 1. Abstract:

More information

DO is one of the most important constituents of natural water systems; as fish and other aquatic animal species require oxygen.

DO is one of the most important constituents of natural water systems; as fish and other aquatic animal species require oxygen. MODELLING WATER QUALITY oxygen_sag.pdf Simple River Model DO is one of the most important constituents of natural water systems; as fish and other aquatic animal species require oxygen. Stream must have

More information

APPENDIX K WATER QUALITY

APPENDIX K WATER QUALITY APPENDIX K WATER QUALITY Dissolved Oxygen Model Formulation for Silver Creek Assessment of Septic System Impacts to Groundwater Nitrates Assessment of Road Salting on Groundwater Chlorides Dissolved Oxygen

More information

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013

CGN 6933: Drinking Water Treatment Processes Department of Civil & Environmental Engineering University of South Florida Cunningham Spring 2013 Homework #6 Due Thurs., April 11 Topic: Disinfection Assignment for 2013: Problems 4, 5, 8, 12 1. Answer question 13-5 in the Howe text book (same as 13-4 in the Crittenden text, 3rd edition). Don t worry

More information

USE OF A ROTATING BIOLOGICAL CONTACTOR FOR APPROPRIATE TECHNOLOGY WASTEWATER TREATMENT

USE OF A ROTATING BIOLOGICAL CONTACTOR FOR APPROPRIATE TECHNOLOGY WASTEWATER TREATMENT USE OF A ROTATING BIOLOGICAL CONTACTOR FOR APPROPRIATE TECHNOLOGY WASTEWATER TREATMENT ABSTRACT KEY WORDS Organic loading (weight per unit time per volume) is useful for the design of rotating biological

More information

Lecture 4 CE 433. Excerpts from Lecture notes of Professor M. Ashraf Ali, BUET.

Lecture 4 CE 433. Excerpts from Lecture notes of Professor M. Ashraf Ali, BUET. Lecture 4 CE 433 Excerpts from Lecture notes of Professor M. Ashraf Ali, BUET. BOD Modeling BOD as a first order Reaction If L 0 = ultimate CBOD L t = amount of oxygen demand remaining after time t Then,

More information

ENV 4417: WATER QUALITY AND TREATMENT. University of South Florida Civil & Environmental Eng.

ENV 4417: WATER QUALITY AND TREATMENT. University of South Florida Civil & Environmental Eng. ENV 4417: WATER QUALITY AND TREATMENT Fall 2015 Final exam Thursday, December 10 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

University of South Florida

University of South Florida ENV 4417: WATER QUALITY & TREATMENT Fall 2015 Problem set #4 Due Tuesday, Oct. 13 University of South Florida Civil & Environmental Eng. Prof. J. A. Cunningham For 2015, answer problem 1, then problem

More information

FEDSM DRAFT: RANS PREDICTIONS OF TURBULENT SCALAR TRANSPORT IN DEAD ZONES OF NATURAL STREAMS

FEDSM DRAFT: RANS PREDICTIONS OF TURBULENT SCALAR TRANSPORT IN DEAD ZONES OF NATURAL STREAMS Proceedings of the ASME 2012 Fluids Engineering Division Summer Meeting FEDSM2012 July 8-12, 2012, Puerto Rico, USA FEDSM2012-72380 DRAFT: RANS PREDICTIONS OF TURBULENT SCALAR TRANSPORT IN DEAD ZONES OF

More information

DRINKING WATER QUALITY FORECASTING SALINITY INTRUSION IN WHAKATANE RIVER

DRINKING WATER QUALITY FORECASTING SALINITY INTRUSION IN WHAKATANE RIVER DRINKING WATER QUALITY FORECASTING SALINITY INTRUSION IN WHAKATANE RIVER Ben Tuckey 1, Colin Roberts 1 and Santhan Gunasantha 2. 1 DHI New Zealand, ecentre, Oaklands Road, Auckland. 2 Whakatane District

More information

CEE 370 Fall Homework #8

CEE 370 Fall Homework #8 CEE 370 Fall 015 Homework #8 Drinking Water Problems 1. Drinking Water Quality The following mineral analysis was reported for Michigan State Well water. Determine the following in units of mg/l as CaCO3

More information

Fundamental Concepts: Reactions

Fundamental Concepts: Reactions Fundamental Concepts: Reactions Ann Kenimer Texas A & M University University Curriculum Development for Decentralized Wastewater Management NDWRCDP Disclaimer This work was supported by the National Decentralized

More information

Simulation of Hydrodynamic Behaviour and Mixing Pattern in Tubular MFC Reactor

Simulation of Hydrodynamic Behaviour and Mixing Pattern in Tubular MFC Reactor ISSN(Online) : 9-875 Simulation of Hydrodynamic Behaviour and Mixing Pattern in Tubular MFC Reactor Anantha Moorthy.U, K.Radhika, Sangeetha Anand P.G. Student, Department of Civil Engineering, Dr.M.G.R

More information

1.061 / 1.61 Transport Processes in the Environment Fall 2008

1.061 / 1.61 Transport Processes in the Environment Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 1.061 / 1.61 Transport Processes in the Environment Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

VI. WATER QUALITY MODELING

VI. WATER QUALITY MODELING VI. WATER QUALITY MODELING As was mentioned previously in Chapter V, the Hamblin Pond/Jehu Pond and Quashnet River sub-systems of Waquoit Bay were a part of the larger hydrodynamic model of the Waquoit

More information

Ecology Chapter Teacher Sheet. Activity #7: Using SWMP Data

Ecology Chapter Teacher Sheet. Activity #7: Using SWMP Data Ecology Chapter Teacher Sheet Activity #7: Using SWMP Data Adapted from Exercises Using System Wide Monitoring Program Data, Waquoit Bay National Estuarine Research Reserve, OBJECTIVES: To plot and interpret

More information

CEE 371 May 14, 2009 Final Exam

CEE 371 May 14, 2009 Final Exam CEE 371 May 14, 2009 Final Exam Closed Book, two sheets of notes allowed Please answer questions 3, 6 and 7. In addition, answer either question 1 or 2, and answer either question 4 or 5. The total potential

More information

WASTEWATER TREATMENT (1)

WASTEWATER TREATMENT (1) Wastewater Engineering (MSc program) WASTEWATER TREATMENT (1) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2017 Quiz #2 Wednesday, October 25 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

Preparing for Technical Training: Essential Skills for Water/Wastewater Operators. Practice Tests

Preparing for Technical Training: Essential Skills for Water/Wastewater Operators. Practice Tests Practice Tests COURSE OUTLINE: Module # Name Practice Test included Module 1: Basic Math Refresher Module 2: Fractions, Decimals and Percents Module 3: Measurement Conversions Module 4: Linear, Area and

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2018 Quiz #1 Wednesday, September 26 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

Introduction. Background. Case Study: The Role of Optimization in Plant Re-rating Prepared by D.T. Chapman, CPO Inc.

Introduction. Background. Case Study: The Role of Optimization in Plant Re-rating Prepared by D.T. Chapman, CPO Inc. Prepared by D.T. Chapman, CPO Inc. Introduction The Grand River Conservation Authority (GRCA) initiated a program in 2010 to optimize wastewater treatment plants (WWTPs) in the watershed to improve water

More information

Mixing studies in an Orbal activated sludge system

Mixing studies in an Orbal activated sludge system Mixing studies in an Orbal activated sludge system LJ Burrows 1, JR West 1, CF Forster 1 * and A Martin 2 1 School of Civil Engineering, Birmingham University, Edgbaston, Birmingham B15 2TT 2 Environmental

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering afayette College Department of Civil and Environmental Engineering CE 21: Environmental Engineering and Science Fall 2011 Homework #10 Due: Friday, December 2, 2011 Solutions 1) A wastewater treatment

More information

Troubleshooting Activated Sludge Processes. PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E.

Troubleshooting Activated Sludge Processes. PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E. Troubleshooting Activated Sludge Processes PNCWA - Southeast Idaho Operators Section Pocatello, ID February 11, 2016 Jim Goodley, P.E. Outline Process Types & Kinetics Influent Monitoring Process Monitoring

More information

SECTION-I. b) Write a short note on pumping of savage. 4

SECTION-I. b) Write a short note on pumping of savage. 4 UNIVERSITY OF PUNE [4364]-401 B. E. (Civil Engineering Semester I) Examination - 2013 ENVIRONMENTAL ENGINEERING-II (2008 Pattern) [Total No. of Questions :12] [Total No. of Printed Pages :4] [Time : 3

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2016 Quiz #2 Wednesday, October 26 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

Flushing time calculations for the Upper Waitemata Harbour, New Zealand

Flushing time calculations for the Upper Waitemata Harbour, New Zealand New Zealand Journal of Marine and Freshwater Research ISSN: 0028-8330 (Print) 1175-8805 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzm20 Flushing time calculations for the Upper Waitemata

More information

TRACER STUDIES AT A FULL-SCALE LAGOON USED AS PRE-TREATMENT FACILITY FOR A WATER TREATMENT PLANT

TRACER STUDIES AT A FULL-SCALE LAGOON USED AS PRE-TREATMENT FACILITY FOR A WATER TREATMENT PLANT Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 213 TRACER STUDIES AT A FULL-SCALE LAGOON USED AS PRE-TREATMENT FACILITY FOR A WATER

More information

Lafayette College Department of Civil and Environmental Engineering

Lafayette College Department of Civil and Environmental Engineering afayette College Department of Civil and Environmental Engineering CE 21: Environmental Engineering and Science Fall 2014 Homework #11 Due: Monday, December 1, 2014 SOUTIONS 1) Suppose some wastewater

More information

RETENTION BASIN EXAMPLE

RETENTION BASIN EXAMPLE -7 Given: Total Tributary Area = 7.5 ac o Tributary Area within Existing R/W = 5.8 ac o Tributary Area, Impervious, Outside of R/W = 0.0 ac o Tributary Area, Pervious, Outside of R/W = 1.7 ac o Tributary

More information

Level 6 Graduate Diploma in Engineering Hydraulics and hydrology

Level 6 Graduate Diploma in Engineering Hydraulics and hydrology 910-103 Level 6 Graduate Diploma in Engineering Hydraulics and hydrology Sample Paper You should have the following for this examination one answer book ordinary graph paper pen, pencil, ruler Work sheet

More information

Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand

Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand Environ. Eng. Res. 2014; 19(3): 269-274 pissn 1226-1025 http://dx.doi.org/10.4491/eer.2014.s1.004 eissn 2005-968X Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand

More information

Hydraulic Engineering and Water Management

Hydraulic Engineering and Water Management Hydraulic Engineering and Water Management for Umwelt und Bioressourcenmanagement 3 rd Lecture LVA 816.111 Cedomil Josip JUGOVIC H81 Department of Water, Atmosphere and Environment H816 Institute of Water

More information

UV DISINFECTION OF LOW TRANSMITTANCE PHARMACEUTICAL WASTEWATER

UV DISINFECTION OF LOW TRANSMITTANCE PHARMACEUTICAL WASTEWATER UV DISINFECTION OF LOW TRANSMITTANCE PHARMACEUTICAL WASTEWATER Jurek Patoczka, PhD, PE Hatch Mott MacDonald, 27 Bleeker Str., Millburn, NJ 74 jurek.patoczka@hatchmott.com ABSTRACT An UV disinfection system

More information

Figure Trickling Filter

Figure Trickling Filter 19.2 Trickling Filter A trickling filter is a fixed film attached growth aerobic process for treatment of organic matter from the wastewater. The surface of the bed is covered with the biofilm and as the

More information

FEASIBILITY REPORT OF 250 KLD SEWAGE TREATMENT PLANT

FEASIBILITY REPORT OF 250 KLD SEWAGE TREATMENT PLANT FEASIBILITY REPORT OF 250 KLD SEWAGE TREATMENT PLANT FOR Proposed Residential Apartment project by M/s. DS-Max Properties Pvt Ltd, at Sy No. 27/2 & 27/3 at Valagerahalli Village, Kengeri Hobli, Bangalore

More information

EHS SMART-Treat Onsite Moving Media Treatment System

EHS SMART-Treat Onsite Moving Media Treatment System EHS SMART-Treat Onsite Moving Media Treatment System Sampling &Testing Protocol for SMART-Treat Wastewater Treatment System SAMPLING DURING OPERATION OF THE TREATMENT SYSTEM-IF DESIRED Sampling and analytical

More information

Environmental Cleanup & Restoration Design Project Summer 2002 Overview

Environmental Cleanup & Restoration Design Project Summer 2002 Overview Environmental Cleanup & Restoration Design Project Summer 2002 Overview Natrium, Oregon is a coastal city known for its waterfront park and summer Saltwater Taffy festival held on the banks of the Nackel

More information

Sanitary and Environmental Engineering I (4 th Year Civil)

Sanitary and Environmental Engineering I (4 th Year Civil) Sanitary and Environmental Engineering I (4 th Year Civil) Prepared by Dr.Khaled Zaher Assistant Professor, Public Works Engineering Department, Faculty of Engineering, Cairo University Wastewater Flow

More information

A Short term study of Dissolved Oxygen behavior in Adyar River, Chennai

A Short term study of Dissolved Oxygen behavior in Adyar River, Chennai A Short term study of Dissolved Oxygen behavior in Adyar River, Chennai Dr. Lavanya Vaithyanathan 1, Salome Solomon 2, Sunkara Krishna priya 3 Department of Civil Engineering, Assistant professor 1, Department

More information

Wastewater treatment Systems and the Implementation of constructed Wetlands in Atitlán Lake Basin, Guatemala

Wastewater treatment Systems and the Implementation of constructed Wetlands in Atitlán Lake Basin, Guatemala Wastewater treatment Systems and the Implementation of constructed Wetlands in Atitlán Lake Basin, Guatemala Abstract Jonás A. Dobias and Ilan Leshem Water and Environmental Engineering Department of Chemical

More information

Relationships of water age with chlorophyll a concentrations in the eutrophic Lower Alafia River estuary. Michael S. Flannery Xinjian Chen

Relationships of water age with chlorophyll a concentrations in the eutrophic Lower Alafia River estuary. Michael S. Flannery Xinjian Chen Relationships of water age with chlorophyll a concentrations in the eutrophic Lower Alafia River estuary Michael S. Flannery Xinjian Chen Chlorophyll a (µg/l) Kilometers from river mouth KM = 16.47-1.96(Ln

More information

Long-term change of stream water quality as a consequence of watershed development and management

Long-term change of stream water quality as a consequence of watershed development and management Long-term change of stream water quality as a consequence of watershed development and management T. Kinouchi, K. Musiake Department of Environment System Management, Fukushima University, Japan kinouchi@sss.fukushima-u.ac.jp.

More information

Cork Institute of Technology. Summer 2005 CE4.6 Chemical and Biochemical Reactors (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 CE4.6 Chemical and Biochemical Reactors (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours in Chemical and Process Engineering Award (Bachelor of Engineering in Chemical and Process Engineering Award Answer any FOUR questions. (NFQ

More information

Measuring discharge. Climatological and hydrological field work

Measuring discharge. Climatological and hydrological field work Measuring discharge Climatological and hydrological field work 1. Background Discharge (or surface runoff Q s) refers to the horizontal water flow occurring at the surface in rivers and streams. It does

More information

Modeling Surface Water Contamination

Modeling Surface Water Contamination Modeling Surface Water Contamination One of the resources required for an ecosystem to function is an available source of fresh water This is quite true for human settlements as well: If you examine the

More information

Zerihun Alemayehu (AAiT-CED)

Zerihun Alemayehu (AAiT-CED) Zerihun Alemayehu (AAiT-ED) Tools for quantitative understandg of the behavior of environmental systems. For accountg of the flow of energy and materials to and of the environmental systems. 1 onservation

More information

Chlorine Decay Modeling and Water Age Predictions

Chlorine Decay Modeling and Water Age Predictions Chlorine Decay Modeling and Water Age Predictions Marvin Gnagy, P.E., President PMG Consulting, Inc. OTCO Water Workshop March 5, 2014 Agenda Residual Decay in Water Experimental Data Collection Data Evaluations

More information

WILLAMETTE RIVER AND COLUMBIA RIVER WASTE LOAD ALLOCATION MODEL

WILLAMETTE RIVER AND COLUMBIA RIVER WASTE LOAD ALLOCATION MODEL WILLAMETTE RIVER AND COLUMBIA RIVER WASTE LOAD ALLOCATION MODEL Christopher J. Berger, Research Associate, Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon

More information

Feasibility Report on Sewage Treatment Plant (STP)

Feasibility Report on Sewage Treatment Plant (STP) Feasibility Report on Sewage Treatment Plant (STP) FOR Proposed Commercial Building project Commercial Office Building by M/s. Bhagavath Sannidhi Estates Pvt Ltd.at Sy No 55/1 of Devarabeesanahalli Village,

More information

Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories

Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories Production of Bioenergy Using Filter Cake Mud in Sugar Cane Mill Factories Carmen Baez-Smith, P.E. Smith Baez Consulting, Inc. Loxahatchee, Florida, USA Sugar Processing Research Institute 2008 Conference

More information

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15

Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Department of Civil Engineering-I.I.T. Delhi CVL723 Problem Set_2_Feb6_15 Always write your name and entry number in all submissions. Please mention your assumptions explicitly. Q1. Say a raw wastewater

More information

REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION. Alyssa Dausman 1 and Christian Langevin 1

REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION. Alyssa Dausman 1 and Christian Langevin 1 REPRESENTING HYDRODYNAMIC DISPERSION IN SALTWATER INTRUSION MODELS THAT DIFFER IN TEMPORAL RESOLUTION Alyssa Dausman 1 and Christian Langevin 1 ABSTRACT: Variable-density groundwater flow models are often

More information

Appendix L: Mary River Dispersion Study

Appendix L: Mary River Dispersion Study Appendix L: Mary River Dispersion Study Environmental Management Plan L September 2011 Mary River Dispersion Study Model Development, Calibration and Analysis Northern Energy Corporation Ltd August 2011

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_A_Environmental Engineering_100818 CLASS TEST (GATE Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257. Fluid Dynamics

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257. Fluid Dynamics s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2015/2016 ME257 Fluid Dynamics Time allowed: TWO hours Answer: Answer TWO from THREE questions in section A and TWO from THREE

More information

CIVT 4201 Introduction to Environmental Engineering (4 Semester Credit Hours)

CIVT 4201 Introduction to Environmental Engineering (4 Semester Credit Hours) CIVT 4201 Introduction to Environmental Engineering (4 Semester Credit Hours) I. Course Description: This course is an introductory course on the fundamental science and engineering principles of environmental

More information

The Influence of Hydrodynamics on the Spread of. Pollutants in the Confluence of two Rivers

The Influence of Hydrodynamics on the Spread of. Pollutants in the Confluence of two Rivers Applied Mathematical Sciences, Vol. 7, 13, no. 123, 6115-6123 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.12988/ams.13.39527 The Influence of Hydrodynamics on the Spread of Pollutants in the Confluence

More information

Appendix B Wasteload Assimilative Capacity Analysis

Appendix B Wasteload Assimilative Capacity Analysis Appendix B Wasteload Assimilative Capacity Analysis WASTELOAD ASSIMILATIVE CAPACITY (WAC) ANALYSIS FOR LEGACY RIDGE 1.0 Introduction The Legacy Ridge development will generate wastewater that will be treated

More information

operation of continuous and batch reactors. Contrary to what happens in the batch reactor, the substrate (BOD) of the wastewater in the continuous rea

operation of continuous and batch reactors. Contrary to what happens in the batch reactor, the substrate (BOD) of the wastewater in the continuous rea The Effect of Ammonia Loading on the Nitrification Kinetic of Aerobic Baffled Continuous Biological Reactor S.R.M. Kutty, M.H. Isa and L.C. Leong Abstract - The purpose of this study is to determine the

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : 01. PT_CE_A+B_Environmental Engineering_090718 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19

More information

Environmental Engineering I Jagadish Torlapati Fall 2017 MODULE 1 MATERIALS AND ENERGY BALANCES WORKSHEET 1

Environmental Engineering I Jagadish Torlapati Fall 2017 MODULE 1 MATERIALS AND ENERGY BALANCES WORKSHEET 1 Learning Outcomes MODULE 1 MATERIALS AND ENERGY BALANCES WORKSHEET 1 1. Define the law of conservation of matter 2. Illustrate the material-balance diagrams 3. Define steady state conditions Conceptual

More information

FORMULATION, CALIBRATION AND VERIFICATION OF A MATHEMATICAL MODEL FOR KALAMAS RIVER, GREECE

FORMULATION, CALIBRATION AND VERIFICATION OF A MATHEMATICAL MODEL FOR KALAMAS RIVER, GREECE Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 FORMULATION, CALIBRATION AND VERIFICATION OF A MATHEMATICAL MODEL FOR KALAMAS

More information

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l

ATTACHMENT 1 GENERAL FACILITY INFORMATION. BOD5 mg/l mg/l TSS mg/l mg/l NH3-N mg/l mg/l ATTACHMENT 1 GENERAL FACILITY INFORMATION 1. Facility Name: 2. Type of Facility: 3. Population Served: Present: Design: 4. Flow: Average Maximum Peak 5. Water Quality: Present Design Assumed Actual Source:

More information

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Treatment of Tannery Effluent by U.A.S.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Treatment of Tannery Effluent by U.A.S. Treatment of Tannery Effluent by U.A.S.B Reactor Method A.Latha 1, G. Saravana Raj 2, G. Kaushik 3, S.K. Sabari 4 1 Associate Professor, 2,3,4 B.E., Civil Department Panimalar Engineering College, Chennai,

More information

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A

Cork Institute of Technology. Summer 2005 CE3.6 Reactor Design and Biochemical Engineering (Time: 3 Hours) Section A Cork Institute of Technology Bachelor of Engineering (Honours) in Chemical & Process Engineering Stage 3 (Bachelor of Engineering in Chemical and Process Engineering Stage 3) (NFQ Level 8) Summer 005 CE3.6

More information

SIMPLIFIED ANALYTICAL METHOD FOR WASTE LOAD ALLOCATIONS

SIMPLIFIED ANALYTICAL METHOD FOR WASTE LOAD ALLOCATIONS CEE 577 Spring 2012 SIMPLIFIED ANALYTICAL METHOD FOR WASTE LOAD ALLOCATIONS This method represents the minimum level of analysis acceptable to EPA as justification for requiring treatment beyond secondary.

More information

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng.

ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING. University of South Florida Civil & Environmental Eng. ENV 4001: ENVIRONMENTAL SYSTEMS ENGINEERING Fall 2018 Quiz #2 Wednesday, October 24 University of South Florida Civil & Environmental Eng. Prof. J.A. Cunningham Instructions: 1. You may read these instructions,

More information

Dundalk Wastewater Treatment Plant

Dundalk Wastewater Treatment Plant Township of Southgate Dundalk Wastewater Treatment Plant 2017 Annual Report Staff Report PW2018-010 - Dundalk Wastewater Treatment Plant 2017 Annual Report Moved by Councillor Pallister, Seconded by Councillor

More information

Estimating the Volume and Salt Fluxes Through the Arthur Kill and the Kill Van Kull

Estimating the Volume and Salt Fluxes Through the Arthur Kill and the Kill Van Kull World Water and Environmental Resource Congress, June 22-26, 2003, Philadelphia, Pennsylvania Estimating the Volume and Salt Fluxes Through the Arthur Kill and the Kill Van Kull Imali D. Kaluarachchi 1,

More information

OCEN 475/677. Environmental Fluid Mechanics Problems. CIVIL 3136 TAMU College Station, Texas (979) FAX (979)

OCEN 475/677. Environmental Fluid Mechanics Problems. CIVIL 3136 TAMU College Station, Texas (979) FAX (979) OCEN 475/677 Environmental Fluid Mechanics Problems CIVIL 3136 TAMU College Station, Texas 77843-3136 (979) 845-4517 FAX (979) 862-8162 1 Concentration, Diffusion, and the Diffusion Equation 2 1.1 Environmental

More information

Right click on the influent element and select name. Type Influent in the box. This should change the name of your element to influent.

Right click on the influent element and select name. Type Influent in the box. This should change the name of your element to influent. CE 521 WASTEWATER ENGINEERING - BIOWIN DESIGN PROJECT IN CLASS ASSIGNMENT TUTORIAL (adapted from assignments by Professor Chris Schmit SDSU http://learn.sdstate.edu/christopher%5fschmit/) Start BioWin

More information