Terrestrial Biogeochemistry in UKESM! Anna Harper, Andy Wiltshire, Rich Ellis, Spencer Liddicoat, Nic Gedney, Gerd Folberth, Eddy Robertson, T

Size: px
Start display at page:

Download "Terrestrial Biogeochemistry in UKESM! Anna Harper, Andy Wiltshire, Rich Ellis, Spencer Liddicoat, Nic Gedney, Gerd Folberth, Eddy Robertson, T"

Transcription

1 Terrestrial Biogeochemistry in UKESM! Anna Harper, Andy Wiltshire, Rich Ellis, Spencer Liddicoat, Nic Gedney, Gerd Folberth, Eddy Robertson, T Davies-Barnard, Doug Clark, Margriet Groenendijk, Chris Jones, Peter Cox! NCAS Forum! 1 Dec. 2015!

2 Motivation! Feedbacks from the terrestrial carbon cycle contribute large uncertainty to future climate scenarios! Changes to vegetation and methane emissions can lead to positive feedbacks! The size of the future land carbon sink is uncertain, and depends on wether plants are fertilised by CO2 or limited by nutrients & climate.! Air quality is affected by biogenic VOCs, which are O3 precursors! Most of the land surface has been modified by humans! There is a need for the next generation of models to answer questions about food production, bioenergy, carbon cycle and climate implications of land use!

3 Motivation! Changes to vegetation and methane emissions can lead to positive feedbacks! Biogenic VOCs can produce O3 and affect air quality! The role that nutrient limitation will play on the future land carbon sink is uncertain! Most of the land surface has been modified by humans! There is a need for the next generation of models to answer questions about food production, bioenergy, carbon cycle and climate implications of land use! Improved/new plant functional types to represent more diverse responses of vegetation to climate change/ variability.! Simulate the emissions of CH4 from wetlands and BVOCs from plants.! Represent N limitation on global plant productivity.! Include carbon cycle impacts of crop harvest.!

4 Improving Physiology with new Plant Extend from 5 to 9 PFTs.! Use N for leaf, root, and stem from the TRY database. This affects:! Plant respiratory costs, & therefore their net C uptake capacity! C/N ratios which determine their propensity to be N limited.! New parameters for calculating Vcmax, which determines photosynthetic capacity.! Update phenology to enforce observed trade-off between Leaf Mass/Area & leaf lifespan, which affects competitiveness of PFTs.! New PFTs have different optimal temperature for photosynthesis! Functional Types! Trees! Grass! Shrubs! broadleaf! needleleaf! C3! C4! evergreen! deciduous! evergreen! deciduous! evergreen! deciduous! tropical! temperate!

5 Site Evaluation of Gross Primary Production Tropical forest Savannah Higher GPP with trait data & new PFTs (blue lines)! Compared to JULES with 5 PFTs, including all updated parameters (JULES9):! Needleleaf evergreen Decreased daily RMSE at 7 sites > both savannahs, 1 NET, both natural grasslands, 1 BDT, + the NDT site.! Increased correlation at 9 sites > both savannahs, all NET, both natural grasslands, 1 BDT + the NDT site.! Grass Needleleaf deciduous Brdlf Dec

6 Vegetation distribution! Present day! Change in fractions, 2090 s s! BT NT C3g C4g SH Soil Based on IPSL-CM5A- LR RCP8.5! Preliminary results: Next step is to test PFTs with HadGEM climate and others!

7 Wetland CH4 emissions! Wetland methane emissions are calculated based on different substrates: soil carbon or NPP.! Methane emissions are passed to UKCA! Using NPP as a substrate increases emissions in the Tropics.! Improvements in the wetland fraction based on updated TOPMODEL parameters (influence of topography on inundation).! Seasonal fraction of wetland in tropics relative to global total Marthews et al. 2015: High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Sys. Sci.

8 BVOC Emissions! Small changes in future global isoprene emissions: Warming increases emissions but CO2 inhibits them! Change in O3 due to isoprene emission change only, ! Locally large impact of isoprene emissions on tropospheric ozone! This work was done a few years ago, but there are new emission factors calculated for the new PFTs! Pacifico et al. 2012, JGR: Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistr

9 Managed land in JULES: Why! There is already a crop physiological model. The idea here is to represent the effects of management on land cover.! Allow crops to compete for land amongst themselves, so future simulations do not need specific maps of crop types, only a map of the agricultural fraction for each grid cell.! Crops are different from natural plants:! Crops may not be N limited due to fertilizer! Crops may not be water limited due to irrigation! Crops are harvested, so allocation of biomass varies!

10 Managed land in JULES: How! Adding 4 PFTs (2 crop & 2 pasture)! Do not allow competition between new PFT subgroups (natural-crop, natural-pasture, crop-pasture)! Harvest represented by removal of crop litter! Testing of 5 natural+4 agricultural PFTs and 9+4.! There is a minimal impact, with small reductions in soil carbon.! Technical difficulties such as the atmospheric chemistry needs to be able to see 17 land tiles.!

11 Nitrogen cycle! Plants need N to convert CO2 to carbohydrates.! There is plenty of N2 available but it takes energy to convert this to biologically available N.! N availability and the capacity for forests to acquire new sources of N affect CO2 fertilization.! In future projections, nitrogen dynamics reduce the CO2 fertilisation effect and increase the terrestrial carbon loss due to warming.! Two models with N cycle (NCAR-CESM1-BGC & NCC-NorESM-ME) had a muted response: CO2 fertilization effected was limited in the biogeochemical experiments.! Arora et al. 2013: Carbon-concentration and carbonclimate feedbacks in CMIP5 ESMs, J. Climate!

12 JULES CN! Represents soil and vegetation nitrogen processes! TRIFFID DGVM receives NPP & N limitation reduces the NPP! N pools for roots, wood, and leaves! Soil N model based on Roth-C!

13 Global JULES CN GtC in AR5 models 2xCO2 > 1xCO2 in all cases! JULES-CN < JULES-C for each CO2 scenario! 2xCO2 CN + 2 C > 2xCO2 CN: greater N availability because of increased mineralisation due to warmer soil! Trees fare better than grasses with 2xCO2 and with N limitation.!

14 Near-term goals! We have begun testing all of the developments together.! Evaluation focus on:! Distribution of PFTs! Global GPP (~120 Pg C/yr) and NPP (~50% of GPP)! Global soil C (~1500 Pg C), and vegetation carbon (~ Pg C)! Fluxnet sites (24 with GPP)! Seasonal cycle of CO2 at Mauna Loa! NPP response at Duke and Oak Ridge! FACE sites (& others)! Including optimised parameters from! adjules!

15 Development timeline! Developments for JULES-CN are in place.! Online testing beginning now.! We have between now and ~June 2016 to:! Tune offline JULES! Test online JULES for unexpected coupling issues.! This will get it into UKESM-0.5!

16 Post-UKESM1 developments! RED: Each PFT is divided into mass classes so successional stages can be modelled to improve carbon uptake following land use! Further development of land use/managed land/crop model! Permafrost: Need deeper soils with more soil layers, organic soils!

JULES biogeochemistry Update on model developments

JULES biogeochemistry Update on model developments JULES biogeochemistry Update on model developments Module leaders: Mat Williams and Sarah Chadburn Developments by: Joe McNorton, Nic Gedney, Eddy Robertson, Andy Wiltshire, Sarah Chadburn, Eleanor Burke,

More information

New Transient Land Surface Data Sets for CLM5

New Transient Land Surface Data Sets for CLM5 New Transient Land Surface Data Sets for CLM5 Dr. Peter Lawrence Project Scientist NCAR Terrestrial Science Section David Lawrence, George Hurtt and many others Slide 1 - Title 1. CLM4 CMIP5 Land Surface

More information

Short Course. Lancaster, 29 th -30 th June 2016

Short Course. Lancaster, 29 th -30 th June 2016 Short Course Lancaster, 29 th -30 th June 2016 JULES Short Course Scope Brief introduction to JULES (science, development, resources) Practical sessions Course will not cover MAJIC: The online version

More information

Land Cover Change in CLM4. Dr. Peter Lawrence

Land Cover Change in CLM4. Dr. Peter Lawrence Land Cover Change in CLM4 Dr. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS group for their many contributions) Slide 1 - Title Land

More information

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division

Investigating Land Use Land Cover Change in CESM. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division Investigating Land Use Land Cover Change in CESM Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups for their many contributions)

More information

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence

Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Land Modeling II - Biogeochemistry: Ecosystem Modeling and Land Use Dr. Peter Lawrence Project Scientist Terrestrial Science Section Climate and Global Dynamics Division (With thanks to TSS and IAM groups

More information

Coupling for ESM: The integrated Earth System Model (iesm)

Coupling for ESM: The integrated Earth System Model (iesm) Coupling for ESM: The integrated Earth System Model (iesm) William D. Collins and the iesm Team: Kate Calvin, Andy Jones, Jae Edmonds, & Co. EMF Workshop on Climate Change Impacts and Integrated Assessment:

More information

1: Japan Agency for Marine-Earth Science and Technology 2: National Institute for Environmental Studies. Hajima et al. 2014, J.

1: Japan Agency for Marine-Earth Science and Technology 2: National Institute for Environmental Studies. Hajima et al. 2014, J. Decomposition of CO2 fertilization effect into contributions by land ecosystem processes: comparison among CMIP5 Earth system models Kaoru Tachiiri 1 Tomohiro Hajima 1 Akihiko Ito 1,2 Michio Kawamiya 1

More information

Summary of survey of current JULES process issues & biases. Debbie Hemming

Summary of survey of current JULES process issues & biases. Debbie Hemming Summary of survey of current JULES process issues & biases Debbie Hemming Summary of survey - current JULES process issues & biases Process issues & biases Terrestrial Carbon Cycle process evaluation workshop

More information

New Transient Land Use and Land Cover Change Parameters for CLM5 and CESM2 for use in CMIP6

New Transient Land Use and Land Cover Change Parameters for CLM5 and CESM2 for use in CMIP6 New Transient Land Use and Land Cover Change Parameters for CLM5 and CESM2 for use in CMIP6 Dr. Peter Lawrence Project Scientist NCAR Terrestrial Science Section David Lawrence, George Hurtt and many others

More information

The 20 th century carbon budget simulated with CCCma first generation earth system model (CanESM1)

The 20 th century carbon budget simulated with CCCma first generation earth system model (CanESM1) 1/21 The 2 th century carbon budget simulated with CCCma first generation earth system model (CanESM1) Vivek K Arora, George J Boer, Charles L Curry, James R Christian, Kos Zahariev, Kenneth L Denman,

More information

Remote Sensing and Image Processing: 9

Remote Sensing and Image Processing: 9 Remote Sensing and Image Processing: 9 Dr. Mathias (Mat) Disney UCL Geography Office: 301, 3rd Floor, Chandler House Tel: 7670 4290 (x24290) Email: mdisney@geog.ucl.ac.uk www.geog.ucl.ac.uk/~mdisney 1

More information

CCI+ Biomass First User Workshop. Climate Models Requirements for Biomass Observations. P. Ciais and D. Goll

CCI+ Biomass First User Workshop. Climate Models Requirements for Biomass Observations. P. Ciais and D. Goll CCI+ Biomass First User Workshop Climate Models Requirements for Biomass Observations P. Ciais and D. Goll Thanks to LSCE, U Leicester and U. Sheffield colleagues 1 Role of biomass in Earth System Models

More information

Terrestrial Net Primary Productivity - introduction

Terrestrial Net Primary Productivity - introduction TNPP Lancaster Dec 2013 Terrestrial Net Primary Productivity - introduction E Tipping Centre for Ecology & Hydrology Lancaster UK Background In current UK-based research projects within the NERC BESS and

More information

DYNAMIC VEGETATION MODELLING in JULES using the ED (ECOSYSTEM DEMOGRAPHY) MODEL. Allan Spessa

DYNAMIC VEGETATION MODELLING in JULES using the ED (ECOSYSTEM DEMOGRAPHY) MODEL. Allan Spessa DYNAMIC VEGETATION MODELLING in JULES using the ED (ECOSYSTEM DEMOGRAPHY) MODEL Allan Spessa National Centre for Atmospheric Science Department of Meteorology University of Reading JULES Summer 2009 meeting

More information

JULES- Plant Physiology

JULES- Plant Physiology JULES- Plant Physiology Stephen Sitch, Josh Fisher, Federica Pacifico, Lina Mercado, Richard Ellis, Doug Clark, David Galbraith, Chris Huntingford, Chris Jones, Sandy Harrison, Peter Cox, Olivier Boucher,

More information

Permafrost-climate feedbacks in CESM/CLM

Permafrost-climate feedbacks in CESM/CLM Permafrost-climate feedbacks in CESM/CLM David Lawrence Andrew Slater 2, Sean Swenson 1, Charlie Koven 3, Bill Riley 3, Zack Subin 3, Hanna Lee 1 and the CESM LMWG 1 NCAR Earth System Lab, Boulder, CO

More information

Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region. Atul Jain. University of Illinois, Urbana-Champaign, IL USA

Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region. Atul Jain. University of Illinois, Urbana-Champaign, IL USA Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region Atul Jain University of Illinois, Urbana-Champaign, IL USA Email: jain1@uiuc.edu Terrestrial Ecosystems, Land Use

More information

From climate models to earth system models: the stomatal paradigm and beyond

From climate models to earth system models: the stomatal paradigm and beyond From climate models to earth system models: the stomatal paradigm and beyond Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA Academy Colloquium Stomatal conductance through

More information

The science of the Kyoto protocol

The science of the Kyoto protocol The science of the Kyoto protocol Vicky Pope Hadley Centre with lots of help from Climate Chemistry and Ecosystem group ECMWF seminar September 2005 Page 1 Outline Kyoto protocol Observations relevant

More information

The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective

The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective The integrated ecology, biogeochemistry, and hydrology of the terrestrial biosphere an earth system model perspective Gordon Bonan National Center for Atmospheric Research Boulder, Colorado 1 March 2011

More information

Crops & Plants in CLM5. Danica Lombardozzi CLM N Cycle & Crop Model Development Teams

Crops & Plants in CLM5. Danica Lombardozzi CLM N Cycle & Crop Model Development Teams Crops & Plants in CLM5 Danica Lombardozzi CLM N Cycle & Crop Model Development Teams N"Assump( ons"in"clm5.0'' 1. Leaf'nitrogen'content'is'dynamic'&' related'to'stomatal'conductance'' ' ' 2. Photosynthe9c'capacity'does'

More information

CRESCENDO. Coordinated Research in Earth Systems and Climate: Experiments, knowledge, Dissemination and Outreach.

CRESCENDO. Coordinated Research in Earth Systems and Climate: Experiments, knowledge, Dissemination and Outreach. CRESCENDO Coordinated Research in Earth Systems and Climate: Experiments, knowledge, Dissemination and Outreach www.crescendoproject.eu Coordinator: Colin Jones: University of Leeds/NCAS Project start

More information

Carbon cycle and climate change, a tale of increasing emissions and uncertain sinks

Carbon cycle and climate change, a tale of increasing emissions and uncertain sinks Carbon cycle and climate change, a tale of increasing emissions and uncertain sinks Philippe Peylin On behalf of Chapter-6 Philippe Ciais and Chris Sabine Govindasamy Bala (India), Laurent Bopp (France),

More information

Modelling the global carbon cycle

Modelling the global carbon cycle Modelling the global carbon cycle Chris Jones, Eleanor Burke, Angela Gallego-Sala (U. Exeter)» UNFCCC, Bonn, 24 October 2013 Introduction Why model the global carbon cycle? Motivation from climate perspective

More information

The Land Use Forcing of Climate: Models, Observations, and Research Needs

The Land Use Forcing of Climate: Models, Observations, and Research Needs The Land Use Forcing of Climate: Models, Observations, and Research Needs Gordon Bonan National Center for Atmospheric Research Boulder, Colorado Ameriflux Science Team Meeting Boulder, Colorado October

More information

Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies

Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies Evaluations of Terrestrial Biogeochemical Feedbacks of Stratospheric Geoengineering Strategies Cheng-En Yang The University of Tennessee Oak Ridge National Laboratory Collaborators: Forrest Hoffman, Simone

More information

JULES: introduction. Olivier Boucher, Met Office Hadley Centre. First JULES Science meeting Exeter University June 2007

JULES: introduction. Olivier Boucher, Met Office Hadley Centre. First JULES Science meeting Exeter University June 2007 JULES: introduction Olivier Boucher, Met Office Hadley Centre First JULES Science meeting Exeter University 28-29 June 2007 What is JULES? JULES (Joint UK Land Environment Simulator) is a community land

More information

Land Ecosystems and Climate a modeling perspective

Land Ecosystems and Climate a modeling perspective Land Ecosystems and Climate a modeling perspective Samuel Levis Community Land Model Science Liaison Terrestrial Sciences Section, CGD, ESSL, NCAR 12 August 2009 Why the Land? the land surface is a critical

More information

Future Development of the iesm

Future Development of the iesm Future Development of the iesm WILLIAM COLLINS 1,5* WITH JAMES EDMONDS 4, PETER THORNTON 3, ANTHONY CRAIG 2, WILLIAM EMANUEL 4, GEORGE HURTT 6, ANTHONY JANETOS 4, ANDREW JONES 1, CHARLES KOVEN 1, WILLIAM

More information

Regional trends in land use/land cover change emissions of CO 2 in Asia

Regional trends in land use/land cover change emissions of CO 2 in Asia Regional trends in land use/land cover change emissions of CO 2 in Asia Leonardo Calle, Benjamin Poulter, Prabir Patra N.S.F. USA East Asia Pacific Summer Institute (EAPSI) Japan Society of the Promotion

More information

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9.

Next 3 weeks. Last week of class (03/10+03/12): Student presentations. Papers due on Monday March 9. Next 3 weeks Tu 2/24: Terrestrial CO 2 uptake (LJ) Th 2/26: Paper discussion (Solomon et al., Irreversible climate change due to CO 2 emissions, 2009, PNAS) Tu 3/3: Geoengineering (JS+LJ) Th 3/5: Geoengineering

More information

Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks. Cheng-En Yang Forrest M. Hoffman Joshua S.

Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks. Cheng-En Yang Forrest M. Hoffman Joshua S. Evaluations of The Impacts of Stratospheric Geoengineering on Biogeochemistry Feedbacks Cheng-En Yang Forrest M. Hoffman Joshua S. Fu Geoengineering Strategies to mitigate the increasing radiative forcing

More information

Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model

Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model Allan Spessa National Centre for Atmosphere Science Department of Meteorology Reading University JULES Summer 2009

More information

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Arctic ecosystems as key biomes in climate-carbon feedback Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Outline Permafrost carbon Permafrost carbon-climate feedback

More information

Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere

Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere www.nature.com/scientificreports Received: 18 July 2017 Accepted: 4 July 2018 Published: xx xx xxxx OPEN Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere

More information

The Ecological Theory of Climate Models Gordon Bonan National Center for Atmospheric Research Boulder, Colorado

The Ecological Theory of Climate Models Gordon Bonan National Center for Atmospheric Research Boulder, Colorado The Ecological Theory of Climate Models Gordon Bonan National Center for 2 nd Integrated Land Ecosystem-Atmosphere Processes Study (ileaps) science conference Melbourne, Australia 24 August 2009 Forests

More information

Next-Generation Ecosystem Experiments (NGEE Arctic)

Next-Generation Ecosystem Experiments (NGEE Arctic) Next-Generation Ecosystem Experiments (NGEE Arctic) Stan D. Wullschleger Environmental Sciences Division Oak Ridge National Laboratory Subsurface Biogeochemical Research PI Meeting April 28, 2011 High-Resolution

More information

Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management

Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management Effects of Land Use On Climate and Water Resources: Application of a Land Surface Model for Land Use Management Gordon Bonan, PI National Center for Atmospheric Research Boulder, Colorado Personnel Supported:

More information

Carbon cycle. C on earth Main reservoirs Fluxes between the reservoirs Human impacts Past and present cycles

Carbon cycle. C on earth Main reservoirs Fluxes between the reservoirs Human impacts Past and present cycles Carbon cycle C on earth Main reservoirs Fluxes between the reservoirs Human impacts Past and present cycles tools Key element of life Organic chemicals 7 isotopes- 12 and 13 Stable Rest radioactive C14

More information

Interacting nutrient cycles in tropical forest ecosystems : a case study in the Amazon region

Interacting nutrient cycles in tropical forest ecosystems : a case study in the Amazon region Interacting nutrient cycles in tropical forest ecosystems : a case study in the Amazon region Xiaojuan Yang, Peter E. Thornton, Daniel M. Ricciuto, Xiaoying Shi and Wilfred M. Post Environmental Science

More information

Leibniz Centre for Agricultural Landscape Research

Leibniz Centre for Agricultural Landscape Research Leibniz Centre for Agricultural Landscape Research Conversion of single-species pine forest stands to species-rich mixed decidous forests in north-eastern German lowlands simulation of effects on carbon

More information

Development of a Microbial Module, CLM-Microbe in CESM: framework and preliminary results

Development of a Microbial Module, CLM-Microbe in CESM: framework and preliminary results Development of a Microbial Module, CLM-Microbe in CESM: framework and preliminary results Xiaofeng Xu 1, Peter Thornton 1, Fengming Yuan 1, David Graham 2, Dwayne A. Elias 1,2, Santonu Goswami 1, Joshua

More information

Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management

Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management Forest Sensitivity to Elevated Atmospheric CO 2 and its Relevance to Carbon Management Richard J. Norby Oak Ridge National Laboratory Aspen Global Change Institute October 19, 2001 Trees that are planted

More information

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam

C Nutrient Cycling Begin Climate Discussion. Day 29 December 2, Take-Home Test Due Dec 11 5 pm No Final Exam NREM 301 Forest Ecology & Soils C Nutrient Cycling Begin Climate Discussion Day 29 December 2, 2008 Take-Home Test Due Dec 11 5 pm No Final Exam Our discussions for the semester have centered on Clipsrot

More information

DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project

DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project DOE scientific successes as part of the International LAnd Model Benchmarking (ILAMB) Project December 14, 2015 Office of Science Office of Biological and Environmental Research Outline 1. Introduction

More information

The UK Earth System Modeling project

The UK Earth System Modeling project The UK Earth System Modeling project Colin Jones (NCAS) A collaboration between all 8 NERC centres and the UK Met Office Crown copyright The UKESM project is a collaboration between NERC and the Met Office

More information

DEMETER: A land use land cover disaggregation model

DEMETER: A land use land cover disaggregation model 1 DEMETER: A land use land cover disaggregation model KATE CALVIN, MIN CHEN, CHRIS VERNON, MAOYI HUANG February 5, 2018 CESM SDWG/LMWG Integrated Assessment Models (IAMs) IAMs integrate human and natural

More information

Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21 st century

Effect of anthropogenic land-use and land cover changes on climate and land carbon storage in CMIP5 projections for the 21 st century Manuscript (non-latex) Click here to download Manuscript (non-latex): LUCID_CMIP5_paper_submitted_JClim270712.docx 1 2 3 Effect of anthropogenic land-use and land cover changes on climate and land carbon

More information

State of CLM Update. David Lawrence and LMWG

State of CLM Update. David Lawrence and LMWG State of CLM Update David Lawrence and LMWG LMWG Andrew Slater Award The award will be given out annually for the best student or postdoc performance at the meeting. We hope that this award will help us

More information

Atul Jain University of Illinois, Urbana, IL 61801, USA

Atul Jain University of Illinois, Urbana, IL 61801, USA Brian O Neill, NCAR 2010 LCLUC Spring Science Team Meeting Bethesda, MD April 20-22, 2010 Land-Use Change and Associated Changes in Biogeochemical and Biophysical Processes in Monsoon Asian Region (MAR)

More information

Climate ObjectiVes and Feedback Effects on Future Emissions - COVFEFE

Climate ObjectiVes and Feedback Effects on Future Emissions - COVFEFE Climate ObjectiVes and Feedback Effects on Future Emissions - COVFEFE Eddy Comyn-Platt 1 ; Garry Hayman 1 ; Chris Huntingford 1 ; Sarah Chadburn 2 ; Eleanor Burke 3 ; Anna Harper 2 ; Peter Cox 2 ; Bill

More information

Satellite Ecology initiative for ecosystem function and biodiversity analyses

Satellite Ecology initiative for ecosystem function and biodiversity analyses Satellite Ecology initiative for ecosystem function and biodiversity analyses Key topics: Satellite Ecology concept, networking networks, super-site, canopy phenology, mapping ecosystem functions Hiroyuki

More information

Ecosystem feedbacks in a 21st century climate: carbon, nitrogen, and land cover change

Ecosystem feedbacks in a 21st century climate: carbon, nitrogen, and land cover change Ecosystem feedbacks in a 21st century climate: carbon, nitrogen, and land cover change Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA 19 October 2012 Fall Environmental Sciences

More information

Ecosystem and physiological control of carbon balance in Amazonia

Ecosystem and physiological control of carbon balance in Amazonia Ecosystem and physiological control of carbon balance in Amazonia Big science adventures LBA RAINFOR. GO AMAZON ATTO regional GHG balance physical climate, energy, water and winds aerosols, clouds, atmospheric

More information

CO 2 Emissions Determined by HadGEM2-ES to be Compatible with the Representative Concentration Pathway Scenarios and Their Extensions

CO 2 Emissions Determined by HadGEM2-ES to be Compatible with the Representative Concentration Pathway Scenarios and Their Extensions VOLUME 26 J O U R N A L O F C L I M A T E 1 JULY 2013 CO 2 Emissions Determined by HadGEM2-ES to be Compatible with the Representative Concentration Pathway Scenarios and Their Extensions SPENCER LIDDICOAT,

More information

ENSO, Drought and the Changing Carbon Cycle

ENSO, Drought and the Changing Carbon Cycle ENSO, Drought and the Changing Carbon Cycle Ning Zeng Dept. Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center University of Maryland Contributors: M. Heimann, A. Mariotti,

More information

ileaps model conference report + Introduction to VISIT

ileaps model conference report + Introduction to VISIT Dec. 4, 2007 Kakushin A1+B1 meeting ileaps model conference report + Introduction to VISIT Akihiko Ito NIES FRCGC Integrated Land Ecosystem Atmosphere Processes Study IGBP core project begun from phase

More information

Improvements and Scientific Validation of CLM in the framework of the Terrestrial Systems Modeling Platform (TerrSysMP)

Improvements and Scientific Validation of CLM in the framework of the Terrestrial Systems Modeling Platform (TerrSysMP) TR32 Improvements and Scientific Validation of CLM in the framework of the Terrestrial Systems Modeling Platform (TerrSysMP) P. Shrestha 1, M. Sulis 1, S. Kollet 2,3, C. Simmer 1,3 1 Meteorological Institute,

More information

Historical and Future Land Use and Land Cover Change in CLM5 for CMIP6. Peter Lawrence

Historical and Future Land Use and Land Cover Change in CLM5 for CMIP6. Peter Lawrence Historical and Future Land Use and Land Cover Change in CLM5 for CMIP6 Peter Lawrence NCAR Terrestrial Sciences Section co authors: Dave Lawrence, Danica Lombardozzi, George Hurtt and Brian O Neill Slide

More information

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany martin.heimann@bgc-jena.mpg.de 1 Northern Eurasia: winter: enhanced warming in arctic, more precip summer: general warming in center,

More information

Forest carbon allocation as a determinant of net primary productivity. Ivan Janssens

Forest carbon allocation as a determinant of net primary productivity. Ivan Janssens Forest carbon allocation as a determinant of net primary productivity Ivan Janssens 4. Take home messages: 1. Variation in forest GPP* is predominantly climate-controlled, In contrast: variation in NPP**/GPP

More information

Greening of the land surface in the world s cold regions consistent with recent warming

Greening of the land surface in the world s cold regions consistent with recent warming SUPPLEMENTARY INFORMATION Letters https://doi.org/.38/s4558-8-258-y In the format provided by the authors and unedited. Greening of the land surface in the world s cold regions consistent with recent warming

More information

Climate change mitigation through ecosystem management

Climate change mitigation through ecosystem management Climate change mitigation through ecosystem management Gordon Bonan Temperature Anomaly Center on Global Change Duke University Durham, NC March 19, 2009 Climate of the 21st century Multi-model mean surface

More information

Figure by Railsback, h2p:// Surface charges and adsorb4on

Figure by Railsback, h2p://  Surface charges and adsorb4on Figure by Railsback, h2p://www.gly.uga.edu/railsback/fundamentals/8150goldich&bondstreng06ls.pdf Surface charges and adsorb4on Borrowed from Paul Schroeder, Uga h2p://clay.uga.edu/courses/8550/ 1 aridisol

More information

Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change 1 2 3 4 5 6 7 8 9 10 Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change S S Nyawira 1,2, J E M S Nabel 1, V Brovkin 1 & J Pongratz 1 1 Max Planck Institute

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

The role of the biosphere for the carbon cycle in a changing climate

The role of the biosphere for the carbon cycle in a changing climate GEOSCIENCE INFORMATION FOR TEACHERS (GIFT) WORKSHOP EGU General Assembly, Vienna, April 2008 The role of the biosphere for the carbon cycle in a changing climate (Principles Factors Models Uncertainties)

More information

Carbon Concentration and Carbon Climate Feedbacks in CMIP5 Earth System Models

Carbon Concentration and Carbon Climate Feedbacks in CMIP5 Earth System Models VOLUME 26 J O U R N A L O F C L I M A T E 1 AUGUST 2013 Carbon Concentration and Carbon Climate Feedbacks in CMIP5 Earth System Models VIVEK K. ARORA, a GEORGE J. BOER, a PIERRE FRIEDLINGSTEIN, b MICHAEL

More information

The Terrestrial Carbon Cycle and Land Cover Change in the Community Climate System Model

The Terrestrial Carbon Cycle and Land Cover Change in the Community Climate System Model The Terrestrial Carbon Cycle and Land Cover Change in the Community Climate System Model Gordon Bonan National Center for 21 August 2009 CSIRO Marine and Aspendale, Victoria, Australia Forests and climate

More information

Primary Production and Respiration on Land. Production. Respiration. Decomposition

Primary Production and Respiration on Land. Production. Respiration. Decomposition Primary Production and Respiration on Land Production Respiration Decomposition Photosynthesis: CO 2 + H 2 O + energy = (CH 2 O) + O 2 Respiration: (CH 2 O) + O 2 = CO 2 + H 2 O + energy Carbon balance

More information

Lecture 27: Radiative Forcing of Climate Change

Lecture 27: Radiative Forcing of Climate Change Lecture 27: Radiative Forcing of Climate Change 1. Radiative Forcing In an unperturbed state, the net incoming solar radiation at the top of the atmosphere (Sn) must be balanced by the outgoing longwave

More information

Lecture 28: Radiative Forcing of Climate Change

Lecture 28: Radiative Forcing of Climate Change Lecture 28: Radiative Forcing of Climate Change 1. Radiative Forcing In an unperturbed state, the net incoming solar radiation at the top of the atmosphere (Sn) must be balanced by the outgoing longwave

More information

Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM

Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM Representing permafrost affected ecosystems in the CLM: An example of incorporating empirical ideas into the CLM Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

More information

Intro to Biogeochemical Modeling Ocean & Coupled

Intro to Biogeochemical Modeling Ocean & Coupled Intro to Biogeochemical Modeling Ocean & Coupled Keith Lindsay, NCAR/CGD NCAR is sponsored by the National Science Foundation Lecture Outline 1) Large Scale Ocean Biogeochemical Features 2) Techniques

More information

Combining models and data to quantify the terrestrial carbon cycle Shaun Quegan. ESA UNCLASSIFIED - For Official Use

Combining models and data to quantify the terrestrial carbon cycle Shaun Quegan. ESA UNCLASSIFIED - For Official Use Combining models and data to quantify the terrestrial carbon cycle Shaun Quegan ESA UNCLASSIFIED - For Official Use Lecture content 1. What a C model has to do 2. Types of C models 3. Interfacing data

More information

GEO 827: Hyperspectral RS and Land Surface Model Benchmarking

GEO 827: Hyperspectral RS and Land Surface Model Benchmarking GEO 827: Hyperspectral RS and Land Surface Model Benchmarking November 10 & 12, 2015 Kyla Dahlin Assistant Professor, Geography Department Outline for the next 2 days Intro to Kyla Intro to Hyperspectral

More information

Using CLM(ED) as a basis for representing carbon cycling dynamics in tropical forests

Using CLM(ED) as a basis for representing carbon cycling dynamics in tropical forests Using CLM(ED) as a basis for representing carbon cycling dynamics in tropical forests Jennifer A. Holm & Ryan G. Knox Charles D. Koven, William J. Riley, Rosie A. Fisher, Stefan Muszala, Jeffrey Q. Chambers,

More information

The climate impact of forestry extends beyond its carbon budget. Sebastiaan Luyssaert

The climate impact of forestry extends beyond its carbon budget. Sebastiaan Luyssaert The climate impact of forestry extends beyond its carbon budget Sebastiaan Luyssaert Paris Agreement Article 2 Holding the increase in the global average temperature to well below 2 C above pre-industrial

More information

Supplement of Global spatiotemporal distribution of soil respiration modeled using a global database

Supplement of Global spatiotemporal distribution of soil respiration modeled using a global database Supplement of Biogeosciences, 12, 4121 4132, 2015 http://www.biogeosciences.net/12/4121/2015/ doi:10.5194/bg-12-4121-2015-supplement Author(s) 2015. CC Attribution 3.0 License. Supplement of Global spatiotemporal

More information

Principles of Terrestrial Ecosystem Ecology

Principles of Terrestrial Ecosystem Ecology E Stuart Chapin III Pamela A. Matson Harold A. Mooney Principles of Terrestrial Ecosystem Ecology Illustrated by Melissa C. Chapin With 199 Illustrations Teehnische Un.fversitSt Darmstadt FACHBEREIGH 10

More information

FORESTS, DROUGHT AND GLOBAL CHANGE. Maurizio Mencuccini. School of GeoSciences, University of Edinburgh, (UK) ICREA at CREAF (Barcelona, Spain)

FORESTS, DROUGHT AND GLOBAL CHANGE. Maurizio Mencuccini. School of GeoSciences, University of Edinburgh, (UK) ICREA at CREAF (Barcelona, Spain) FORESTS, DROUGHT AND GLOBAL CHANGE Maurizio Mencuccini School of GeoSciences, University of Edinburgh, (UK) ICREA at CREAF (Barcelona, Spain) plants, trees, forests water carbon nutrients physiology modelling

More information

in the Canadian Earth system model version 4.2 (CanESM4.2)

in the Canadian Earth system model version 4.2 (CanESM4.2) doi:10.5194/gmd-9-2357-2016 Author(s) 2016. CC Attribution 3.0 License. Constraining the strength of the terrestrial CO 2 fertilization effect in the Canadian Earth system model version 4.2 (CanESM4.2)

More information

Nitrogen as a Contributor to Climate Change. Nitrogen and Climate Change

Nitrogen as a Contributor to Climate Change. Nitrogen and Climate Change Nitrogen as a Contributor to Climate Change Nitrogen and Climate Change Chris Evans Centre for Ecology and Hydrology, Bangor, UK With contributions gratefully received from: Bridget Emmett, Gina Mills,

More information

FIT Student Research Colloquium

FIT Student Research Colloquium FIT Student Research Colloquium Sensitivity analysis of the model BIOME-BGC conducted on ecological forest state control sites (ÖWK) in Brandenburg Overview Process models vs. empirical models Introduction

More information

The integrated Earth System Model (iesm)

The integrated Earth System Model (iesm) The integrated Earth System Model (iesm) WILLIAM COLLINS WITH JAE EDMONDS, PETER THORNTON, ALLISON THOMSON, AND THE IESM TEAM Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific

More information

Information Needs for Climate Change Policy and Management. Improving Our Measures of Forest Carbon Sequestration and Impacts on Climate

Information Needs for Climate Change Policy and Management. Improving Our Measures of Forest Carbon Sequestration and Impacts on Climate Improving Our Measures of Forest Carbon Sequestration and Impacts on Climate Richard Birdsey Mark Twery Coeli Hoover Information Needs for Climate Change Policy and Management Good data about past trends

More information

JULES-crop. A generic parametrisation of crops in JULES

JULES-crop. A generic parametrisation of crops in JULES JULES-crop A generic parametrisation of crops in JULES Karina Williams, with Tom Osborne, Josh Hooker, Jemma Gornall, Andy Wiltshire, Richard Betts, Tim Wheeler Why add a crop model to JULES? An important

More information

Transformational Climate Science. The future of climate change research following the IPCC Fifth Assessment Report

Transformational Climate Science. The future of climate change research following the IPCC Fifth Assessment Report Transformational Climate Science The future of climate change research following the IPCC Fifth Assessment Report www.exeter.ac.uk/climate2014 Working Group II The challenge and impacts of adaptation #climate2014

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Urbanizing the Community Earth System Model (CESM): Overview and Applications. Keith Oleson

Urbanizing the Community Earth System Model (CESM): Overview and Applications. Keith Oleson Urbanizing the Community Earth System Model (CESM): Overview and Applications Keith Oleson NCAR Earth System Laboratory Climate and Global Dynamics Division Terrestrial Sciences Section Collaborators:

More information

Carbon, Part 3, Net Ecosystem Production

Carbon, Part 3, Net Ecosystem Production Carbon, Part 3, Net Ecosystem Production Carbon Balance of Ecosystems NEP,NPP, GPP Seasonal Dynamics of Ecosystem Carbon Fluxes Carbon Flux Partitioning Chain-saw and Shovel Ecology Dennis Baldocchi ESPM

More information

Canadian Forest Carbon Budgets at Multi-Scales:

Canadian Forest Carbon Budgets at Multi-Scales: Canadian Forest Carbon Budgets at Multi-Scales: Dr. Changhui Peng, Uinversity of Quebec at Montreal Drs. Mike Apps and Werner Kurz, Canadian Forest Service Dr. Jing M. Chen, University of Toronto U of

More information

Past, current and projected changes of global GHG emissions and concentrations

Past, current and projected changes of global GHG emissions and concentrations Past, current and projected changes of global GHG emissions and concentrations Corinne Le Quéré, University of East Anglia lead author, WGI Chapter 6 Yann Arthus-Bertrand / Altitude Change in greenhouse

More information

Ozone pollution impacts on forests and crops in China. Nadine Unger

Ozone pollution impacts on forests and crops in China. Nadine Unger Ozone pollution impacts on forests and crops in China Nadine Unger Air pollution effects on the terrestrial carbon cycle Chronic ozone exposure effects on JJA GPP 2000-2011 in YIBs model (Jones et al.,

More information

IPCC-AR5 Chapter 6: Carbon and Other Biogeochemical Cycles

IPCC-AR5 Chapter 6: Carbon and Other Biogeochemical Cycles IPCC-AR5 Chapter 6: Carbon and Other Biogeochemical Cycles CO2, CH4 and N2O are the biggest GHGs. Uncertainty in black carbon. (CFCs) They all have important biogeochemical cycles, which complicates things.

More information

Ben Sanderson National Center for Atmospheric Research, Boulder CO

Ben Sanderson National Center for Atmospheric Research, Boulder CO RISK: Ben Sanderson National Center for Atmospheric Research, Boulder CO Likelihoods of significant consequences Ice sheet collapse, Rapid Sealevel rise Impact Runaway greenhouse, Mass extinctions Widespread

More information

New findings from CMIP5 Long term climate change projection using the Earth Simulator

New findings from CMIP5 Long term climate change projection using the Earth Simulator New findings from CMIP5 Long term climate change projection using the Earth Simulator H. Kondo Japan Agency for Marine Earth Science and Technology (JAMSTEC, Japan) (MEXT) Climate change projection using

More information

Fast and Slow Terrestrial Carbon Cycle Feedbacks or How I learned to stop worrying and love both simple and complex models

Fast and Slow Terrestrial Carbon Cycle Feedbacks or How I learned to stop worrying and love both simple and complex models Fast and Slow Terrestrial Carbon Cycle Feedbacks or How I learned to stop worrying and love both simple and complex models Charlie Koven Lawrence Berkeley National Lab With Rosie Fisher, Ryan Knox, David

More information

Coupling soil and canopy processes to. moisture uptake and hydraulic

Coupling soil and canopy processes to. moisture uptake and hydraulic 2008 CPPA PIs Meeting Climate Prediction Program for the Americas Coupling soil and canopy processes to nutrient dynamics: impacts of root moisture uptake and hydraulic redistribution Praveen Kumar Darren

More information