Saving Water With Cooling Towers

Size: px
Start display at page:

Download "Saving Water With Cooling Towers"

Transcription

1 This article was published in ASHRAE Journal, August Copyright 2015 ASHRAE. Posted at This article may not be copied and/or distributed electronically or in paper form without permission of ASHRAE. For more information about ASHRAE Journal, visit Saving Water With Cooling Towers PHOTO COURTESY OF NCSA, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN BY FRANK MORRISON, MEMBER ASHRAE Saving water with cooling towers. At first glance, this statement seems counterintuitive. Cooling towers save energy but aren t they major users of water? This article will help readers understand the critical role evaporative heat transfer systems play in a sustainable environment, explore how water is consumed in such systems, and review the strategies that help minimize the use of both water and energy. The first water-cooled systems used potable water to provide heat rejection with the cooling water wasted to a drain. Cooling towers were developed to recycle more than 98% of this water, resulting in tremendous reductions in both water and energy use as these systems grew in size and popularity. Evaporative heat rejection also enables higher system efficiencies, which conserves water at the power plant and reduces emissions of greenhouse gases and other pollutants. This is because thermoelectric power generation accounts for 38% of freshwater withdrawals in the United States essentially equal to that withdrawn for irrigation. 1 By reducing the electrical energy consumed at the site, less power is required to be generated and less water is used at the power plant and in the extraction and processing of the plant s fuel source. For example, in some climates, the total water use (source and site) between air- and water-cooled chillers is almost equal. 2 The lower energy use also enables a higher percentage of renewable, clean power from solar and wind at a given facility. Energy is also required to treat and distribute water. The balance between the use of these two natural resources is often referred to as the energy/water nexus. Today, water supplies are challenged in many areas of the world, including Atlanta (recent drought) and California (current drought). Therefore, it is critical that all water consuming systems, no matter where they are located, optimize their use of this resource. Methods to conserve water include using low-flow bathroom fixtures, repairing leaks in water-distribution systems, and taking advantage of relatively simple techniques to help ensure that evaporative heat rejection systems use only the amount of water required to save energy, maintain optimized system performance, minimize system maintenance, and ensure a long system life. Frank Morrison is manager, global strategy at Baltimore Aircoil Company in Jessup, Md. He is past chair of ASHRAE TC 3.6, Water Treatment. 20 ASHRAE JOURNAL ashrae.org AUGUST 2015

2 Evaporative heat rejection systems encompass open circuit cooling towers, closed circuit cooling towers, and evaporative condensers. For the purposes of this article, the term cooling tower will be used synonymously for all of these devices, except as noted. Evaporation The primary consumption of water in a cooling tower is through evaporation a process that is also used by the human body to help regulate its internal temperature. In a cooling tower, the warm water from the system comes into contact with the entering air, usually over a heat transfer surface such as fill, where a small portion of the recirculating water evaporates, cooling the remaining flow. This process is very energy efficient as approximately 1,000 Btu (1055 kj) are required to evaporate 1 lb (0.454 kg) of water at standard design conditions (1,000 Btu/lb [2,326 kj/kg]). In contrast, air-cooled heat exchangers must move far more air to reject the same heat, consuming additional fan energy in the process, usually at a much higher system temperature since the dry-bulb temperature is higher than the wet-bulb temperature of the air. These higher temperatures result in greater energy use by the cooling system, often 30% or more as in the case of an air-cooled versus a water-cooled chiller. Note that the difference between the dry bulb and wet bulb of the air is known as the wet-bulb depression. In areas of high wet-bulb depression, such as the American Southwest, evaporative heat rejection offers even greater energy efficiency by enabling significantly lower system temperatures. While water is consumed by evaporation in the cooling tower, the water is not lost or destroyed, unlike what occurs when natural resources such as oil or natural gas are consumed. This pure water, sometimes visible as plume from the cooling tower discharge in cooler weather, is returned to the environment as part of the natural water cycle. Water in reservoirs, lakes, rivers, and in cooling ponds used in some industrial applications also evaporates; cooling towers simply put evaporation to work to efficiently cool the buildings and processes that serve our society. Evaporation is a function of the heat rejection load and the psychrometric properties of the air entering the cooling tower. Many rules of thumb exist for calculating peak evaporation, such as: FIGURE 1 Evaporation vs. wet bulb and relative humidity for a fixed, constant load; tower airflow at full speed for all cases. Evaporation (gpm or L/s) (Base = 1.0 at 78 F [25.6 C] WB and 50% RH) % RH 50% RH 70% RH Base = Wet Bulb ( F) 2.0 gpm of water evaporated per 1,000,000 Btu/h ( L/s kw) and 3.0 gpm of water evaporated per 100 tons ( L/s kw). While these rules of thumb can be useful for calculating design makeup flow rates, sizing piping, and estimating water treatment regimens, they significantly overestimate the annual water use by a cooling tower by not taking into account load profiles and the effect of weather conditions throughout the year. Besides being proportional to the heat load, the evaporation rate is strongly influenced by both the entering air dry-bulb and wet-bulb temperature. At off peak wet-bulb temperatures, which occur the majority of the year, the evaporation rate is reduced by up to 30% or more versus design as can be seen in Figure 1. Figure 1 also illustrates that water use increases in drier climates and is reduced in more humid climates for the same heat load. Furthermore, in cooler weather, the heat load to be rejected is typically lower, especially on HVAC applications, further reducing the evaporation. Several water use calculators are available that can demonstrate the variation in evaporation rate with varying climate, load and design conditions. Blowdown When water is evaporated in a cooling tower, pure water vapor enters the air moving through the unit, leaving any dissolved solids or minerals in the remaining water. Left unchecked, the recirculating water will become increasingly saturated with mineral content, scaling heat transfer surfaces and increasing the corrosivity of the water. AUGUST 2015 ashrae.org ASHRAE JOURNAL 21

3 To keep dissolved solids to an acceptable level, a small amount of water must be bled from the system in proportion to the evaporation rate to achieve the desired cycles of concentration. Cycles of concentration (COC) measures the ratio of the dissolved solids, such as calcium, chlorides, or magnesium, in the recirculating water to the concentration found in the incoming makeup water supplied to the cooling tower. The COC can be calculated according to the following formula: COC = (Evaporation/Blowdown) 1 (1) Evaporation and blowdown are measured in gpm (L/s). Conversely, the formula for calculating blowdown, also known as the bleed rate, based on the desired COC is as follows: Blowdown = Evaporation/(COC 1) (2) The COC that can be achieved is dependent on the quality of the incoming makeup water, the water treatment program, and the system s construction materials (and not just those of the cooling tower). While four or five cycles is often used as a target value for a typical system, this value can range from two cycles on a system with very poor supply water quality up to 30 or more when very soft water, such as air conditioning condensate, is used as makeup water. Thus, a regulation requiring a single, fixed minimum COC can be misguided, as the COC that is achievable is dependent on site-specific factors, which can vary with each installation and over time. Even in cases where the water quality is generally good, high levels of a single constituent, such as chloride or silica, can exist, which can limit the maximum achievable COC. Several calculators, including one from the California Energy Commission, are available to assist in determining the proper COC value for a given facility. Additionally, a water treatment professional, either internal or external to the facility, should be consulted to analyze the site and help to establish an optimized, balanced water treatment program designed to control scale, fouling, corrosion, and biological growth while conserving water. In the past, a fixed bleed rate often was employed, but this method should not be used. Instead, the desired COC setting can be maintained in several ways, two of which are described below. The most common method is the use of a conductivity controlled blowdown system, consisting of a conductivity probe, a controller, and a motorized blowdown valve. The conductivity controller signals the blowdown valve to open as necessary to maintain the desired COC. Water treatment chemicals can affect the conductivity of water, and this effect needs to be considered when adjusting settings on the controller. Another technique involves the use of flow meters on the makeup and blowdown lines. In this method, the blowdown valve is opened in proper proportion to the makeup flow to maintain the desired COC. However, drift, leaks, filtration backwash, and other uncontrolled water losses can result in a lower COC than desired, in turn leading to excessive water loss, so these factors must be properly accounted for when using this method. For either system, the blowdown valve should be located before the introduction of any chemical treatment to allow the chemicals to mix thoroughly in the tower, while reducing the loss of treatment chemicals. 3 Regular inspection, calibration, and maintenance of the motorized blowdown valve and the conductivity probe or flow meters will help to sustain the desired setting over time. A filter or strainer ahead of the flow meters and valves is also good practice to protect these devices. 3 Maintaining the proper COC is important to system water and energy efficiency. Too high a COC setting for the site-specific conditions can lead to scaling and corrosion of the system, leading to poor heat transfer, higher energy use, and shortened equipment life. Too low a COC setting will generally result in better recirculating water quality, but at the price of higher than necessary water use and loss of associated treatment chemicals. Reducing Evaporation As previously stated evaporation is the largest use of water in a cooling tower and is primarily dependent on the load and the psychrometric properties of the air entering the cooling tower. So reducing the load that must be handled will not only save energy but also directly reduce the evaporation required along with the associated blowdown. Load reduction techniques include, but are not limited to, optimal building orientation, using better insulation, more energy-efficient production processes, and heat recovery. As an example, more efficient chillers can reduce the heat load on the cooling tower. A chiller with a full load efficiency rating of 0.55 kw/ton (0.16 kw/kw) (6.39 COP) will evaporate 2.4% less water per peak ton than a chiller operating at 0.65 kw/ton (0.18 kw/kw) (5.41 COP). This 22 ASHRAE JOURNAL ashrae.org AUGUST 2015

4 TABLE 1 Effect of reduced condenser water temperature and cooling tower fan speed on energy and water use in a water-cooled chiller system. OPERATING MODE BASE TOWER PRIORITY REDUCTION CHILLER PRIORITY REDUCTION Tower Conditions(EWT/LWT/WB) 95.0 F/85.0 F/78.0 F 95.0 F/85.0 F/58.4 F VERSUS BASE 79.7 F/70.0 F/58.4 F VERSUS BASE Tower Fan Speed (Percent of Design) 96% 47% 53.0% 96% 0.0% Evaporation (gpm) % % Blowdown (gpm) Makeup (gpm) Chiller Energy Consumption (kw/ton) % % Tower Energy Consumption (kw/ton) % % Chiller + Tower Energy Consumption (kw/ton) % % Note: Assumptions for all cases: Cooling tower flow 1,120 gpm; chiller at full load; COC of 4.0; relative humidity 50%. is due to the reduced amount of non-productive, waste compressor work (heat) that must be rejected to the atmosphere, in this case, 0.10 kw/ton (0.03 kw/kw) (35 COP). Furthermore, as the amount of water evaporated is directly proportional to the load and the blowdown is proportional to the evaporation, there will be a corresponding reduction in the amount of blowdown required. Assuming four cycles of concentration, for every gallon (3.79 L) of evaporation avoided there will be an additional 0.33 gallon (1.25 L) reduction in the required blowdown volume to maintain the same recirculating water quality. While many believe that load reduction is all that can be done to reduce evaporation, several other techniques can have a meaningful impact. As illustrated in Table 1, the psychrometric properties of air can be used to minimize water consumption and reduce system energy use with a water-cooled chiller system. In the first case, the cooling tower is operated at full fan speed at a wet bulb that will AUGUST 2015 ashrae.org ASHRAE JOURNAL 23

5 produce 70 F (21.1 C) leaving water temperature. In the second case using the same wet bulb, the cooling tower fan speed is modulated to maintain a fixed leaving water temperature to the condenser. In both cases, system energy is significantly reduced, as is water use. Each method saves resources at offpeak conditions and results in a winwin situation in terms of both energy and water savings for the operator. However, in the case shown previously, the lower condenser water temperature has the overall advantage in terms of more significant energy savings and additional water savings on the majority of installations. While these two full-load cases are illustrative, actual control strategies should seek to operate at the optimum chiller speed, cooling tower fan speed, and condenser flow resulting in the lowest system energy consumption for the given load and ambient conditions. Blowdown Reduction After evaporation, blowdown is the next largest use of water in cooling towers. As the blowdown is proportional to the evaporation rate, the blowdown can be reduced simply by using the techniques for reducing the evaporation rate described above. Beyond this, the maximum COC for a given cooling tower system should be established, which is a function of the makeup water quality, the water treatment program used, and the construction materials of the tower and of the remainder of the system. Increasing COC can reduce the required blowdown (and the amount of water used) considerably, though the volume saved decreases dramatically at higher cycles as can be seen in Figure 2. However, the risk of scaling and/or corrosion can increase significantly at higher cycles. Consequently, operators and water treatment professionals must weigh the benefit from smaller and smaller water savings versus risk when setting an aggressive COC target for a given system. Higher cycles call for closer monitoring of system parameters. To enable the cooling tower to tolerate higher cycles and/or the challenges of unconventional water sources, more corrosion resistant construction materials can be used, ranging from a stainless steel or polyurethane-lined cold water basin up to a complete unit fabricated from Type 304 or even Type 316 stainless steel. The materials used in the remainder of the system, including piping, heat exchangers, and valves, must also be taken into consideration since these components also come into contact with the same recirculating water. A best practice for the system designer is to evaluate the composition and quality of the makeup water source(s) early in the design stage and consult with water treatment professionals and equipment manufacturers on the most appropriate construction materials and water treatment strategies for the site. Systems operated at a high COC can often benefit from filtration to help minimize the concentration of suspended solids from airborne contamination. Keeping suspended solids low reduces fouling of heat transfer surfaces, helps keep microbiological growth under control, and improves the effectiveness of water treatment programs. A cyclonic type separator or sand filter is typically used to remove solids from the water, in conjunction with a sump sweeper 24 ASHRAE JOURNAL ashrae.org AUGUST 2015

6 package in the tower basin to help keep particles in suspension. These systems are backwashed periodically, which can be a hidden use of water. Ideally, backwash cycles should be run only when necessary and for only as long as required to keep the filtration system operating properly. Blowdown typically is discharged into the sewer for disposal. The sewer charge is often based on the makeup flow rate and in some cases can be as much as or more than the expenditure for water. However, the blowdown is only a small fraction of the makeup flow. To account for the portion of the makeup flow that will not have to be handled by the water treatment plant, many localities will allow an evaporation credit that substantially reduces the sewer charge. Depending on the utility, the blowdown may need to be metered or a calculation can be applied based on the target COC to earn this credit. In some cases, blowdown can also be recovered and used for other applications though the higher mineral and chemical content of this water must be taken into account. Finally, on some sites, pretreatment of the makeup water by softeners or reverse osmosis (RO) has been used to increase the COC to conserve water. However, most softeners use a brine solution for regeneration and RO systems generate RO reject water, both of which must be disposed of properly, offsetting some of the benefits. Restrictions on the use of such systems are appearing in many areas of the country for this reason. Drift and Carryover Drift is defined as the relatively small droplets of water that leave the cooling tower, while carryover AUGUST 2015 ashrae.org ASHRAE JOURNAL 25

7 FIGURE 2 Bleed rate ratio versus cycles of concentration. 6 5 Bleed Ratio Base = 4.0 COC Bleed Rate Ratio Cycles of Concentration is generally considered larger droplets that are carried over into the leaving airstream and may originate from condensation on cold surfaces inside the tower. Drift eliminators located in the leaving airstream help to keep this entrained water in the cooling tower. With current eliminator technology, this loss is quite small, on the order of 0.005% or less of the recirculating flow. For a 100 ton (352 kw) cooling tower, this water loss is less than 1 gph (1.10 ml/s) at full flow and heat load, which is quite small compared to the evaporation and bleed rate. Eliminators with a maximum drift rate of 0.005% or less should be specified on new cooling towers and retrofitted whenever possible on older units. Eliminators, or combinations of eliminators, with drift rates as low as 0.001% are available. However, the higher airside pressure drop of many of these designs must be taken into account as the higher airflow restriction can negatively impact thermal performance, which forces the cooling tower to use more energy to perform the same cooling duty. Eliminators, typically PVC or other plastic material, must be kept in good condition, spaced properly, and inspected routinely per manufacturer guidelines (Photo 1). Proper eliminator maintenance will help minimize drift and eliminate blow through, especially in high velocity areas, which can dwarf the stated drift rate. Warped or damaged eliminators should be replaced. Only when properly installed and maintained can eliminators achieve their stated drift rate. Important reasons to minimize drift include limiting particulate emissions, eliminating spotting on cars near the cooling tower, and most importantly, minimizing the risk of Legionnaires disease. However, water savings, 26 ASHRAE JOURNAL ashrae.org AUGUST 2015

8 even with the most efficient eliminators, is typically not a benefit. Besides being a very small volume compared to evaporation and bleed, any drift leaving the cooling tower only serves to reduce the amount of water required to be bled from the unit when using a conductivity controlled blowdown to maintain the desired cycles. Two exceptions to this would be where makeup and blowdown flow meters are used to maintain the water quality, or where the blowdown is captured and used for another purpose such as toilet flushing. Thus, claims of water saving drift eliminators can often be misleading. Low drift rates can also be very difficult, expensive, and time consuming to accurately verify. Splashout, Leaks, and Overflows Splashout can occur at the air inlet faces of the cooling tower where the falling water can splash out of the unit itself. Splashout must be minimized with good air inlet louvers that capture any water from the fill or plenum and return it to the basin. As with eliminators, the louver sections, whether slat type or cellular, must be maintained properly and operators must ensure they are tight fitting with the proper spacing. Spray nozzles should also be kept clean and free flowing over the heat transfer surfaces, not only to minimize scaling and maximize thermal performance but also to reduce splashout. Clogged nozzles can also cause water to overflow hot water-distribution basins or spray out through the top of the PHOTO 1 Proper inspection and maintenance of drift eliminators is critical. cooling tower, resulting in unnecessary water losses. Leaks can occur in a variety of areas, but most often from the cold water basin seams. Obviously, any leaks in AUGUST 2015 ashrae.org ASHRAE JOURNAL 27

9 the cooling tower or system pipework should be corrected immediately. The use of welded stainless steel or polyurethane lined cold water basins can also help minimize leaks by eliminating seams in the basin. Loss of treated water can be especially costly as it includes both the cost of the water and the water treatment chemicals. Another method to reduce water use and lower treatment costs is by minimizing the volume in a water-cooled system, including the design of the system pipework. These savings take place from the initial fill to every time the system is drained for cleaning. Closed circuit cooling towers keep the process flow in a clean, closed loop and the volume of the open spray water loop is limited to the internal volume of the unit, which can be considerably less than a system using an open circuit cooling tower. Note that upon shutdown of a cooling tower, all the water above the operating level will flow back into the cold water basin, which must have volume available to accommodate this water without overflowing the cold water basin. Such overflows can be a significant, yet often hidden, water use, occurring every time the system pump shuts down. Designers must ensure that the model selected has an adequately sized cold water basin or remote sump for the project. Once installed, the water levels in the cold water basin of the cooling tower must be properly set for unit startup and to avoid wasting water upon shutdown through the overflow connection. Using the makeup valve arrangement, whether mechanical or electronic, the operating level of the cold water basin should be set close to the lowest possible level, such that air is not drawn into the cooling tower pump to avoid system flow issues and noise, while allowing the maximum basin volume to accommodate the shutdown water. An electric water level control can also be used to provide finer control of the level in the cold water basin. To assist operators, a low level alarm can be used to help protect the tower pump, and a high level alarm can be added to alert the operator of possible overflow conditions (which is now required by certain codes, such as California Title 24). These sensors can be separate devices or incorporated into the electric water level control 28 ASHRAE JOURNAL ashrae.org AUGUST 2015

10

11 device. Finally, to avoid overflowing the hot water basins on cross-flow designs, the gravity flow spray nozzles must be properly sized for all expected flows and kept clean. Alternative Sources of Water Alternative sources of water can also be used to reduce the use of potable water in cooling towers. Any water that can meet the cooling tower manufacturer s guidelines for the construction material can be used. The most common is reclaim, or recycled water, which is water that has processed through a treatment plant. Rather than return this water to a lake or river, the reclaim water is used for other uses, including irrigation or makeup water for cooling towers. Purple pipe, along with appropriate signage, is used to distinguish such distribution systems from potable lines. This water is often good quality, although the concentration of minerals is usually higher than potable water, having been cycled through the system at least once. As a result, usually the COC cannot be set as high when using recycled water. Rainwater can also be harvested from roof surfaces or parking lots, filtered, disinfected, and stored for use in cooling towers. Another popular alternative source of water is air-conditioning condensate. As both rainwater and condensate are pure water with few minerals, they often must be blended with other water sources so they are not overly aggressive. Such systems are frequently operated at higher cycles of concentration since the water is soft, even after blending. The most critical aspect of using any of these alternative sources of water is to monitor biological activity and minimize the introduction into the cooling tower of possible nutrient sources for biological growth. Such contaminants increase the risk in operating the cooling tower and increase the water treatment requirements. For instance, the use of untreated sink water would not be suitable, as soap would serve as a nutrient source for biological growth as well as foul heat transfer surfaces. Hybrid Wet/Dry Designs Closed circuit cooling towers and evaporative condensers use a coil to contain the heat transfer medium in a closed system. As such, the spray pump can be shut off and these units operated in an air-cooled or dry mode in colder weather. The amount of water saved with this technique will depend on the sensible heat transfer surface area available, the local climate, and the load profile. PHOTO 2 Hybrid closed circuit cooling towers with dry and wet heat exchange sections. However, any water savings is usually more than offset by the increase in unit fan energy in the dry mode, especially when considering the reduced loads and water consumption typically experienced in colder weather (Figure 1). By definition, the switch point for dry operation is at 100% fan speed and power draw, while the fan speed for the unit operating in wet mode at this same point is only a small fraction of the design speed and power draw. Because of their higher first cost and the energy penalty, standard closed circuit cooling towers and evaporative condensers are not used to replace open circuit cooling towers on the basis of cold weather water savings. For areas where water is in short supply and/or expensive, cooling tower manufacturers have developed hybrid, wet/dry designs that can save significant amounts of water, yet still offer the low system temperatures critical to efficient operation. These units incorporate a wet heat exchange section along with a dry cooling section (Photo 2). Such systems are equipped with controls that balance the use of water and energy to provide the desired level of system efficiency. By handling a portion of the load dry, typically ranging from a minimum of 20% all the way up to 100% in colder weather, evaporation and the associated blowdown can be reduced proportionally while also reducing or eliminating plume, which can be an advantage on certain projects. Many of these hybrid units are also closed circuit cooling towers, which have the added benefit of keeping the process fluid in a clean, closed loop that is separate from the external spray water loop. Keeping the process fluid isolated helps maintain system efficiency and reduce equipment cleaning and maintenance over time. Adiabatic designs precool the air with wetted pads before the air enters a dry finned heat exchanger enabling reduced condensing or fluid temperatures and lower system energy use compared to air-cooled heat 30 ASHRAE JOURNAL ashrae.org AUGUST 2015

12

13 rejection, with a lower volume of water evaporated compared to a typical evaporative condenser or closed circuit cooling tower. To minimize water treatment needs, the sumps are typically drained once per day, but the sump is designed to keep the volume low to minimize this water loss. When considering these hybrid designs, it is important to weigh the potential savings in water, water treatment, sewage, energy, and maintenance costs, along with such factors as the availability of water on the site, against the higher initial cost of such equipment. Systems with high, constant year-round loads typically benefit most from these technologies. An accurate assessment of potential water savings must be made, taking into account both load profiles and ambient conditions, to properly calculate the potential payback for such investments. Other drivers may also influence the decision to use hybrid technologies, such as reduced water availability to a facility, a desire to limit plume in colder weather, or a critical need to be able to operate dry in the event of a loss of the water supply to the site. Tracking Water Use Tracking cooling tower water use through makeup and/or blowdown flow meters can be a wise investment. This data provides useful information on how well the system and water treatment program are operating over time so system parameters and maintenance schedules can be adjusted for peak overall performance. For instance, by metering the makeup and blowdown flows, the COC for the system can be tracked and the savings and benefits of water conservation efforts can be more easily established, as well as helping earn a sewage credit for evaporation. Several codes and standards, such as ASHRAE Standard and California Title , have incorporated requirements for such flow meters. Some water utilities also offer rebates on energy and water saving equipment, which can offset the cost of such monitoring. Finally, efforts to reduce water and energy use can help earn LEED points through direct energy and water savings and possibly innovation credits. 32 ASHRAE JOURNAL ashrae.org AUGUST 2015

14 Summary Cooling towers play an integral role in the conservation of both energy and water and as such are a key part of a sustainable future. This article describes many relatively simple techniques and best practices necessary to reduce the use of water in cooling towers, along with consideration of alternative makeup water sources and hybrid wet/dry designs. No matter what the choice of equipment or techniques used, the manufacturers operating and maintenance guidelines must be followed to ensure optimal performance and service life. The items listed in the Bibliography, including Saving Energy with Cooling Towers, the companion piece to this article, can also be consulted for further guidance. Finally, the services of a water treatment professional should always be used when treating evaporative heat rejection equipment to maximize thermal performance, conserve water, and extend equipment lifetimes, while effectively controlling scale, corrosion, and biological growth. References 1. Maupin, Molly A., et al Estimated Use of Water in the United States in Circular 1405, U.S. Department of the Interior. U.S. Geographical Survey. 2. Hydeman, Mark A Comprehensive Comparison of Airand Water-Cooled Chillers Over a Range of Climates. Seminar 48 at the ASHRAE Annual Conference. 3. Aherne, A.J Best Practice Guidelines: Water Conservation In Cooling Towers. Australian Institute of Refrigeration, Air Conditioning, and Heating. Bibliography ANSI/ASHRAE/IES Standard , Energy Standard for Buildings Except Low-Rise Residential Buildings. ANSI/ASHRAE/IES/USGBC Standard , Standard for the Design of High-Performance Green Buildings. California Title , Building Energy Efficiency Standards for Residential and Nonresidential Buildings. Hamilton, J., T. Bugler, J. Lane Water/Energy nexus, comparing the relative value of water versus energy resources. Cooling Technology Institute Technical Paper. TP Morrison, F Saving Energy with Cooling Towers. ASHRAE Journal (1). Torcellini, P., N. Long, R. Judkoff, D Consumptive Water Use for U.S. power production. National Renewable Energy Lab. NREL/ TP AUGUST 2015 ashrae.org ASHRAE JOURNAL 33

Cooling tower efficiency U2 Eco-efficiency resources for the food processing industry

Cooling tower efficiency U2 Eco-efficiency resources for the food processing industry Cooling tower efficiency U2 Eco-efficiency resources for the food processing industry Cool savings Many food processors operate cooling towers to meet the cooling needs of the factory. Cooling towers supply

More information

Large University Central Chiller Plant Design Considerations

Large University Central Chiller Plant Design Considerations Carrier Engineering Newsletter Volume 5, Issue 3 Large University Central Chiller Plant Design Considerations Large campus chilled water plants have unique constraints and need careful evaluation for successful

More information

INDUSTRIAL CONSUMPTIVE COOLING PROCESS AND WATER CONDITIONING TECHNOLOGY EFFICIENCIES

INDUSTRIAL CONSUMPTIVE COOLING PROCESS AND WATER CONDITIONING TECHNOLOGY EFFICIENCIES To: Emily Stahl Company: City of Guelph From: Sam Ziemann Our File: 75-41-151088 Cc: Wayne Galliher, Julie Anne Lamberts Date: 1 September 2015 Subject: The contents of this memorandum are intended only

More information

Cooling Tower Water Conservation: Simple Strategies & Advanced Treatment Eric Elam Water Savers LLC, RTS Water August 15 th, 2017

Cooling Tower Water Conservation: Simple Strategies & Advanced Treatment Eric Elam Water Savers LLC, RTS Water August 15 th, 2017 Track 2 Core Energy Technologies Advanced Water Management Cooling Tower Water Conservation: Simple Strategies & Advanced Treatment Eric Elam Water Savers LLC, RTS Water August 15 th, 2017 Tampa Convention

More information

Plant Utilities and Energy Efficiency CH505

Plant Utilities and Energy Efficiency CH505 Plant Utilities and Energy Efficiency CH505 Teaching Scheme Course code CH505 Course Name Plant Utilities and Energy Efficiency Teaching scheme L T P Credit 3 0 0 3 Process Process is simply a method by

More information

Combustion Turbine Inlet Cooling using Direct Evaporative Cooling

Combustion Turbine Inlet Cooling using Direct Evaporative Cooling Combustion Turbine Inlet Cooling using Direct Evaporative Cooling By Pat Zeller, Munters Corporation Sponsored by: Turbine Inlet Cooling Association (TICA) August 22, 2012; 1 PM (U.S. Central Time) http://www.meetingzone.com/presenter/default.aspx?partcec=4147918

More information

Tech Talk The Importance of Side Stream Filtration in Water and Energy Conservation By Kenn Latzer, Process Efficiency Products, Inc

Tech Talk The Importance of Side Stream Filtration in Water and Energy Conservation By Kenn Latzer, Process Efficiency Products, Inc The Importance of Side Stream Filtration in Water and Energy Conservation By Kenn Latzer, Process Efficiency Products, Inc Building owners and those responsible for the design, operation and maintenance

More information

Saving Water in Labs: How to Do It and Why You Should Care

Saving Water in Labs: How to Do It and Why You Should Care Saving Water in Labs: How to Do It and Why You Should Care 2017 China Chapter Conference of International Institute for Sustainable Laboratories Dan Doyle Chairman, Grumman/Butkus Associates CFO, International

More information

Water Talk. Volume 8, Issue 8 August 2008 Zero Blowdown, Reality or Fantasy? A Critical Look at the Claims and Possibilities

Water Talk. Volume 8, Issue 8 August 2008 Zero Blowdown, Reality or Fantasy? A Critical Look at the Claims and Possibilities Water Talk Volume 8, Issue 8 August 2008 Zero Blowdown, Reality or Fantasy? A Critical Look at the Claims and Possibilities Discussion of Reality With the ever-increasing need to conserve water, the cooling

More information

Thermal Energy Storage

Thermal Energy Storage This article was published in ASHRAE Journal, June 2013. Copyright 2013 ASHRAE. Posted at www.ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission

More information

Fiberglass Cooling Towers

Fiberglass Cooling Towers Fiberglass Cooling Towers Available in sizes from 100 to 240 tons. FC Series 700 Fiberglass Cooling Tower Available in sizes from 170 to 240 tons. No other fiberglass cooling tower comes with as many high-quality

More information

How Cooling Towers Function

How Cooling Towers Function How Cooling Towers Function Introduction Most industrial production processes need cooling water to operate efficiently and safely. Refineries, steel mills, petrochemical manufacturing plants, electric

More information

Run an Efficient Cooling Tower

Run an Efficient Cooling Tower COOL TUNES (v 2.0) Run an Efficient Cooling Tower Water Smart Technology Program How to Use This Manual Water Smart Technology Program How to Us e This Manual Increased cooling tower efficiency reduces

More information

SECTION COOLING TOWER

SECTION COOLING TOWER PART 1 GENERAL 1.1 SECTION INCLUDES A. Mechanical induced draft Cooling Tower B. Controls C. Ladder and handrails 1.2 REFERENCES SECTION 23 65 00 COOLING TOWER A. ANSI/AFBMA 9 - Load Rating and Fatigue

More information

Ground-Coupled Heat Pump And Energy Storage

Ground-Coupled Heat Pump And Energy Storage Ground-Coupled Heat Pump And Energy Storage By Ed Lohrenz, Member ASHRAE; and Sergio Almeida, P.Eng., Member ASHRAE Ground-coupled heat pump (GCHP) systems consume less purchased energy than an HVAC system

More information

Intelligent Process Cooling Technology Saves on Water and Energy, Improves Productivity

Intelligent Process Cooling Technology Saves on Water and Energy, Improves Productivity Intelligent Process Cooling Technology Saves on Water and Energy, Improves Productivity Presented at the Society of Plastics Engineer s ANTEC, May 1-5, 2011 in Boston, MA, USA Lou Zavala, National Sales

More information

WHITE PAPER. Water Quality. Management for the Plastics Industry. Benefit from Improved. Water Quality. Management.

WHITE PAPER. Water Quality. Management for the Plastics Industry. Benefit from Improved. Water Quality. Management. WHITE PAPER Water Quality Management for the Plastics Industry Benefit from Improved Water Quality Management. www.berg-group.com Introduction: Water is called the universal solvent because it will dissolve

More information

Content. Cooling Tower Water Treatment...1. Maintaining Water Quality...1. Startup Conditions...1. Blowdown...1. Chemical Treatment...

Content. Cooling Tower Water Treatment...1. Maintaining Water Quality...1. Startup Conditions...1. Blowdown...1. Chemical Treatment... Content Cooling Tower Water Treatment...1 Maintaining Water Quality...1 Startup Conditions...1 Blowdown...1 Chemical Treatment...2 Cooling Tower Water Filtration...4 Layout Guidelines...5 Introduction...5

More information

West Michigan s Factory Representative

West Michigan s Factory Representative H A G R Topics Include Design and Application of Cooling Towers for Cold Weather Operation, Closed Circuit Fluid Coolers, Solids Filtration, Benefits of Chemical-Free Water Treatment, Hybrid Boiler Systems,

More information

Chapter 3.7: Cooling Towers

Chapter 3.7: Cooling Towers Part-I: Objective type questions and answers Chapter 3.7: Cooling Towers 1. The type of cooling towers with maximum heat transfer between air to water is. a) Natural draft b) Mechanical draft c) Both a

More information

Water conservation. Best practice guidelines for cooling towers in commercial buildings

Water conservation. Best practice guidelines for cooling towers in commercial buildings Water conservation Best practice guidelines for cooling towers in commercial buildings Acknowledgments We wish to thank the following for assisting Sydney Water in the development of these best practice

More information

M erate heat that must be removed and dissipated. Water is

M erate heat that must be removed and dissipated. Water is CHAPTER 40 COOLING TOWERS Related Commercial Resources Principle of Operation... 40.1 Design Conditions... 40.2 Types of Cooling Towers... 40.2 Materials of Construction... 40.9 Selection Considerations...

More information

Chapter Six{ TC "Chapter Six" \l 1 } System Simulation

Chapter Six{ TC Chapter Six \l 1 } System Simulation Chapter Six{ TC "Chapter Six" \l 1 } System Simulation In the previous chapters models of the components of the cooling cycle and of the power plant were introduced. The TRNSYS model of the power plant

More information

HVAC Efficiency and Baseline Nonresidential HVAC Stakeholder Meeting #2

HVAC Efficiency and Baseline Nonresidential HVAC Stakeholder Meeting #2 1 HVAC Efficiency and Baseline Nonresidential HVAC Stakeholder Meeting #2 California Statewide Utility Codes and Standards Program Abhijeet Pande Heschong Mahone Group, Inc. December 9, 2010 12/09/2010

More information

Cooling Tower Water Savings Stakeholder Meeting #1 - DRAFT California Statewide Utility Codes and Standards Program

Cooling Tower Water Savings Stakeholder Meeting #1 - DRAFT California Statewide Utility Codes and Standards Program 1 Cooling Tower Water Savings Stakeholder Meeting #1 - DRAFT California Statewide Utility Codes and Standards Program Energy Solutions August 25, 2010 Cooling Tower Water Savings Agenda CALIFORNIA STATEWIDE

More information

Sub Wet-Bulb Evaporative Chiller

Sub Wet-Bulb Evaporative Chiller Emerging Technologies Sub Wet-Bulb Evaporative Chiller Prepared by: Emerging Products Customer Service Southern California Edison June 2015 Acknowledgments Southern California Edison s Emerging Products

More information

B. System Design and Performance Requirements

B. System Design and Performance Requirements 15625 Water Chillers This document provides design standards only, and is not intended for use, in whole or in part, as a specification. Do not copy this information verbatim in specifications or in notes

More information

Thermodynamic Processes

Thermodynamic Processes Most commercial locations have heating and cooling systems. Many are just for air conditioning comfort of users of the building, but some can be integral to the commercial or industrial use of a facility.

More information

Solvent Recovery Systems

Solvent Recovery Systems Solvent Recovery Systems Use Steam Recycling A new technique that recycles the heat normally lost during solvent recovery can cut fuel bills and reduce plant exhaust emissions. by Stanley J. Macek Compliance

More information

recycle water reuse it save up to from showers & baths for flushing toilets 30% of water use

recycle water reuse it save up to from showers & baths for flushing toilets 30% of water use Residential recycle - Water reuse Recovery - save recycle water from showers & baths reuse it for flushing toilets save up to 30% of water use www.recoverwater.com How it works Greywater is lightly soiled

More information

Condenser Water Heat Recovery"

Condenser Water Heat Recovery PLEASE MUTE CELL PHONES Condenser Water Heat Recovery" Julian de Bullet ASHRAE Distinguished Lecturer Director of Industry Relations McQuay International 703-395-5054 1 What Is Sustainability? sustainable

More information

Steam Cooling Systems and Hybrid Cooling. Andrew G. Howell Xcel Energy

Steam Cooling Systems and Hybrid Cooling. Andrew G. Howell Xcel Energy Steam Cooling Systems and Hybrid Cooling Andrew G. Howell Xcel Energy Steam Cooling Systems Once-through Recirculating Cooling Tower Direct Dry Cooling (air-cooled condenser) Indirect Dry Cooling (Heller)

More information

Altela, Inc. Treating water naturally

Altela, Inc. Treating water naturally Altela, Inc. Treating water naturally A Novel Solution for the Energy/Water Nexus: Low-cost Water Desalination Using Waste Heat from CSP 23 October 09 Water and Land for Renewable Energy in the Southwest

More information

Forward Osmosis Applications for the Power Industry

Forward Osmosis Applications for the Power Industry Forward Osmosis Applications for the Power Industry American Filtration Society 2015 Spring Conference Charlotte, North Carolina Bill Harvey Director of Strategy and Business Development Providing world-leading

More information

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 7-9 December, 008, Dhaka, Bangladesh COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan,

More information

INSIDE: ASHRAE Hall of Fame

INSIDE: ASHRAE Hall of Fame This article was published in ASHRAE Journal, February 2011. Copyright 2011 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Reprinted here by permission from ASHRAE. This

More information

EES Energy Efficient Systems Rotary Screw Air Compressors kw Horsepower

EES Energy Efficient Systems Rotary Screw Air Compressors kw Horsepower S-energy EES Energy Efficient Systems Rotary Screw Air Compressors 30-75 kw 40-100 Horsepower Superior energy savings Payback in less than 2 years 90% of wasted heat is recoverable Excellent source of

More information

Water Quality Specification for Power Supplies

Water Quality Specification for Power Supplies Technical Note #6 Water Quality Specification for Power Supplies Introduction The cooling water for Alpha Scientific Power Supplies must meet certain minimum specifications in regard to quality and flow

More information

NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER

NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER NPDES COMPLIANCE OF COOLING TOWERS BLOWDOWN AT POWER PLANTS WITH RECLAIMED WATER AS SOURCE WATER Nathan Schmaus, P.E. *, Joseph Viciere, P.E., BCEE, CDM Smith CDM Smith, 1715 North Westshore Boulevard,

More information

COOLING TOWER WATER TREATMENT

COOLING TOWER WATER TREATMENT An Industrial Facility s Guide to COOLING TOWER WATER TREATMENT A PUBLICATION OF SAMCO TECHNOLOGIES TABLE OF CONTENTS 1 2 3 4 5 What Is a Cooling Tower Water Treatment System and How Does It Work? How

More information

This session is approved for 0.2 IACET or 1.5 PDH. Many states accept this for Professional Continuing Education.

This session is approved for 0.2 IACET or 1.5 PDH. Many states accept this for Professional Continuing Education. Important! This session is approved for 0.2 IACET or 1.5 PDH. Many states accept this for Professional Continuing Education. To qualify for credit you must: Be sure your badge was scanned when you entered

More information

Brackish Desalination: Zero Discharge. Thomas F. Seacord, P.E.

Brackish Desalination: Zero Discharge. Thomas F. Seacord, P.E. Brackish Desalination: Zero Discharge Thomas F. Seacord, P.E. ewithlogo.pptx Topics covered include Background Current Disposal Options Zero Discharge In Practice Case Studies Emerging Technologies 2 April

More information

TECHNICAL EVALUATION OF OPTIONS FOR LONG-TERM AUGMENTATION OF THE COLORADO RIVER SYSTEM

TECHNICAL EVALUATION OF OPTIONS FOR LONG-TERM AUGMENTATION OF THE COLORADO RIVER SYSTEM TECHNICAL EVALUATION OF OPTIONS FOR LONG-TERM AUGMENTATION OF THE COLORADO RIVER SYSTEM REDUCTION OF POWER PLANT CONSUMPTIVE WATER USAGE FOR COLORADO RIVER AUGMENTATION BY: RICHARD W. HAYSLETT, P.E. BLACK

More information

Case Studies in Energy Efficiency and Water Conservation Projects

Case Studies in Energy Efficiency and Water Conservation Projects Case Studies in Energy Efficiency and Water Conservation Projects Introduction About PepsiCo World leader in convenient snacks, foods and beverages + $60 billion revenues + 285,000 employees Fortune 50

More information

/ Hybrid Cooling Towers

/ Hybrid Cooling Towers / Hybrid Cooling Towers Cooling Towers without visible plume / Cooling Technologies Balcke Hamon Dry Cooling Marley / Visible plume an avoidable problem / Every wet cooling tower generates a visible plume

More information

Background. AEM Tier 2 Worksheet Greenhouse Maintenance

Background. AEM Tier 2 Worksheet Greenhouse Maintenance AEM Tier 2 Worksheet Greenhouse Maintenance Glossary Ambient Temperature: The outdoor temperature surrounding the greenhouse. It determines indoor temperature trends. Evaporative Cooling: The introduction

More information

Comparing Evaporative Technologies for the Recycling of Produced Waters

Comparing Evaporative Technologies for the Recycling of Produced Waters Comparing Evaporative Technologies for the Recycling of Produced Waters Relatively recent advance refinements of evaporative technologies have enabled a cost effective solution for a variety of wastewater

More information

Keeping the heat transfer surfaces of a cooling tower system clean is widely recognized as the best way to ensure efficient operation.

Keeping the heat transfer surfaces of a cooling tower system clean is widely recognized as the best way to ensure efficient operation. SUPERIOR COOLING SOLUTIONS According to the U.S. Office of Energy Efficiency & Renewable Energy, installing a sidestream filtration system to cleanse cooling tower water will help maintain water efficiency

More information

SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES

SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES 20TH SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES Inlet Fogging and Overspray Impact on Gas Turbine Life and Performance by Klaus Brun / Southwest Research Institute Rainer Kurz / Solar Turbines

More information

Series V Cooling Tower

Series V Cooling Tower Series V Cooling Tower T A B L E O F C O N T E N T S B95 B97 B99 SERIES V COOLING TOWER BENEFITS CONSTRUCTION DETAILS B101 CUSTOM FEATURES & OPTIONS B109 ENGINEERING DATA B117 STRUCTURAL SUPPORT P R O

More information

Gas Turbine Inlet Air Cooling System

Gas Turbine Inlet Air Cooling System Gas Turbine Inlet Air Cooling System Presented by Bob Omidvar Heavy Duty GT - Effects of Ambient Temp 110% 105% 100% 95% 90% 85% 80% 75% 0 5 10 15 20 25 30 35 40 45 GT Inlet Temp (deg C) Heat rate kj/kwh

More information

ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014)

ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014) ERT 318/4 UNIT OPERATIONS SEMESTER 1 (2013/2014) WATER COOLING TOWER School of Bioprocess Engineering University Malaysia Perlis EXPERIMENT Water Cooling Tower 1.0 OBJECTIVES 1.1 To determine energy and

More information

Springfield, Massachusetts (413)

Springfield, Massachusetts (413) Waste Reduction and Minimization by COLD VAPORIZATION by Val Partyka CALFRAN International Inc. Springfield, Massachusetts 01101 (413) 525-4957 Topic No. 100 or 600 Introduction CALFRAN'S approach to waste

More information

Modular Oil & Gas Equipment Onshore & Offshore

Modular Oil & Gas Equipment Onshore & Offshore Modular Oil & Gas Equipment Onshore & Offshore Separators & Desalters AI Energy Solutions onshore and offshore oil process solutions offer innovative technologies packaged with global project management

More information

C. Up to Two and One-half (2-1/2) inches: Full port, 2-piece, bronze body ball valves with teflon seat conforming to MSS SP-110.

C. Up to Two and One-half (2-1/2) inches: Full port, 2-piece, bronze body ball valves with teflon seat conforming to MSS SP-110. SECTION 220000 PLUMBING SYSTEMS 1.0 Valves A. ASME compliance: 1. ASME B1.20.1 2. ASME B16.1 3. ASME B16.10 4. ASME B16.34 5. ASME B16.18 6. ASME B31.9 B. All branch mains shall be provided with shutoff

More information

PSP Series Water Purification Systems

PSP Series Water Purification Systems Operations and Maintenance Manual for PSP Series Water Purification Systems PSP-1000 PSP-1600 PSP-2700 Rev. 2 / 08/26/14 Compact Design, Self-Contained Water Processing Unit for Point-Of-Use or Point-Of-Entry

More information

Example LEED-NC v2.1 Energy & Atmosphere Credit 1 Submittal

Example LEED-NC v2.1 Energy & Atmosphere Credit 1 Submittal Example LEED-NC v2.1 Energy & Atmosphere Credit 1 Submittal The following documentation provides an example submittal for the LEED-NC v2.1 Energy & Atmosphere Credit 1 (EAc1). This sample EAc1 submittal

More information

BUILDING FOR THE FUTURE

BUILDING FOR THE FUTURE BUILDING FOR THE FUTURE The following article was published in ASHRAE Journal, September 4. Copyright 4 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented

More information

Pioneer Forced Draft Cooling Tower Specifications

Pioneer Forced Draft Cooling Tower Specifications Delta Cooling Towers, Inc. 41 Pine Street P.O. Box 315 Rockaway, New Jersey 07866-0315 Telephone 973.586.2201 Fax 973.586.2243 www.deltacooling.com sales@deltacooling.com Pioneer Forced Draft Cooling Tower

More information

Texas Hospital. Central Plant Redesign. Central Utility Plant SECOND PLACE HEALTH CARE FACILITIES, EXISTING 2013 ASHRAE TECHNOLOGY AWARD CASE STUDIES

Texas Hospital. Central Plant Redesign. Central Utility Plant SECOND PLACE HEALTH CARE FACILITIES, EXISTING 2013 ASHRAE TECHNOLOGY AWARD CASE STUDIES This article was published in ASHRAE Journal, January 2014. Copyright 2014 ASHRAE. Posted at www. ashrae.org. This article may not be copied and/or distributed electronically or in paper form without permission

More information

Performance Efficiency Standard for Evaporative Cooling Equipment

Performance Efficiency Standard for Evaporative Cooling Equipment Industry Recommendation / Code of Good Practice 9/12-2016 Performance Efficiency Standard for Evaporative Cooling Equipment First Edition Published on 11 October 2016 by,,, Belgium - The European Committee

More information

Our Cyprus strategic alliance associates presentation TAPROGGE

Our Cyprus strategic alliance associates presentation TAPROGGE Page 1 of 36 Our Cyprus strategic alliance associates presentation TAPROGGE Page 2 of 36 ABOUT TAPROGGE For more than 50 years, Taprogge has been operating in the sector of optimization of water circuits,

More information

REACTION TANKS ADVANCED MEMBRANE FILTRATION

REACTION TANKS ADVANCED MEMBRANE FILTRATION REACTION TANKS ADVANCED MEMBRANE FILTRATION Memtek EFC-Series Microfiltration System A MAJOR ADVANTAGE FOR RELIABLE WASTEWATER TREATMENT OR PROCESS FILTRATION SYSTEMS THAT GIVE YOU GREATER FLEXIBILITY

More information

WATER RECYCLING SOLUTIONS

WATER RECYCLING SOLUTIONS WATER RECYCLING SOLUTIONS Reverse Osmosis De-Mineralization Softening Sand/ Carbon Filtration Cartridge/ Bag Filtration Zero Liquid Discharge EVIAN ENGINEERING PRIVATE LIMITED A-80, Mohan Garden, Uttam

More information

CONTENTS. 1 Product Introduction. 2 Unique Features. 4 XE Model Cooling Towers. 6 Series 3000: Induced Draft Crossflow Cooling Towers

CONTENTS. 1 Product Introduction. 2 Unique Features. 4 XE Model Cooling Towers. 6 Series 3000: Induced Draft Crossflow Cooling Towers Cooling Towers CONTENTS 1 Product Introduction 2 Unique Features 4 XE Model Cooling Towers 6 Series 3000: Induced Draft Crossflow Cooling Towers 8 Series 1500: Induced Draft Crossflow Cooling Towers 10

More information

RiOs Essential 5, 8, 16, 24 Water Purification Systems

RiOs Essential 5, 8, 16, 24 Water Purification Systems RiOs Essential 5, 8, 16, 24 Water Purification Systems A reliable, user-friendly pure water solution EMD Millipore is a division of Merck KGaA, Darmstadt, Germany A reliable, user-friendly pure water solution

More information

CHILLED WATER SYSTEM OPTIMIZER

CHILLED WATER SYSTEM OPTIMIZER CHILLED WATER SYSTEM OPTIMIZER A White Paper by Steve Tom, P.E., Phd. Carrier Corporation Farmington, Connecticut July, 2017 INTRODUCTION When it comes to measuring HVAC energy use in buildings, it s

More information

High Efficiency Liquid-Solid Separators

High Efficiency Liquid-Solid Separators High Efficiency Liquid-Solid Separators Continuous Filtration with Zero Maintenance ehtx Features and Benefits: Filter performance rated to remove 98% of all solids 44 micron (325 mesh), 2.6 specific gravity,

More information

Federal Technology Alert. Waste Chill Recovery Heat Exchangers for Commercial- Size Automatic Ice Makers. A publication series designed to speed the

Federal Technology Alert. Waste Chill Recovery Heat Exchangers for Commercial- Size Automatic Ice Makers. A publication series designed to speed the Federal Technology Alert A publication series designed to speed the adoption of energyefficient and renewable technologies in the Federal sector The U.S. Department of Energy requests that no alterations

More information

Energy Savers: Air-Source Heat Pumps

Energy Savers: Air-Source Heat Pumps 1 of 5 4/25/2009 8:55 AM U.S. Department of Energy - Energy Efficiency and Renewable Energy Energy Savers Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your

More information

COOLING TECHNOLOGY INSTITUTE

COOLING TECHNOLOGY INSTITUTE PAPER NO: TP08-16 CATEGORY: DRY COOLING COOLING TECHNOLOGY INSTITUTE THE COST OF NOISE ROBERT GIAMMARUTI HUDSON PRODUCTS CORPORATION JESS SEAWELL COMPOSITE COOLING SOLUTIONS, LLC The studies and conclusions

More information

WHITE PAPER. Chiller Plant Optimization - A Practitioner s Perspective. Abstract

WHITE PAPER. Chiller Plant Optimization - A Practitioner s Perspective. Abstract WHITE PAPER Chiller Plant Optimization - A Practitioner s Perspective Sridhar Chidambaram Advanced Engineering Group, Engineering Services, Infosys Limited Bangalore, India Abstract Maintaining optimal

More information

Worldwide Pollution Control Association. August 3-4, 2010

Worldwide Pollution Control Association. August 3-4, 2010 Worldwide Pollution Control Association IL Regional Technical Seminar August 3-4, 2010 Visit our website at www.wpca.infowpca Troubleshooting Process Problems How To Identify and Correct Gordon Maller

More information

Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft

Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 249 Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft Rahul Mohan.P1,

More information

TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series

TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series Absorption Chillers TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series Stable Chilled Water Outlet Temperature PID control is applied to maintain constant chilled water outlet temperature. When the cooling

More information

Application of Advanced Energy Technologies

Application of Advanced Energy Technologies GLOBALCON 2002 Philadelphia, Pennsylvania March 27, 2002 Application of Advanced Energy Technologies Michael K. West, Ph.D., P.E. Building Systems Scientist Advantek Consulting, Inc. www.advantekinc.com

More information

Compass Series Open Cooling Towers BAC AUSTRALIA

Compass Series Open Cooling Towers BAC AUSTRALIA Compass Series Open Cooling Towers BAC AUSTRALIA Compass Series Benefits Baltimore Aircoil Company (BAC) is the world s largest and leading supplier of evaporative heat transfer and thermal energy management

More information

Performance Analysis of Cooling Tower

Performance Analysis of Cooling Tower Performance Analysis of Cooling Tower M.V.H.Satish Kumar, Associate Professor, Department of Mechanical Engineering PVP Siddhartha Institute of Technology, Kanuru, Vijayawada 7. Andhra Pradesh, India.

More information

TM Series Cooling Tower Specification

TM Series Cooling Tower Specification 1.0 Cooling Tower TM Series Cooling Tower Specification 1.1 General: Furnish and install factory-assembled, induced draft, counterflow cooling tower(s) with vertical air discharge conforming in all aspects

More information

Cooling Tower Operation

Cooling Tower Operation Cooling Tower Operation Forced draught cooling towers use the evaporation of a liquid (often water) into air to achieve cooling. The tower often consists of a sprinkler system which wets a high-surface-area

More information

TYPES OF SEWAGE PUMPS. Solids Handling Pumps: Grinder Pumps: Effluent Pumps:

TYPES OF SEWAGE PUMPS. Solids Handling Pumps: Grinder Pumps: Effluent Pumps: Effluent Pumps: Effluent pumps are the pumps most often used in small on-site systems. They are designed to pump effluent, the effluent flowing out of a septic tank. This effluent is relatively clear liquid

More information

CFFWA-20-1-U Chilled/Hot Water Universal Mount Fan Coil 2-Pipe Heat / Cool Fan Coil 60,000 BTUH

CFFWA-20-1-U Chilled/Hot Water Universal Mount Fan Coil 2-Pipe Heat / Cool Fan Coil 60,000 BTUH CFFWA-20-1-U Chilled/Hot Water Universal Mount Fan Coil 2-Pipe Heat / Cool Fan Coil 60,000 BTUH Rev. 1.3 HVAC Guide Specifications Chilled and Hot Water Universal Mount Fan Coil 2-Pipe Nominal Size: 60,000

More information

ADEC S SUSTAINABLE FUTURE SCHOOLS PROGRAM

ADEC S SUSTAINABLE FUTURE SCHOOLS PROGRAM APRIL 2012 ADEC S SUSTAINABLE FUTURE SCHOOLS PROGRAM Abu Dhabi Education Council Infrastructure and Facilities Division Jyoti Sharma, Senior Architect, Design Section WHY SUSTAINABILITY IS IMPORTANT UAE

More information

Water Dependency of Geothermal Power Generation Systems

Water Dependency of Geothermal Power Generation Systems Proceedings 5 th African Rift geothermal Conference Arusha, Tanzania, 29-31 October 2014 Water Dependency of Geothermal Power Generation Systems (Esther Sironka. ) Kenya Electricity Generating Company

More information

Achieving Net-Zero Water

Achieving Net-Zero Water Achieving Net-Zero Water Fifth International Emerging Technology Symposium Presenters: Eric J. Bowler - eric_j_bowler@whirlpool.com & Dr. Markus J. Lenger markuslenger@cleanblu.com Sponsored by: Whirlpool

More information

PURPOSE PROCESS PAYOFF

PURPOSE PROCESS PAYOFF Water Reuse 4/04/13 PURPOSE PROCESS PAYOFF Water Water Everywhere but not a drop to drink! Seawater versus Water Reuse UF - RO for brackish waste water streams: 0.81.2 kw h/m3 MBR RO for brackish waste

More information

TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY. By N. Ramachandran, Ion Exchange (India) Ltd

TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY. By N. Ramachandran, Ion Exchange (India) Ltd TOTAL WATER MANAGEMENT IN THE STEEL INDUSTRY By N. Ramachandran, Ion Exchange (India) Ltd Large quantities of water are required to produce steel and steel products - typically 180-200 m 3 of water per

More information

Use of Alternative Water Sources for Power Plant Cooling

Use of Alternative Water Sources for Power Plant Cooling Use of Alternative Water Sources for Power Plant Cooling Robert Goldstein (rogoldst@epri.com) Senior Technical Executive, Water and Ecosystems, EPRI ASME Water Management Technology Best Management Practices

More information

Energy Considerations in Membrane Treatment and Brine Disposal

Energy Considerations in Membrane Treatment and Brine Disposal Energy Considerations in Membrane Treatment and Brine Disposal Energy Requirements Membrane treatment systems require significant energy inputs. Therefore, energy consumption is one of the major cost considerations

More information

Water Treatment Program. Training Manual

Water Treatment Program. Training Manual Water Treatment Program Training Manual First Edition, SECTION A INTRODUCTION The Operating Personnel involved in the Water Treatment Program come from various trade backgrounds and they may not have received

More information

Energy Reduction Strategy Through 2020

Energy Reduction Strategy Through 2020 Through 2020 Revised: August 2017 Executive Summary Auburn University is a land, sea and space grant university established in 1856. The university consists of 11,629,000 square feet on 1,840 acres and

More information

Central Chiller Plants

Central Chiller Plants Central Chiller Plants Institute for Facilities Management New Orleans, LA January 18,2016 Course 319 Presenter: John Vucci Associate Director HVAC Systems University of Maryland College Park, Maryland

More information

Geothermal Comfort Systems

Geothermal Comfort Systems Frequently Asked Questions Q: How efficient are geothermal heat pump systems? A: Actual efficiencies will depend on a number of factors, but generally speaking a geothermal heat pump can be three to five

More information

STERIS Continuous Effluent Decontamination (CED) System

STERIS Continuous Effluent Decontamination (CED) System LABORATORY RESEARCH STERIS Continuous Effluent Decontamination (CED) System The Safety and Efficacy of Continuous Effluent Decontamination A Breakthrough in Decontamination Technology Continuous Effluent

More information

OPTIMISATION OF WATER USAGES IN THERMAL POWER PLANTS AND A STUDY ON DRY COOLING SYSTEM

OPTIMISATION OF WATER USAGES IN THERMAL POWER PLANTS AND A STUDY ON DRY COOLING SYSTEM CONFERENCE ON WATER OPTIMISATION IN THERMAL POWER PLANTS OPTIMISATION OF WATER USAGES IN THERMAL POWER PLANTS AND A STUDY ON DRY COOLING SYSTEM S. K. Thakur, Dr. L. D. Papney, Chief Engineer (I/C), TE&TD

More information

Saving Energy on Electric, Lighting and Water Systems

Saving Energy on Electric, Lighting and Water Systems Sponsored by Nexus Greenhouse Systems Saving Energy on Electric, Lighting and Water Systems Terms & Conditions of Use Proper installation and maintenance of all electronic systems can lead to significant

More information

Australian/New Zealand Standard

Australian/New Zealand Standard AS/NZS 3666.1:2011 AS/NZS 3666.1:2011 Australian/New Zealand Standard Air-handling and water systems of buildings Microbial control Part 1: Design, installation and commissioning AS/NZS 3666.1:2011 This

More information

Designing Sustainable Splash Pads

Designing Sustainable Splash Pads Designing Sustainable Splash Pads Arizona Park & Recreation Association Presentation Summary & Guide August 30, 2012 For more information, please email info@vortex-intl.com LA CES Vortex Aquatic Structures

More information

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature International Journal of Technology Enhancements and Emerging Engineering Research, VOL 1, ISSUE 1 20 Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature V. Gopinath 1, G. Navaneethakrishnan

More information