Fuel Cell R&D at VTT Technical Research Centre of Finland

Size: px
Start display at page:

Download "Fuel Cell R&D at VTT Technical Research Centre of Finland"

Transcription

1 Fuel Cell R&D at VTT Technical Research Centre of Finland

2 VTT Fuel Cells Fuel cells can be applied anywhere where electricity is needed. Typical applications are replacement of batteries in the W-power range, back-up power in the 1 kw 100 kw range, power for transport and speciality vehicles, and power production, from 1 kw residential to the stationary power of several MW. It is therefore expected that a major new industrial sector will emerge in the coming decades around fuel cells and their application. The technology is nevertheless complex, and requires both research and development work in order to reach maturity with regard to durability and cost. fuel cell research supports VTTthe industry s product development by maintaining a development platform comprising a large pool of know-how, a broad selection of research facilities and a range of advanced modelling tools. The work is encompassing a variety of technologies throughout the business chain. Networking with industry is performed through contract work involving consultation and technology development. We also undertake research projects, in which industrial enterprises are encouraged to participate. These research projects are mostly co-funded by the Finnish Funding Agency for Technology and Innovation, the European research programmes, industry and VTT. At present more than 30 different companies are involved in the various projects. VTT participates actively in European projects and European and international networks. Thus a large network involving universities, research organisations and industry within Finland and Europe can be utilised to convene research groups of high competence to solve different problems. The main research areas today are SOFC system research SOFC stack development PEMFC and hydrogen quality PEM materials and components Enzyme catalysed & printed fuel cells 2 Jari Kiviaho Chief Research Scientist Tel jari.kiviaho@vtt.fi

3 SOFC system research The purpose of SOFC system research at VTT is to provide novel technological solutions, tools and know-how for industrial companies in support of the development and application of products based on SOFC technology. The activities include research, development, experimental evaluation and modelling of SOFC stacks and cells, balance-ofplant (BoP) components and complete proof-of-concept SOFC systems. Modelling know-how and tools enables steady-state and dynamic system modelling and simulation at both component and system level. Modelling is applied to process design and optimisation, control system design and testing, failure analysis, and state estimation. The reliability of the modelling is verifi ed by comparing the results to other, more detailed models, and particularly to the experimental data obtained from in-house experimental facilities. The large-scale dynamic system models prepared at VTT can be operated in real-time or faster using standard PCs. This enables, for example, the screening of the behaviour of the studied processes and real-time based control hardware testing. SOFC cell and stack research is focused on understanding the limiting conditions in system operation with respect to lifetime and reliability. VTT is capable of conducting long-term testing under well defi ned gas atmospheres, including controlled addition of fuel and oxidant impurities. Measurement facilities enable both in-situ degradation and contamination assessment, as well as post mortal cell analysis. VTT can provide reliable and neutral performance data for cell and stack developers. VTT has the capability and facilities to conduct in-house development, prototyping and evaluation of BoP components for SOFC systems. Additionally, components from partners or third parties can be evaluated experimentally to assess their applicability for SOFC system use. Endurance testing and performance characterisation of the components is possible in automated test stands that can simulate SOFC system relevant operating conditions. VTT has the required know-how and research infrastructure to design, simulate, assemble and test complete proof-ofconcept SOFC systems. Research is conducted to investigate the performance, durability and reliability of the SOFC stack and BoP components in a real system environment. VTT can provide reliable services and partnership for stack and BoP component developers and SOFC system integrators. SOFC Demonstration Unit Research Facilities at VTT Matias Halinen Senior Scientist Tel matias.halinen@vtt.fi 3

4 Fuel Cell R&D at VTT SOFC stack development SOFC stack development at VTT started in Since 2010 stack development has been carried out as contract research, where the aim is to develop a stack structure suitable for different power ranges and for mass production. Stack development is based on the project partner s high performance cells and VTT s innovations on fl ow geometry, protective coatings and sealings. Global comparison reveals the electrical performance of VTT s current stack design to be comparable or superior to state-ofthe-art SOFC stacks. VTT is focusing on stack design, modelling, characterisation, and post-analysis. Cells, coatings and sealings are developed together with strategic partners. All manufacturing methods and materials are chosen for their suitability for up-scaling with a view to mass-production. Stack design is strongly supported by CFD, mechanical, and thermal modelling to optimise stack structure. Performance and life-time tests are conducted under realistic operating conditions. Stack characterisation is combined with electrochemical impedance spectroscopy and microscopy post-analysis to obtain detailed information on degradation mechanisms. Stack design is strongly supported by modeling modelled temperature profi les with different fl ow confi gurations Average cell voltage at 650 ºC, measured with synthetic steam reformate Stacks installed in a test bench Assembled short stack Olli Himanen Senior Scientist Tel olli.himanen@vtt.fi 4

5 Fuel Cell R&D at VTT PEMFC and hydrogen quality The polymer electrolyte membrane (PEM) fuel cell research at VTT is conducted in close collaboration with partners from universities and industry. The PEMFC group at VTT is researching both PEMFC and high temperature PEMFC (HT- PEM or PBIFC). The main focus in PEM research is on system development, and in PBIFC on material and stack development. The main goal of our work is to support industry in applying fuel cell technology in their products and to help develop systems, components and software solutions in this fi eld. In the long term VTT intends to become the expert organisation in Finland for offering engineering and research services to both domestic and international partners. The main domestic areas of focus has been identifi ed as the application of fuel cell technology in industrial working machines, such as material-handling vehicles. Another emerging market is the utilisation of by-product hydrogen from industry. Present research activities at VTT can be divided into three main categories: 1) development of PEMFC power sources for systems research purposes, supported by laboratory testing facilities, 2) development of materials and components for fuel cells and stacks and 3) organisation of technology demonstrations in various suitable application areas. Competences in fuel cell and hydrogen safety and reliability have been accumulated. The future goal is to develop new knowledge on fuel cell and hydrogen safety and reliability in order to be the main independent provider for fuel cell system safety and reliability analysis in Finland. The aim of research activity into LT-PEM (low temperature) systems has been to increase the expertise in power source design, construction and hybridisation. PEMFC systems up to 16kWe scale have been constructed as part of a hybrid system fi eld demonstration and research platform on forklift application. Integrated research platforms, laboratory testing facilities and tools to aid system design and optimisation are developed according to customer needs. VTT offers world class experimental facilities for experimental studies of PEM fuel cells from cell level to large scale stacks and from BoP components to fuel cell hybrid systems. Our knowledge and experience in system design, optimization and control is considerable and our mission is to ensure success to domestic and global industries aiming to commercialize fuel cell technology. A 8kW PEMFC system based on commercial stack Test driving Kalmar ECF-55 forklift with in-house developed 16 kw PEMFC hybrid system Jari Ihonen Tel jari.ihonen@vtt.fi 5

6 Fuel Cell R&D at VTT PEM materials and components In addition to stack and system design VTT has development programmes for all major PEMFC stack components except the membrane, i.e. catalysts, gas diffusion layers, bipolar plates, end plates and current collectors. The main drivers behind these developments are the improvement of durability and the decrease in cost of PEMFC stacks. The work has recently been extended to PEM water electrolysis cells. The key competencies applied in the development work are molecular modelling of catalyst structures, production of metallic and oxide nanoparticles, development of polymer fi llers and compounding processes, and surface treatment and corrosion protection of different metals and alloys. As PEMFC catalyst supports, carbon nanotubes and nanofi bers have recently been shown to have superior stability over traditional carbon blacks. Graphite composite bipolar plates have been developed for high temperature operation at 200 C, and CrN coated stainless steel plates for low temperature operation at 80 C. Advanced ex-situ and in-situ characterisation methods including the multisinglecell are used to verify material properties and the electrochemical performance. The multisingle setup for in-situ evaluation of PEMFC materials Graphite composite plates for HT-PEM Coated stainless steel inserts for the multisingle cell Pertti Kauranen Tel

7 Fuel Cell R&D at VTT Enzyme catalysed & printed fuel cells Printed electronics with an integrated power source has remarkable market potential in several mass-marketed consumer products, e.g. as package-integrated functionalities. There is also an emerging market in more specifi c disposable, electronics-equipped applications, such as smart patches and drug delivery systems in medicine, advanced inventory and luggage tracking, active brochures, and other information carrying materials. The power supply development also aims to meet the demands of active RFID tags. For many applications the power source should be biodegradable or made suitable for incineration along with normal household waste. The production costs should also be reasonable. As an alternative power source, the miniaturised biological fuel cell has the potential for development to meet these demands. We have developed a printable, fully enzymatic biofuel cell (BioBattery) based on the use of enzymes as a catalyst on both cathode and anode electrodes. The low peak current capacity of an enzymatic fuel cell can be improved by integrating the cell with a printed supercapacitor. The structure of the printed supercapacitor is designed for easy manufacture on the same printing substrate as the enzymatic fuel cell. The environmental requirements of the power source are also taken into account in the supercapacitor materials choice. The development of printed biofuel cells is studied in the Tekes-funded project Printed Enzymatic Power Supply with Embedded Capacitor on Next-generation Devices being carried out by VTT in collaboration with Aalto University, Tampere University of Technology and Åbo Akademi, the latter acting as coordinator. This project aims at further improvement in the performance of the BioBattery developed earlier, and at demonstrating its feasibility, both from an application and commercial viewpoint, by optimising the power supply for use in selected applications with varying demands for power and operation time. This BioBattery can be stored prior to use in dry state even for weeks or months, while in use it is able to generate power for several days. We have demonstrated the R2R processability (including drying) of the biologically active materials and the manufacturing of anodic and cathodic layers by rotary screen printing using VTTs ROKO pilot scale printing line. VTTs ROKO pilot scale printing line Printed enzyme catalysed fuel cell powering a digital thermometer Maria Smolander, Team Leader Tel maria.smolander@vt.fi 7

8 FINLAND Additional Information VTT Fuel Cells Jari Kiviaho Chief Research Scientist Tel Biologinkuja 5, Espoo P.O. Box 1000 FI VTT, Finland SOFC System Research Matias Halinen Senior Scientist Tel PEM Materials and Components Pertti Kauranen Tel Enzyme Catalysed & Printed Fuel Cells Maria Smolander Tel SOFC Stack Development Olli Himanen Senior Scientist Tel PEMFC and Hydrogen Quality Jari Ihonen Tel Espoo VTT TECHNICAL RESEARCH CENTRE OF FINLAND Technology and market foresight Strategic research Product and service development IPR and licensing Assessments, testing, inspection, certification Technology and innovation management Technology partnership

Hydrogen Contaminant Risk Assessment

Hydrogen Contaminant Risk Assessment VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Hydrogen Contaminant Risk Assessment IEA Annex 31 meeting Graz, Austria 15.5.2017 Jaana Viitakangas VTT Fuel Cells & H 2 VTT Technical Research Centre of Finland

More information

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009

Fuel cell products for global energy markets. Introduction to Ceres Power September 2009 Fuel cell products for global energy markets Introduction to Ceres Power September 2009 bob.flint@cerespower.com Contents Overview of Ceres Power Product programmes Product development and manufacturing

More information

UCLM and CISTEM. CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A.

UCLM and CISTEM. CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A. UCLM and CISTEM CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A.Rodrigo Construction of Improved HT-PEM MEAs and Stacksfor Long

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology STAYERS Stationary PEM fuel cells with lifetimes beyond five years FCH-JU 256721 Programme Review Day 2011 Brussels, 28 November Jorg Coolegem Nedstack fuel cell technology 0. Project description Stationary

More information

Programme Review Day 2012 Brussels, 28 & 29 November

Programme Review Day 2012 Brussels, 28 & 29 November http://www.fch-ju.eu/ Programme Review Day 2012 Brussels, 28 & 29 November Fuel Cells and ydrogen Joint Undertaking DEMMEA (245156) Understanding the Degradation Mechanisms of Membrane Electrode Assembly

More information

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn PEMFC Lifetime and Durability an overview Thessaloniki, September 21 2011 Frank de Bruijn PEMFC in real life 2007 Passenger vehicle: 2,375 hrs operated on 1 stack Daimler in DoE programme 2011 City Bus

More information

High Efficiency Large PEM Electrolyzers

High Efficiency Large PEM Electrolyzers High Efficiency Large PEM Electrolyzers Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 Outline Giner, Inc. Overview Advancements in Efficiency New Membranes Coming

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

Spatially resolved measurement of SOFC by using segmented cells

Spatially resolved measurement of SOFC by using segmented cells Degradation mechanisms and advanced characterization and testing (II) Spatially resolved measurement of SOFC by using segmented cells P. Szabo German Aerospace Center (DLR) Pfaffenwaldring 38-40, D-70569

More information

NRC capabilities in clean energy and resources

NRC capabilities in clean energy and resources NRC capabilities in clean energy and resources Meeting Canada s innovation challenges 2016: hottest year on record for 3 rd consecutive year Energy production and use account for 80% of Canada s greenhouse

More information

A system model of proton exchange membrane fuel cell for the study of the water/thermal management

A system model of proton exchange membrane fuel cell for the study of the water/thermal management A system model of proton exchange membrane fuel cell for the study of the water/thermal management 4 th U.S. KOREA NanoForum April 26, 27 Sangseok Yu Environment and Energy Research Division Korea Institute

More information

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT Up until now, most of the

More information

Efficient Use of Energy Converting Applications. Nadine Jacobs

Efficient Use of Energy Converting Applications. Nadine Jacobs Efficient Use of Energy Converting Applications Agenda Introduction NEXT ENERGY EURECA Principal objectives Research areas Test protocols Stacktest Stadardisation DEMMEA Degradation Mechanisms in HT-PEM

More information

Injection moulded low cost bipolar plates for PEM Fuel Cells

Injection moulded low cost bipolar plates for PEM Fuel Cells Injection moulded low cost bipolar plates for PEM Fuel Cells A. Heinzel 1,2, F. Mahlendorf 2 *, O. Niemzig 2, C. Kreuz 1 1 Zentrum für BrennstoffzellenTechnik (ZBT) GmbH, Carl-Benz-Straße 21, 4758 Duisburg,

More information

DBBD17, 28. November 2017

DBBD17, 28. November 2017 Results and experiences from IEA Annex31 (22) PEM fuel cells DBBD17, 28. November 2017 Hans Aage Hjuler 1 Operations DPS Company Overview Large-scale PBI synthesis Membrane casting MEA Assembly and QC

More information

COBRA COating for BipolaR plates

COBRA COating for BipolaR plates COBRA COating for BipolaR plates Fabrice Micoud CEA http://www.cobra-fuelcell.eu/ fabrice.micoud@cea.fr Programme Review Days 2016 Brussels, 21-22 November Click to add title Call topic PROJECT OVERVIEW

More information

Solutions. for Severe Corrosion

Solutions. for Severe Corrosion Solutions for Severe Corrosion Linas Mazeika, President, 3L&T Inc., USA, reveals how to prevent equipment corrosion caused by hot combustion gases in a cement plant. Summary The serious economic consequences

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

FuMA-Tech BWT The Leading International Water Technology Group. fumion fumapem For further information: fumasep

FuMA-Tech BWT The Leading International Water Technology Group. fumion fumapem For further information: fumasep Electro-Membrane Applications High-Tech Modules and Spacers for Electrodialysis, Bipolare Membrane Technology, Acid Dialysis and Membrane Electrolysis www.fumatech.de High-Tech Modules and Spacers for

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

CREATING TOMORROW S SOLUTIONS MOBILITY. e-novation FOR FUEL CELLS POWERED BY SILICONES

CREATING TOMORROW S SOLUTIONS MOBILITY. e-novation FOR FUEL CELLS POWERED BY SILICONES CREATING TOMORROW S SOLUTIONS MOBILITY e-novation FOR FUEL CELLS POWERED BY SILICONES PUTTING FUEL CELLS IN THE FAST LANE A fuel-cell vehicle (FCV) or fuel-cell electric vehicle (FCEV) is an electric vehicle

More information

Programme Review Day 2011 Brussels, 22 November

Programme Review Day 2011 Brussels, 22 November http://www.fch-ju.eu/ Programme Review Day 2011 Brussels, 22 November Development of an Internal Reforming Alcohol igh Temperature PEM Fuel Cell Stack IRAFC 245202 FC-JU-2008-1 Stylianos G. Neophytides

More information

Production and use of low grade hydrogen for fuel cell telecom applications

Production and use of low grade hydrogen for fuel cell telecom applications Production and use of low grade hydrogen for fuel cell telecom applications Fuel cells and hydrogen in transportation applications 9.10.2017, Espoo, Finland Pauli Koski, VTT Outline 1. On-site hydrogen

More information

Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation

Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation Available online at www.sciencedirect.com ScienceDirect Energy Procedia 126 (2179) 421 428 www.elsevier.com/locate/procedia 72 nd Conference of the Italian Thermal Machines Engineering Association, ATI217,

More information

A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS

A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS Proceedings of FuelCell2008 6th International Fuel Cell Science, Engineering & Technology Conference June 16 18, 2008, Denver, USA FuelCell2008-65142 A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS

More information

Spinverse. Your Emerging Technology Partner. Transnational corporations and Russian Companies collaboration in the area of R&D

Spinverse. Your Emerging Technology Partner. Transnational corporations and Russian Companies collaboration in the area of R&D Spinverse Your Emerging Technology Partner Transnational corporations and Russian Companies collaboration in the area of R&D Pekka Koponen, CEO St. Petersburg 30 March 2011 Spinverse commercialises emerging

More information

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems

Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems Other battery storage technologies - lead-acid batteries, high temperature batteries, hydrogen storage systems First International Renewable Energy Storage Conference (IRES I) Gelsenkirchen, October, 30

More information

S. Authayanun 1 and A. Arpornwichanop 2 1

S. Authayanun 1 and A. Arpornwichanop 2 1 S. Authayanun 1 and A. Arpornwichanop 2 1 Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Thailand 2 Department of Chemical Engineering, Faculty of Engineering,

More information

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY Mario Valentino Romeri Independent Consultant, Italy, Valentino.Romeri@Alice.it Overnight Costs and Levelized Costs of Generating Electricity

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. II - Molten Carbonate Fuel Cells - Kouichi Takizawa MOLTEN CARBONATE FUEL CELLS Kouichi Takizawa Tokyo Electric Power Company, Japan Keywords: alkali metal carbonate, coal gasfication gas, lithium aluminate, nickel oxide, wet seal. external reforming, internal

More information

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell Alkaline Electrolysers Wind and Photovoltaic Power Sources Hannover Messe 2013 Hydrogen and Fuel cell Committed to excellence and innovation since its creation, H2Nitidor offers high efficiency Pressurized

More information

Introduction: description of the overall project

Introduction: description of the overall project SOFCOM A project financed in the frame of Fuel Cells and Hydrogen Joint Undertaking Introduction: description of the overall project Prof. Massimo Santarelli, Politecnico di Torino SOFCOM kick-off Meeting

More information

Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA )

Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA ) Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA 621216) Sylvie Escribano CEA Liten, Grenoble, France www.second-act.eu

More information

Low Cost Bipolar Plates for Large Scale PEM Electrolyzers

Low Cost Bipolar Plates for Large Scale PEM Electrolyzers 1 Low Cost Bipolar Plates for Large Scale PEM Electrolyzers A. S. Gago, A. S. Ansar, P. Gazdzicki, N. Wagner, J. Arnold, K. A. Friedrich Electrochemical Energy Technology Institute of Engineering Thermodynamics

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

Hydrogen and fuel cell technology Assembly instructions and experiment templates

Hydrogen and fuel cell technology Assembly instructions and experiment templates Hydrogen and fuel cell technology Assembly instructions and experiment templates T203 TUTORIAL Pro 1 2 www.h-tec-education.com Table of contents 05 05 05 06 09 10 11 15 21 27 33 39 47 48 49 49 49 50 The

More information

- Silicon and MEMS technologies

- Silicon and MEMS technologies Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators Robert Hahn, Stefan Wagner, Steffen Krumbholz, Herbert Reichl, Fraunhofer IZM, Gustav- Meyer-Allee

More information

Fuel Cells and Hydrogen Joint Undertaking - Priority Research, Technological Development and Demonstration Topics

Fuel Cells and Hydrogen Joint Undertaking - Priority Research, Technological Development and Demonstration Topics Fuel Cells and Hydrogen Joint Undertaking - Priority Research, Technological evelopment and emonstration Topics 2008-2013 1. List of research activities The list of research activities constitutes an important

More information

Phosphoric Acid Distribution after Load Cycling at high Current Densities with Different Types of HT-PEM MEAs

Phosphoric Acid Distribution after Load Cycling at high Current Densities with Different Types of HT-PEM MEAs Phosphoric Acid Distribution after Load Cycling at high Current Densities with Different Types of HT-PEM MEAs Nadine Pilinski, Vietja Tullius, Dr. Wiebke Germer, Peter Wagner, Dr. Alexander Dyck 08.04.2016

More information

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc.

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. 1 AFC Energy Plc: An Introduction Vision To develop and produce a reliable alkaline

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Dr Ahmad El-kharouf Centre for Hydrogen and Fuel Cells Research www.fuelcells.bham.ac.uk Hydrogen Days 2016, Prague Content Motivation

More information

Why Does Rust Occur? 7.1 IN GENERAL

Why Does Rust Occur? 7.1 IN GENERAL Why Does Rust Occur? 7.1 IN GENERAL Rust damage on products costs large sums every year, and can also cause breakdowns through various kinds of corrosion weakening supporting structures. There are therefore

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Decarbonising heat: the potential for steam methane reforming as an enabling technology

Decarbonising heat: the potential for steam methane reforming as an enabling technology Decarbonising heat: the potential for steam methane reforming as an enabling technology Iain Martin, Innovation and Technology Director Johnson Matthey Solving complex problems across the group with world

More information

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions Progress in the Understanding of PEFC Degradation related to Liquid Water interactions K. Andreas Friedrich, German Aerospace Center (DLR), Institute of Technical Thermodynamics Outline Introduction to

More information

HyPM-HD POWER MODULES. for light and heavy duty mobility. HyPM. The industry benchmark for durable, zero emission mobility

HyPM-HD POWER MODULES. for light and heavy duty mobility. HyPM. The industry benchmark for durable, zero emission mobility HyPM The industry benchmark for durable, zero emission mobility HyPM-HD POWER MODULES for light and heavy duty mobility THE HYDROGENICS ADVANTAGE At Hydrogenics, we are committed to safety and reliability

More information

Note Flexible Four-in-one Micro Sensor for Reliability and 100-hour Durability Testing

Note Flexible Four-in-one Micro Sensor for Reliability and 100-hour Durability Testing Int. J. Electrochem. Sci., 10 (2015) 3185-3191 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Note Flexible Four-in-one Micro Sensor for Reliability and 100-hour Durability Testing

More information

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER Josef Schefold, 21/09/17 Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER 1 Steam electrolysis with electrolyte supported solid oxide cell (SOC) Cell SOC

More information

BioZEG anlegget - demonstrasjon av karbon negativ energiproduksjon

BioZEG anlegget - demonstrasjon av karbon negativ energiproduksjon BioZEG anlegget - demonstrasjon av karbon negativ energiproduksjon Bjørg Andresen 1), Jon Strand 1), Øystein Ulleberg 2), Julien Meyer 2), Nicola Di Giulio 1) 1) ZEG Power AS 2) Institutt for energiteknikk

More information

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Overview of the FP7 Project Results and Recommendations K. Andreas Friedrich 2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Degradation Workshop, Thessaloniki, 21

More information

From DuraDemo to MARANDA project - use of industrial site for hydrogen fuel cell durability testing

From DuraDemo to MARANDA project - use of industrial site for hydrogen fuel cell durability testing From DuraDemo to MARANDA project - use of industrial site for hydrogen fuel cell durability testing October 9 th 2017, Kivimiehentie 3 Espoo, Finland Jari Ihonen, VTT Contents PEMFC durability testing

More information

Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT

Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT Hydrogen, Methanol and Ethanol PEM Fuel Cell Development at IRTT Hazem Tawfik, Ph.D., P.E., C.Mfg.E. SUNY Distinguished Service Professor Director of the Institute for Research and Technology Transfer

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ;

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ; IV.H Electrolysis IV.H.1 Low-Cost, High-Pressure Hydrogen Generator Cecelia Cropley (Primary Contact), Tim Norman Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0506;

More information

Project information 0. Project & Partnership description

Project information 0. Project & Partnership description Enhanced performance and cost-effective materials for long-term operation of PEM water electrolysers coupled to renewable power sources- ELECTRYPEM (Contract number 300081) Antonino S. Aricò CNSIGLI NAZINALE

More information

PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications

PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications Project coordinator: Henri Karimäki, VTT Henri.karimaki@vtt.fi +358 40 724 1858 http://pembeyond.eu/

More information

Development of PEM Fuel Cell Stack Reference Test Procedures for Industry Stack-Test (FCH-JU GA: )

Development of PEM Fuel Cell Stack Reference Test Procedures for Industry Stack-Test (FCH-JU GA: ) Development of PEM Fuel Cell Stack Reference Test Procedures for Industry Stack-Test (FCH-JU GA: 303345) Ludwig Jörisssen Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden- Click to add title

More information

Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen

Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen Topsoe Fuel Cell A/S Nymøllevej 66 2800 Lyngby, Denmark nc@topsoe.dk Haldor Topsøe A/S has been

More information

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets By Everett Anderson Symposium on Water Electrolysis and Hydrogen as Part of the Future Renewable Energy System 10-11

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

Wet Cells, Dry Cells, Fuel Cells

Wet Cells, Dry Cells, Fuel Cells page 2 page 3 Teacher's Notes Wet Cells, Dry Cells, Fuel Cells How the various electrochemical cells work Grades: 7-12 Duration: 33 mins Program Summary This video is an introductory program outlining

More information

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White

Experiences of PLD Technology for LIB Separators. PICODEON Oy. Neal White Experiences of PLD Technology for LIB Separators PICODEON Oy Neal White 1 Outline Introduction to Picodeon Ceramic coating rationale Separator overview Why PLD for LIB separators Current status of Picodeon

More information

Cold Fusion at ENEA Frascati: Progress Report

Cold Fusion at ENEA Frascati: Progress Report The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada:, ENECO, Inc., Salt Lake City, UT. : p. 108. Cold Fusion at ENEA Frascati: Progress Report A. De Ninno. A. Frattolillo, V. Violante,

More information

Fuel Flexible Reformers for Stack Integrated Systems and H2/Syngas Generation

Fuel Flexible Reformers for Stack Integrated Systems and H2/Syngas Generation Fuel Flexible Reformers for Stack Integrated Systems and H2/Syngas Generation Subir Roychoudhury VP Research and Engineering Precision Combustion, Inc. Technologies Microlith Catalytic Reactors, and RCL

More information

Hydrogen Production by Bio-ethanol reforming for Small-scale Fuel Cell Applications

Hydrogen Production by Bio-ethanol reforming for Small-scale Fuel Cell Applications 24 Hydrogen Production by Bio-ethanol reforming for Small-scale Fuel Cell Applications Mika Huuhtanen 1 *, Prem Kumar Seelam 1, Esa Turpeinen 1, Krisztian Kordás 2 and Riitta Liisa Keiski 1 1 University

More information

The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs

The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs University of South Carolina Scholar Commons Theses and Dissertations 1-1-2013 The Effect of Bi-Polar Plate and Membrane Materials On Water Transport in PEMFCs Visarn Lilavivat University of South Carolina

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information

Hydrogen and Fuel Cell Technology

Hydrogen and Fuel Cell Technology Fraunhofer Institute for Solar Energy Systems ISE Hydrogen and Fuel Cell Technology comitted to hydrogen»hydrogen technology and fuel cells are key players in a sustainable, solar energy economy.«dr. Christopher

More information

Membranes for water electrolysis and for flow batteries

Membranes for water electrolysis and for flow batteries Membranes for water electrolysis and for flow batteries Bernd Bauer, Tomas Klicpera FuMA-Tech GmbH Hannover, April 13 th 2015 1 Introduction of Fumatech as part of BWT Background of decision in participation

More information

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology

Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Platinum Metals Rev., 2013, 57, (2), 137 142 Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology Edited by Christoph Hartnig (Chemetall GmbH, Germany) and Christina Roth (Institute for

More information

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis Yong Yang Austin Power David Hart E4tech November 10, 2014 Austin Power Engineering LLC 1 Cameron ST Wellesley, MA 02482 USA www.austinpowereng.com

More information

High-temperature PEM Fuel Cells

High-temperature PEM Fuel Cells High-temperature PEM Fuel Cells Dr. Gerold Hübner 19.06.2007 Volkswagen s Fuel- and Powertrain Strategy Renewable Electricity Hydrogen (regenerative) Electrotraction Fuel Cell From Natural Gas Cellulose-Ethanol

More information

Ballard Power Systems. Slides for Cost Reduction

Ballard Power Systems. Slides for Cost Reduction Ballard Power Systems Slides for Learning Curves 1.2 Learning Curves 1..8 Cost are reduced with each new generation of technology Mark 3 Unit Cost.6.4 Mark 5 Mark 7.2 Mark 9 Next Generation. Cumulative

More information

Case Study of Fuel Cell Development in the UK 2003

Case Study of Fuel Cell Development in the UK 2003 Innovation in the Energy Sector Case Study of Fuel Cell Development in the UK 2003 Roy Williamson Key Business Technologies Directorate Coverage The Drivers from a UK perspective The UK Fuel Cell Industry

More information

The current status of fuel cell technology for mobile and stationary applications

The current status of fuel cell technology for mobile and stationary applications TUTORIAL REVIEW www.rsc.org/greenchem Green Chemistry The current status of fuel cell technology for mobile and stationary applications Frank de Bruijn Received 4th October 2004, Accepted 10th January

More information

High Efficiency Operation Method for Solid Oxide Fuel Cell System

High Efficiency Operation Method for Solid Oxide Fuel Cell System 62 China Steel Technical Report, No. 29, High pp.62-66, Efficiency (2016) Operation Method for Solid Oxide Fuel Cell System High Efficiency Operation Method for Solid Oxide Fuel Cell System CHUN-HSIU WANG

More information

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498

Glass in energy. Glasses for fuel cells and H 2 storage MAT 498 Glass in energy Glasses for fuel cells and H 2 storage MAT 498 Lehigh University Rui M. Almeida Glass in energy Spring 2012 1 Fuel cells Rui M. Almeida Glass in energy Spring 2012 2 Fuel cells and the

More information

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use

Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Numerical Studies of PEM Fuel Cell with Serpentine Flow-Field for Sustainable Energy Use Sang-Hoon Jang 1, GiSoo Shin 1, Hana Hwang 1, Kap-Seung Choi 1, Hyung-Man Kim 1,* 1 Department of Mechanical Engineering

More information

Thermoset Applications in Fuel Cells

Thermoset Applications in Fuel Cells Thermoset Applications in Fuel Cells TRFA 2008 Annual Meeting Sept. 15 th 2008 Paul Kozak & Daniel Ramrus B A L L A R D P O W E R S Y S T E M S A C C E L E R A T I N G F U E L C E L L M A R K E T A D O

More information

SOFCOM (278798) Massimo Santarelli Politecnico di Torino (Italy) Click to add title /en/

SOFCOM (278798) Massimo Santarelli Politecnico di Torino (Italy)  Click to add title /en/ SOFCOM (278798) Massimo Santarelli Politecnico di Torino (Italy) http://areeweb.polito.it/ricerca/sofcom Click to add title /en/ PROJECT OVERVIEW SOFC CCHP with poly-fuel: operation and management SP1-JTI-FCH.2010.3.4

More information

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO)

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) EFFIPRO Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) FP7-Energy-NMP-2008-1 227560 Truls Norby University of Oslo 1. Project achievements EFFIPRO partnership

More information

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study Research Article International Journal of Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Effect of Mass Flow Rate and Temperature

More information

Cost Reduction Strategies for PEM Electrolysis

Cost Reduction Strategies for PEM Electrolysis Cost Reduction Strategies for PEM Electrolysis E Anderson IEA-AFC ANNEX 30 MEGAPEM Workshop 21 April 2015 Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen

More information

Extended Life Tantalum Hybrid Capacitor

Extended Life Tantalum Hybrid Capacitor Extended Life Tantalum Hybrid Capacitor David Zawacki and David Evans Evans Capacitor Company 72 Boyd Avenue East Providence, RI 02914 (401) 435-3555 dzawacki@evanscap.com devans@evanscap.com Abstract

More information

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION IEA Biomass Task 34 Meeting in Chicago 15-09-2009 Jani Lehto, Metso Pekka Jokela, UPM Contents Metso Metso and UPM Bio-oil Development Project Joint

More information

Performance assessment of a 5 kw SOFC cogeneration fuel cell. S. Lerson, J.L. Lilien* and G. Minne

Performance assessment of a 5 kw SOFC cogeneration fuel cell. S. Lerson, J.L. Lilien* and G. Minne Int. J. Environmental Technology and Management, Vol. x, No. x, xxxx 1 Performance assessment of a 5 kw SOFC cogeneration fuel cell S. Lerson, J.L. Lilien* and G. Minne University of Liège, Transmission

More information

UK Fuel Cell Research & Development

UK Fuel Cell Research & Development UK Fuel Cell Research & Development John Kilner Department of Materials Imperial College, London SW7 2AZ, UK And UK Energy Research Centre (UKERC) www.ukerc.ac.uk United Kingdom Energy Research Centre

More information

A 10 kw class natural gas-pemfc distributed heat and power cogeneration system

A 10 kw class natural gas-pemfc distributed heat and power cogeneration system Available online at www.sciencedirect.com Energy Procedia 28 (2012 ) 162 169 Fuel Cells 2012 Science & Technology A Grove Fuel Cell Event A 10 kw class natural gas-pemfc distributed heat and power cogeneration

More information

Fuelling a greener economy

Fuelling a greener economy Materials Foresight Making the future work for you Fuelling a greener economy The importance of materials for fuel cells and related technologies Foresight Fuel Cells Taskforce Members of the Foresight

More information

Electrochemistry centered services for fuel cells and other electrochemical power sources

Electrochemistry centered services for fuel cells and other electrochemical power sources Electrochemistry centered services for fuel cells and other electrochemical power sources Group Exhibit Hydrogen, Fuel Cells and Batteries, Technical Forum 24 th of April 2017, Hannover, Germany Dr. Carsten

More information

Thermal Analysis of Methanol Reforming Proton Exchange Membrane. Fuel Cell System. Zhang 1, Jingjing Xu 1

Thermal Analysis of Methanol Reforming Proton Exchange Membrane. Fuel Cell System. Zhang 1, Jingjing Xu 1 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Thermal Analysis of Methanol Reforming Proton Exchange Membrane Fuel Cell System Jialin Zhao 1, Yongwen Yang

More information

TiRack ENERGY STORAGE SYSTEMS. For highest demands in industrial applications

TiRack ENERGY STORAGE SYSTEMS. For highest demands in industrial applications TiRack ENERGY STORAGE SYSTEMS For highest demands in industrial applications Lithium-titanate technology of a new standard Benefit from unprecedented cell qualities The heart of any storage device is the

More information

The Power of Ethanol. Fraunhofer Team Direct Ethanol Fuel Cell

The Power of Ethanol. Fraunhofer Team Direct Ethanol Fuel Cell The Power of Ethanol Fraunhofer Team Direct Ethanol Fuel Cell Direct Ethanol Fuel Cell The Power of Ethanol Fuel cells are the technology of the future for the supply of power to electrical appliances.

More information

Fuel Cells as Part of our Future Energy Landscape. Kevin Colbow Director, Product Management & Solutions Engineering

Fuel Cells as Part of our Future Energy Landscape. Kevin Colbow Director, Product Management & Solutions Engineering Fuel Cells as Part of our Future Energy Landscape Kevin Colbow Director, Product Management & Solutions Engineering B A L L A R D P O W E R S Y S T E M S A CLEAN ENERGY GROWTH COMPANY TSX: BLD NASDAQ:

More information