Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen

Size: px
Start display at page:

Download "Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen"

Transcription

1 Development of Fuel Cells at Topsoe Fuel Cell A/S From Science to Industrial Technology Niels Christiansen Topsoe Fuel Cell A/S Nymøllevej Lyngby, Denmark

2 Haldor Topsøe A/S has been comitted to catalytic process technology for more than 70 years Since 1940, all technologies have been anchored in fundamental research The company is represented throughout the world Head-quarter in Denmark Alberta Los Angeles Houston Copenhagen Moscow Bahrain New Delhi Beijing Tokyo Engineering offices in Denmark, India, Russia and USA Catalyst Manufacture in Denmark and USA Rio de Janeiro Buenos Aires Kuala Lumpur

3 Business Areas Fertilizer industry Basic chemicals The refining industry The environmental and power sector Automotive industry (emerging) Process licenses Catalysts Engineering services Site supervision Start-up & test run

4 Topsøe s business model harvests from specialized and customized research Topsøe delivers highly customized solutions via dialogue with clients Topsøe s solutions bridge fundamental understanding and industrial experience. Catalysts Research and Development Technology licensing Engineering Client

5

6 From sub-nano scale to micro and meso scale Catalyst Hydrogen synthesis Fuel Processing Catalysis to macro scale Fuel Cells SOFC

7 Power Generation - Why Fuel Cells? Small units Decentralized power generation High efficiency Efficient at part load Fast response Muliti-fuel capabilities Fuel Cell Efficiency: η = ΔG/ΔH 32 Carnot limit: η c = 1 T l /T h

8 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 + O 2- H 2 O + 2e - O 2- ½O 2 + 2e - O 2- H 2 O + 2e - H 2 + O 2- O 2- O 2-2e - +½O 2 ½O 2 ½O 2 H 2 + CO + O 2 SOFC SOEC H 2 O + CO 2 + electric energy ( G) + heat (T S)

9 Types of Fuel Cells SOFC MCFC PAFC PEMFC AFC Electrolyte YSZ ScSZ Li 2 CO 3 H 3 PO 4 K 2 CO 3 Perfluoro sulfonic acid KOH Cathode LSM LSCF Li/NiO Pt/C Pt/C Pt/Au Anode Ni/YSZ Ni Pt/C Pt/C Pt/Pd Temperature o C 650 o C 200 o C o C 100 o C Fuel H 2, CO, CH 4, Biogas, NH 4 H 2, CO, (CH 4 ) H 2 H 2 H 2 8

10 Collaboration on SOFC in Denmark HTAS Collaboration with Risø on SOFC since W stack: 1996 TOFC RISØ TOFC Topsoe and Risoe Pilot Production: (5 MW/year capacity) Cells Stacks Modules (sub-system)

11 From Material to System From Science to Technology Know how Integrated Product Development Worldwide SOFC designs

12 From Science to Technology Cost R&D Processing Design Engineering Technology Reliability Materials Performance Maturing: An integrated innovation approach Evolution stages: Development Dominant Mature

13 Bring knowledge-holders together within the organisation and beyond R&D and Technology transfer network Major challenges Chal. Knowledge partners (transmitters) Geographically distance DTU IC Cultural distance Different value network TOFC (receptor) FZJ Vertical or horisontal collaboration Active communication links VTT EIFER KIT Y USTAN X Integration into receptors process and strategies GTec Seek and manage tensions between established practices and ideas from outsiders

14 Open innovation s dilemma Dependant on: Organizational membrane Passage of knowledge from one partner to the other Receptivity of each organisation (capability to learn from others and to adopt new ideas) Degree of overlap (buffer) from one organizations skills into the other. Difference in pressure (commitment and competencies) between to two organisations

15 Balanced Innovation Strategies Internal network Radical External network Local Open Individual I Collaborative Closed Incremental Global

16 Technology Evolution Different value networks Gap Radical innovation Core technology

17 SOFC Generations and Metal-Supported Cells Radical Innovation Development 1G 2G 2.5G Improved reliability Reduced material cost LSM+YSZ YSZ Ni+YSZ LSM+YSZ YSZ Ni+YSZ LSCF/LSC CGO YSZ Ni+YSZ 3G based on ceramics Metallic support operating temperature O C

18 Advice to Leaders of Open Innovation 1. Define the knowledge needed through open innovation 2. Bring knowledge-holders together within the organisation and beyond 3. Seek and manage tensions between established practices and ideas from outsiders 4. Accept the challenge of simultaneously addressing multiple tasks 5. Consider successful practices developed in other organisations 6. Work with partners to co-create new ideas and products 7. Use established platforms to simplify and speed collaboration A. Sigismund Huff et al., MIT Press, 2013

19 The Target Markets Auxiliary Power Unit APU Transport Power 3 5 kw e Micro-Combined Heat and Power Distributed Generation Large stationary DG CHP Stacks Modules Powercore m-chp Residential Power 1 kw e kw e

20 Micro-CHP Efficient, clean and silent cogeneration in private homes Electricity Electrical power Heat Fuel options Natural gas network Biogas network Steam and CO 2 Air Natural Gas Heat Fuel Cell System LPG Advantages High energy efficiency compared to the power grid Reduced emissions of NO X and CO 2 Reduces load on central power plant

21 Demonstration of CHP-Application Bio gas New Energy plant with SOFC unit Landfill gas Local heat network Geothermal heatpumps New Energy plant, Vaasa, Finland 20kW Combined Heat and Power Start of demonstration October 2009 Electrical efficiency approx. 46% (with methane content of 35 47%)

22 Demonstration of Marine SOFC APU with Wärtsilä Methanol on board as fuel Flue gas MeOH Methanator HTAS catalyst Ejector MeOH SOFC Depleted Air Catalytic Burner Anode Cathode Air 20 kw Marine APU Demonstrator 24 TOFC 12x 12 cm 2 stacks

23 From Aerospace to Ground Transportation Truck APU Light weight stack aerospace APU stack Transportation Truck idling in USA : 4.5 billion liters of diesel fuel contributing to air pollution and CO 2 emission. Design issues: Robust cast casing. Easy installation. 10g vibration h operation. Low pressure drop. 2-5 kw EU DESTA project

24

25 Energy Storage Hydrogen production by water electrolysis SOFC H 2 H 2 O H 2 O H 2 H 2 + O 2- H 2 O + 2e - Reversible Ofuel 2- cell SOEC ½O 2 + 2e - O 2- SOEC H 2 O + 2e - H 2 + O 2- O 2- O 2-2e - +½O 2 ½O 2 ½O 2

26 Electrolysis

27 Electrolysis

28

29 Diversity of Energy Sources Energy Carriers, SOFC & SOEC 1. SOFC: Distributed Power, CHP (smart grids) 2. SOEC: Energy storage and CO 2 conversion 3. Catalysis: Synthetic fuel from renewables Biomass Liquid Fuel Coal Syngas Natural gas Renewables Nuclear Electricity SOFC SOEC Electricity Hydrogen Hydrogen Methanol SNG DME Gasoline Diesel CO 2 recycling CO 2 + H 2 O Syngas (CO +H 2 )

30 Accept the challenge of simultaneously addressing multiple tasks Search information Materials Design R&D Processing Lifetime Reliability & Performance Real world practice concept Share information Cost Search solutions J. Collins and J. I. Porras, Harper Collins Publ., 1994

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 SOEC: Key enabling Technology for sustainable Fuels and Feedstocks John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 +

More information

LIFE06 ENV/DK/ DEMO SOFC Project Summary

LIFE06 ENV/DK/ DEMO SOFC Project Summary DEMO SOFC Project Summary About the SOFC technology Energy production and transport based on fossil fuel are among the largest contributors to greenhouse gas emissions. Solid Oxide Fuel Cells (SOFC) offer

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

Biomass gasification and tar reforming: the Topsoe approach. Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S

Biomass gasification and tar reforming: the Topsoe approach. Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S Biomass gasification and tar reforming: the Topsoe approach Poul E. Højlund Nielsen, R&D Division HALDOR TOPSØE A/S Biomass gasification activities Tar reforming Sponsored by EUDP Possible Gasolution project

More information

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of Energy Conversion and Storage, Technical University of

More information

Haldor Topsoe Making hydrogen with different feeds and technologies

Haldor Topsoe Making hydrogen with different feeds and technologies Haldor Topsoe Making hydrogen with different feeds and technologies Agenda Brief about Haldor Topsoe Making hydrogen from alternative feed methanol Making hydrogen with other traditional feeds and combinations

More information

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Closing the Carbon Cycle: Fuels from Air, Phoenix, 29/9-2016 Theis L. Skafte (1,2), P. Blennow (1), J. Hjelm (2),

More information

Biomass to Green Gasoline by the TIGAS Technology

Biomass to Green Gasoline by the TIGAS Technology Biomass to Green Gasoline by the TIGAS Technology Finn Joensen, Haldor Topsøe A/S fj@topsoe.dk DTU International Energy Conference 2012 Haldor Topsøe committed to catalysis for more than 70 years Anchored

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Downloaded from orbit.dtu.dk on: Sep 18, 2018 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Christiansen, Niels; Hansen, J B.; Larsen, H H.; Linderoth, Søren; Larsen,

More information

Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases

Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases NEO-CARBON ENERGY 1ST RESEARCHERS SEMINAR 15.-16.12.2014 Marjut Suomalainen,

More information

Fremtidens (Bio)brændstoffer

Fremtidens (Bio)brændstoffer Fremtidens (Bio)brændstoffer John Bøgild Hansen 1 Haldor Topsøe A/S We have been committed to catalytic process technology for more than 78 years Founded in 1940 by Dr. Haldor Topsøe Revenue: 700 million

More information

Topsoe s Emission Management Solution--DeNOx

Topsoe s Emission Management Solution--DeNOx Topsoe s Emission Management Solution--DeNOx Presented by : 1 SACHIN PANWAR Table of Content Haldor Topsoe in Brief Topsoe Solution Range Topsoe Environmental solution. Catalytic Filtration technology

More information

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

From Technology Push to Market Pull. Oslo Juni 21, 2011 Director - Aksel Mortensgaard Danish Partnership for Hydrogen and Fuel Cells

From Technology Push to Market Pull. Oslo Juni 21, 2011 Director - Aksel Mortensgaard Danish Partnership for Hydrogen and Fuel Cells From Technology Push to Market Pull Oslo Juni 21, 2011 Director - Aksel Mortensgaard Danish Partnership for Hydrogen and Fuel Cells Agenda for the Presentation The Danish Partnership Population: 5,5 million

More information

Co-creating Indian-Danish Solutions

Co-creating Indian-Danish Solutions Co-creating Indian-Danish Solutions Co-creating sustainable business between Denmark and India Conference 14 September 2012, Copenhagen - presented by Peter Vang Christensen Outline Introduction to Haldor

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen

MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen MARKET TRENDS FOR FUEL CELLS Latest Update in Global Markets by Pauli Jumppanen Tekes Fuel Cell Annual Seminar September 14, 2010 Espoo, Finland INDUSTRY STRUCTURE (The US Fuel Cell Council) Fuel Cell

More information

The Methanol Synthesis past and future. John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017

The Methanol Synthesis past and future. John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017 The Methanol Synthesis past and future John Bøgild Hansen - Haldor Topsøe International Methanol Conference Taastrup May 10, 2017 We have been committed to catalytic process technology for more than 70

More information

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Solid Oxide Fuel Cells Perspective & Update on the State-of-the-Art Arkady Malakhov 771 Elmgrove Road, Rochester,

More information

Steam Reforming Catalysts. Steam Reforming Catalysts

Steam Reforming Catalysts. Steam Reforming Catalysts Steam Reforming Catalysts Steam Reforming Catalysts Steam Reforming Catalysts The steam reformer is a vital part of hydrogen plants and of the gas preparation section in plants producing ammonia, methanol,

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Refurbishment of catalytic tar reformer and project on green gasoline. John Bøgild Hansen, Haldor Topsøe A/S IEA Meeting, Skive, October 25, 2017

Refurbishment of catalytic tar reformer and project on green gasoline. John Bøgild Hansen, Haldor Topsøe A/S IEA Meeting, Skive, October 25, 2017 Refurbishment of catalytic tar reformer and project on green gasoline John Bøgild Hansen, Haldor Topsøe A/S IEA Meeting, Skive, October 25, 2017 We have been committed to catalytic process technology for

More information

2012 Energy Storage Symposium

2012 Energy Storage Symposium 2012 Energy Storage Symposium Mogens Mogensen Research Professor, Department of Energy Conversion and Storage, Technical University of Denmark, DTU Risø Campus Renewable Energy Conversion and Storage Overview

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

New technologies & projects based on. gasification technologies. Jens Perregaard, October 31 November 3, Washington DC

New technologies & projects based on. gasification technologies. Jens Perregaard, October 31 November 3, Washington DC New technologies & projects based on Topsøe's s knowledge of downstream gasification technologies Jens Perregaard, G ifi ti T h l i C f 2010 Gasification Technologies Conference 2010 October 31 November

More information

Electrolysis for energy storage

Electrolysis for energy storage Electrolysis for energy storage Mogens B. Mogensen and Christodoulos Chatzichristodoulou Department of Energy Conversion and Storage Technical University of Denmark Acknowledgements to colleagues at DTU

More information

Biomass gasification as a Pathway for Sustainable Aviation Fuel. Senior Scientist Jesper Ahrenfeldt, DTU KT

Biomass gasification as a Pathway for Sustainable Aviation Fuel. Senior Scientist Jesper Ahrenfeldt, DTU KT Biomass gasification as a Pathway for Sustainable Aviation Fuel Senior Scientist Jesper Ahrenfeldt, DTU KT BGE Agenda Introduction to Thermal Gasification of Biomass and Synthesis of Biofuels Thermal Gasification

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

The Role of Fuel Cells in a Sustainable Energy Economy

The Role of Fuel Cells in a Sustainable Energy Economy The Role of Fuel Cells in a Sustainable Energy Economy Energy Futures Sustainable Development in Energy, February 16 th 2005 Nigel Brandon Shell Chair in Sustainable Development in Energy, Faculty of Engineering

More information

and Fuel Cells and Solid State Chemistry Division

and Fuel Cells and Solid State Chemistry Division Solid Oxide Fuel Cells and Gas Separation Membranes A.Hagen, P.V. Hendriksen, M. Søgaard Fuel Cells and Solid State Chemistry Division Risø DTU Outline Background Motivation Combination of Energy Conversion

More information

Fuel Cells and Hydrogen What can they offer for our energy future?

Fuel Cells and Hydrogen What can they offer for our energy future? Praha, 2 to 4 April 2014 Fuel Cells and Hydrogen What can they offer for our energy future? Prof. Dr. Robert Steinberger-Wilckens Centre for Hydrogen & Fuel Cell Research School of Chemical Engineering

More information

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Presented at 9 th Annual NH3 Fuel Conference San Antonio, TX Andrew McFarlan, Ph.D. October 1 2012 CanmetENERGY

More information

By janaka. Copyrights HIMT

By janaka. Copyrights HIMT By janaka Copyrights HIMT 2016 1 In container trade alone the equivalent of 125 million twenty-foot containers being shipped worldwide. It is these quantities that make shipping such a significant contributor

More information

Renewable Energy Conversion and Storage - Overview

Renewable Energy Conversion and Storage - Overview Downloaded from orbit.dtu.dk on: Jun 28, 2018 Renewable Energy Conversion and Storage - Overview Mogensen, Mogens Bjerg Publication date: 2012 Link back to DTU Orbit Citation (APA): Mogensen, M. B. (2012).

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

GENeric diagnosis Instrument for SOFC Systems (245128)

GENeric diagnosis Instrument for SOFC Systems (245128) GENeric diagnosis Instrument for SOFC Systems (24528) Philippe MOÇOTÉGUY EIFER/Project Manager Genius Partnership & Budget 3 years collaboration project: 0-02-200 to 3-0-203 Total budget: 3928 k ; Total

More information

Overview of catalytic conversion of syngas. John Bøgild hansen Haldor Topsøe A/S

Overview of catalytic conversion of syngas. John Bøgild hansen Haldor Topsøe A/S Overview of catalytic conversion of syngas John Bøgild hansen Haldor Topsøe A/S Outline of presentation Green Haldor Topsøe s involvement in production of new clean fuels and chemicals Background for presentation

More information

Status and Trends for Stationary Fuel Cell Power Systems

Status and Trends for Stationary Fuel Cell Power Systems Status and Trends for Stationary Fuel Cell Power Systems Dan Rastler Technical Leader, Distributed Energy Resources Program drastler@epri.com 650-855-2521 Discussion Topics Review Technical and R&D Status

More information

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009)

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Florence LEFEBVRE-JOUD CEA LITEN/Program Manager 1 RelHy Partnership & Budget 4 years collaboration project:

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information

Syngas to value added products in Alberta, Canada

Syngas to value added products in Alberta, Canada 1 Syngas to value added products in Alberta, Canada Eddy Isaacs President, Eddy Isaacs Inc. Strategic Advisor, Faculty of Engineering University of Alberta 2 2 3 Outline of Presentation 1. Fugitive and

More information

Energy-to-Chemicals: Methanation and other synthesis routes.

Energy-to-Chemicals: Methanation and other synthesis routes. Energy-to-Chemicals: Methanation and other synthesis routes. Researchers seminar Francisco Vidal, Dr. Pekka Simell, Dr. Matti Reinikainen VTT Technical Research Centre of Finland Content of the presentation

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Christopher Graves Closing the Carbon Cycle: Fuels from Air conference at Arizona State

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Introduction to Department of Energy Conversion and Storage Jens Oluf Jensen Proton Conductors Department of Energy Conversion and Storage Kemitorvet 207 DK-2800 Lyngby Denmark jojen@dtu.dk (DTU) Founded

More information

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE

APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE APPLICATIONS WITH PROTON EXCHANGE MEMBRANE (PEM) FUEL CELLS FOR A DEREGULATED MARKET PLACE Bernd KOHLSTRUCK ALSTOM BALLARD GmbH ABSTRACT: The electric utility is in a period of rapid change. The deregulation

More information

TwoStage gasification of biomass for clean syngas: Technology and applications

TwoStage gasification of biomass for clean syngas: Technology and applications Downloaded from orbit.dtu.dk on: Dec 19, 2017 TwoStage gasification of biomass for clean syngas: Technology and applications Ahrenfeldt, Jesper Publication date: 2013 Link back to DTU Orbit Citation (APA):

More information

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage

SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage SCOTAS-SOFC (256730) Peter Holtappels Technical University of Denmark Department of Energy Conversion and Storage Project Overview General Overview Sulphur, Carbon, and re-oxidation Tolerant Anodes and

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Renewable. Affordable. Energy Everywhere

Renewable. Affordable. Energy Everywhere Renewable. Affordable. Energy Everywhere Company Presentation Investors Company Presentation Sunfire 20.09.2017 2 Company facts Knowhow ~90 Employees Skills in Ceramics, Stack + System Production, Engineering,

More information

We accept the challenge!

We accept the challenge! Synthesis Gas Generation for Transportation Fuel Production Gasification Technologies Conference 2014, October 26-29 Washington, DC Andras I. Horvath / ANDRITZ Oy, Niels R. Udengaard /Haldor Topsoe Inc.

More information

Connecting Energy Sectors with Hydrogen

Connecting Energy Sectors with Hydrogen Connecting Energy Sectors with Hydrogen Solid Oxide Electrolysis 2016-07-12 Dr.-Ing. Oliver Borm / (De-)zentrale Energiewende Connecting Energy Sectors with H2 2016-07-12 2 AGENDA + Technology + Sector

More information

Demonstration of Technology Options for Storage of Renewable Energy

Demonstration of Technology Options for Storage of Renewable Energy Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.v. (IASS)

More information

Cost and energy efficient, environmentally friendly micro and small scale CHP Walter Haslinger, Bioenergy Alexander Weissinger, KWB

Cost and energy efficient, environmentally friendly micro and small scale CHP Walter Haslinger, Bioenergy Alexander Weissinger, KWB Cost and energy efficient, environmentally friendly micro and small scale CHP Walter Haslinger, Bioenergy 2020+ Alexander Weissinger, KWB Dublin, 23 April 2013 Micro scale CHP are residential scale heating

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Downloaded from orbit.dtu.dk on: Dec 20, 2017 Introduction to Department of Energy Conversion and Storage Jensen, Jens Oluf Publication date: 2013 Link back to DTU Orbit Citation (APA): Jensen, J. O. (2013).

More information

Topsoe Activities Downstream Gasifiers

Topsoe Activities Downstream Gasifiers Topsoe Activities Downstream Gasifiers Poul E. Højlund Nielsen, Klas J. Andersson 8 th International Freiberg/ Conference, June 12-16 - 2016 Haldor Topsøe in brief Established in 1940 by Dr. Haldor Topsøe.

More information

Minimizing associated gas flaring with smaller scale methanol production

Minimizing associated gas flaring with smaller scale methanol production Minimizing associated gas flaring with smaller scale methanol production Esben Sorensen, Haldor Topsoe Inc. EFI Gas Flare Reduction & Monetization Forum; Denver Marriott City Center Denver, Colorado; 15

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

FINAL REPORT THE IMPORTANCE OF NICKEL COMPOUNDS: FUEL CELLS IN STATIONARY POWER GENERATION. Prepared for. European Nickel Institute.

FINAL REPORT THE IMPORTANCE OF NICKEL COMPOUNDS: FUEL CELLS IN STATIONARY POWER GENERATION. Prepared for. European Nickel Institute. FINAL REPORT THE IMPORTANCE OF NICKEL COMPOUNDS: FUEL CELLS IN STATIONARY POWER GENERATION Prepared for European Nickel Institute THE WEINBERG GROUP LLC Le Val Duchesse 360 Boulevard du Souverain, box

More information

Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas

Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas International Gas Union Research Conference 14 Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas Stephan Anger TU Bergakademie Freiberg,

More information

Present and future opportunities downstream gasifiers

Present and future opportunities downstream gasifiers Present and future opportunities downstream gasifiers Klas J. Andersson, Martin Skov Skjøth-Rasmussen, Poul E. Højlund Nielsen 7 th International Freiberg/Inner Mongolia Conference, June 8-2015 Syngas

More information

Electrolysis for conversion of H2O and CO2 into green fuels

Electrolysis for conversion of H2O and CO2 into green fuels Downloaded from orbit.dtu.dk on: Nov 14, 2018 Electrolysis for conversion of H2O and CO2 into green fuels Mogensen, Mogens Bjerg Publication date: 2013 Link back to DTU Orbit Citation (APA): Mogensen,

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen:

More information

Recent trends in E-fuels / Power2X

Recent trends in E-fuels / Power2X Recent trends in E-fuels / Power2X Professor, Head of section Section for Electrochemical Materials Peho@dtu.dk Sustainable Aviation Fuel - Workshop 2018, Copenhagen Outline Electrofuels What are they

More information

Solid Oxide Fuel Cells for CO2 reduction

Solid Oxide Fuel Cells for CO2 reduction Solid Oxide Fuel Cells for CO2 reduction Carbon Capture and U.lisa.on1 22/2/2017 Energy Materials Group at St Andrews Prof. John Irvine Well known in SOFC research Leads established group with long track

More information

Liquid Hydrocarbons Electrofuel / e-fuel Production Pathways and Costs

Liquid Hydrocarbons Electrofuel / e-fuel Production Pathways and Costs Liquid Hydrocarbons Electrofuel / e-fuel Production Pathways and Costs 10-09-2018 Karl Hauptmeier / Nils Aldag Investors Key Assumptions Chapter 1 (Potential): e-fuels are a necessity to reach long term

More information

Brief Introduction to Fuel Cells, Hydrogen Production and Storage

Brief Introduction to Fuel Cells, Hydrogen Production and Storage Brief Introduction to Fuel Cells, Hydrogen Production and Storage Production Outline Intermediate Conversion Electrolysis Jens Oluf Jensen Energy Reforming Microbial Thermal Transmission Storage Fuel cells

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review

Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review International Journal of Renewable Energy, Vol. 3, No., July 008 Molten carbonate fuel cell (MCFC) characteristics, technologies and economic analysis: Review Wirungrong Sangarunlert a *, Sukruedee suhchai

More information

Current status of commercialization for small scale stationary fuel cell systems in Korea

Current status of commercialization for small scale stationary fuel cell systems in Korea Current status of commercialization for small scale stationary fuel cell systems in Korea Bonggyu Kim, Dal-Ryung Park 1, Jin-Wook Kim and Jae-Dong Kim 1 R&D Division, Korea Gas Corporation, 1248, Suin-ro,

More information

The Hydrogen Energy Option

The Hydrogen Energy Option The Hydrogen Energy Option Alister Gardiner Industrial Research Limited www.irl.cri.nz Presentation to Maori and the Sustainable Energy Business Conference, Taupo, 4 August 05 2 Presentation Overview Energy

More information

Modelling tools for energy planning and energy system integration Sara Ben Amer-Allam,

Modelling tools for energy planning and energy system integration Sara Ben Amer-Allam, Modelling tools for energy planning and energy system integration Sara Ben Amer-Allam, sbea@dtu.dk EERA JPI ISI meeting November 2nd, 2016 DTU Lyngby, Denmark Contents o DTU o Energy planning o Energy

More information

Assessing Wood-Based Synthetic Natural Gas (Bio-SNG) Technologies

Assessing Wood-Based Synthetic Natural Gas (Bio-SNG) Technologies International Energy Workshop, Cape Town, 28 th June 2006 Assessing Wood-Based Synthetic Natural Gas (Bio-SNG) Technologies Thorsten F. Schulz L.Barreto, S.Kypreos, S.Stucki Energy Economics Group Paul

More information

Synthesis and New Applications of DME - a review of alternatives

Synthesis and New Applications of DME - a review of alternatives Synthesis and New Applications of DME - a review of alternatives Presenter: Helge Holm-Larsen Chairman, International DME Association, IDA 8th NGCS Natal, May 30, 2007 Outline DME & IDA DME Technology

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

KOREA INSTITUTE OF ENERGY RESEARCH. Visiting Information KOREA INSTITUTE OF ENERGY RESEARCH

KOREA INSTITUTE OF ENERGY RESEARCH. Visiting Information KOREA INSTITUTE OF ENERGY RESEARCH Visiting Information KOREA INSTITUTE OF ENERGY RESEARCH KOREA INSTITUTE OF l Address l 102 Gajeong-ro, Yuseong-gu, Daejeon 305-343 l Contact l TEL : +82-42-860-3496 FAX : +82-42-860-3191 E-mail : kimilja@kier.re.kr

More information

Renewable Electricity Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation Mix Model

Renewable Electricity Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation Mix Model USAEE/IAEE 35th North American Conference, Concurrent Session 19, Royal Sonesta Hotel, Houston TX USA, November 14, 217 Renewable Storage with Ammonia Fuel: A Case Study in Japan with Optimal Power Generation

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

New technologies for the Mid-century strategy

New technologies for the Mid-century strategy E3MLab www.e3mlab.eu 1 New technologies for the Mid-century strategy Pantelis Capros Professor of Energy Economics National Technical University of Athens E3MLab, Athens November 2017 Industry Buildings

More information

CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS

CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS ECN-RX--05-101 CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS.F. van den Oosterkamp resented at the Heat Transfer in Components and Systems for Sustainable Energy Technologies 5-7 April 2005, Grenoble,

More information

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal Fluidised Bed Methanation Technology for Improved Production of SNG from Coal International Conference on Clean Coal Technologies, Dresden, 18 May 2009 T.J. Schildhauer, S. Biollaz Paul Scherrer Institut

More information

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD Testing and demonstration of fuel cells and hydrogen technologies at DTU Eva Ravn Nielsen Center Manager, PhD 23-04-2018 Outline FCH Test Center - DTU Energy Testing Test procedures for SOFC/SOEC Demonstration

More information

Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013

Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013 Fuel Cells in Energy Technology (9) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU München summer term 2013 - Source - Distribution - CO poisoning - Emissions (true zero, CO

More information

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER Josef Schefold, 21/09/17 Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER 1 Steam electrolysis with electrolyte supported solid oxide cell (SOC) Cell SOC

More information

Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren

Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren Methanisierung von Biomasse CNG/LNG über thermochemische Verfahren Dr. Reinhard Rauch Vienna, University of Technology Bioenergy 2020+ 1 CNG/LNG as transportation fuel 2 Problem: fuelling stations 179

More information

Basic Thermodynamics and System Analysis for Fuel Cells

Basic Thermodynamics and System Analysis for Fuel Cells 2 nd Joint European Summer School on Fuel Cell and Hydrogen Technology Crete, 17 th 28 th Sept. 2012 Basic Thermodynamics and System Analysis for Fuel Cells Prof. Dr. Robert Steinberger-Wilckens Centre

More information

Galileo. Intelligent Heat. Clean Electricity.

Galileo. Intelligent Heat. Clean Electricity. Galileo Intelligent Heat. Clean Electricity. Galileo 1000 N: The name comes from Galileo Galilei. The Italian natural scientist born in 1564 was far ahead of his time and made groundbreaking discoveries

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

International Programs Europe

International Programs Europe Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Fuel Cell Laboratory Wolfgang Winkler International Programs Europe 6th International Colloquium on Environmentally

More information

Efficient Technologies for Down Stream Gasification Process and Integration with IGCC Power Production

Efficient Technologies for Down Stream Gasification Process and Integration with IGCC Power Production Efficient Technologies for Down Stream Gasification Process and Integration with IGCC Power Production Research I Technology I Catalysts Jens Perregaard, Per Bakkerud and Poul Erik Højlund Nielsen Haldor

More information

ENERGY SELF-SUSTAINING AND ENVIRONMENTAL FOOTPRINT REDUCTION ON WASTEWATER TREATMENT PLANTS VIA FUEL CELLS

ENERGY SELF-SUSTAINING AND ENVIRONMENTAL FOOTPRINT REDUCTION ON WASTEWATER TREATMENT PLANTS VIA FUEL CELLS ENERGY SELF-SUSTAINING AND ENVIRONMENTAL FOOTPRINT REDUCTION ON WASTEWATER TREATMENT PLANTS VIA FUEL CELLS LAYMAN S REPORT 2012 LIFE07 / ENV / E / 000847 OUTLINE CONTEXT AND BACKGROUND 2 THE BIOCELL PROJECT

More information

CONVION May 7, 2018 Convion Fuel Cells Public.

CONVION May 7, 2018 Convion Fuel Cells Public. www.convion.fi High temperature SOFC fuel cells with biogas in practice Tuomas Hakala Co-founder, Convion Oy Convion Oy BACKGROUND Corporate R&D of Wärtsilä through 2000-2012 Convion started in 2013 by

More information

bioliq - BtL pilot plant

bioliq - BtL pilot plant bioliq - BtL pilot plant Aviation Biofuels through Biomass Gasification, IEA Task 33 Engler-Bunte-Institut, Chemische Energieträger Brennstofftechnologie, EBI ceb Institut für Technische Chemie, Vergasungstechnologie,

More information

Luigi Crema - Fondazione Bruno Kessler

Luigi Crema - Fondazione Bruno Kessler TOR VERGATA, ROME 06 08 JUNE 2018 Technologies for hydrogen fueled trains Luigi Crema - Fondazione Bruno Kessler crema@fbk.eu Valter Alessandria, Alstom Ferroviaria Diana De Rosmini, McPhy Energy Michele

More information

Hydrogen and fuel cells: towards a sustainable energy future

Hydrogen and fuel cells: towards a sustainable energy future Hydrogen and fuel cells: towards a sustainable energy future Professor Peter P. Edwards Head of Inorganic Chemistry University of Oxford Co-ordinator UK Sustainable Hydrogen Energy Consortium UK representative

More information

The Methanol Economy R

The Methanol Economy R The Methanol Economy R G. K. Surya Prakash Loker Hydrocarbon Research Institute University of Southern California Los Angeles, CA 90089-1661 USA 2015 European Methanol Policy Forum Brussels, Belgium October

More information