Solid Oxide Electrolysis Cells: Long-term Durability

Size: px
Start display at page:

Download "Solid Oxide Electrolysis Cells: Long-term Durability"

Transcription

1 Solid Oxide Electrolysis Cells: Long-term Durability Steam electrolysis Carbon dioxide electrolysis Co-electrolysis of steam and carbon dioxide Sune D Ebbesen, Christopher Graves, Anne Hauch, Søren H Jensen, Ruth Knibbe, and Mogens Mogensen Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, The Technical University of Denmark

2 Outline Risø Ni/YSZ based Solid Oxide Cells Performance of Risø Ni/YSZ based Solid Oxide Cells Setup for testing Solid Oxide Cells at Risø Influence if impurities Electrolysis durability at low current density Steam Carbon dioxide Carbon dioxide + steam Electrolysis durability at high current density Steam, Carbon dioxide or Carbon dioxide + steam Summary

3 Risø Ni/YSZ based Solid Oxide Cells Support layer: Ni/YSZ Fuel electrode: Ni/YSZ Electrolyte: YSZ Oxygen electrode: LSM

4 Risø Ni/YSZ based Solid Oxide Cells Support layer: Ni/YSZ Steam electrolysis Fuel electrode: Ni/YSZ Electrolyte: YSZ Oxygen electrode: LSM HO 2 H 2 + ½ O2 Carbon dioxide electrolysis CO 2 CO + ½ O2

5 Risø Ni/YSZ based Solid Oxide Cells Support layer: Ni/YSZ Steam electrolysis Fuel electrode: Ni/YSZ Electrolyte: YSZ Oxygen electrode: LSM HO 2 H 2 + ½ O2 Carbon dioxide electrolysis CO 2 CO + ½ O2 Water Gas Shift (WGS) / Reverse Water Gas Shift (RWGS) H2O + CO H 2 + CO2

6 Performance of Risø Ni/YSZ based Solid Oxide Cells

7 Performance of Risø Ni/YSZ based Solid Oxide Cells 850ºC 50% H 2 O % H 2 25% Ar 1.3 Cell voltage / V i / A.cm -2 H 2 O/H 2 : ASR electrolysis = 0.24 Ωcm 2 ASR fuel cell =0.25 Ωcm 2

8 Performance of Risø Ni/YSZ based Solid Oxide Cells 850ºC 50% H 2 O % H 2 25% Ar 25% CO 2 25% H 2 O 25% CO 25% Ar 50% CO % CO 25% Ar Cell voltage / V i / A.cm -2 H 2 O/H 2 : ASR electrolysis = 0.24 Ωcm 2 ASR fuel cell =0.25 Ωcm 2 CO 2 /CO: ASR electrolysis = 0.34 Ωcm 2 ASR fuel cell =0.32 Ωcm 2

9 Performance of Risø Ni/YSZ based Solid Oxide Cells 850ºC 50% H 2 O % H 2 25% Ar 25% CO 2 25% H 2 O 25% CO 25% Ar 50% CO % CO 25% Ar Cell voltage / V i / A.cm H 2 O/H 2 : ASR electrolysis = 0.24 Ωcm 2 ASR fuel cell =0.25 Ωcm 2 CO 2 /CO: ASR electrolysis = 0.34 Ωcm 2 ASR fuel cell =0.32 Ωcm 2 H 2 O/CO 2 /CO: ASR electrolysis = 0.28 Ω cm 2 ASR fuel cell =0.27 Ωcm 2

10 Performance of Risø Ni/YSZ based Solid Oxide Cells 850ºC 50% CO % CO 25% Ar 50% CO 2 25% H 2 25% Ar 1.3 Cell voltage / V i / A.cm CO 2 /H 2 : ASR electrolysis = 0.28 Ωcm 2 ASR fuel cell =0.27 Ωcm 2 CO 2 /CO: ASR electrolysis = 0.34 Ωcm 2 ASR fuel cell =0.32 Ωcm 2

11 Electrolysis in Solid Oxide Cells Steam electrolysis HO 2 H 2 + O2 Carbon dioxide electrolysis CO 2 CO + O2 Co-electrolysis of carbon dioxide and steam CO + H O CO + H + O H O + CO H + CO 2 2 2

12 Setup for testing Solid Oxide Cells at Risø Cell holder, Top piece Pt foil current collector Pt Mesh O 2 /Air flow Cell H 2 O/H 2 CO 2 /CO Flow Ni Mesh Ni foil current collector Cell holder, Bottom piece Voltage probes (In-plane)

13 Setup for testing Solid Oxide Cells In-plane explanation Inplane voltage Cell voltage Inplane voltage Time Corrosponding cell voltage Inlet Outlet

14 Durability of Ni/YSZ supported Solid Oxide Cells Support layer: Ni/YSZ Fuel electrode: Ni/YSZ Electrolyte: YSZ Oxygen electrode: LSM Low current density degradation (~ upto -1 A/cm 2 at 850ºC) High current density degradation (~ above -1 A/cm 2 at 850ºC)

15 850ºC, A/cm 2, 50% H O / 50% H Electrolysis durability at low current density Steam Cell voltage (V) Passivation Activation Long term degradation Support layer: Ni/YSZ Time (h)

16 Electrolysis durability at low current density Steam Cell voltage (V) Passivation Activation Long term degradation Support layer: Ni/YSZ Time (h) 0.75 In-plane voltage (mv) Time (h) 850ºC, A/cm 2, 50% H O / 50% H

17 850ºC, A/cm 2, 50% H O / 50% H Electrolysis durability at low current density Steam Support layer: Ni/YSZ 1.2 khz 0 h 260 h 1315 h Z'' (Ω cm 2 ) khz 120 Hz 12 Hz 1.2 Hz Δt Z'(f) / ln(f) (Ω cm 2 ) Z' (Ω cm 2 ) t = 260 h Time Maximal degradation: 115 mv Frequence (Hz)

18 850ºC, A/cm 2, 50% H O / 50% H Electrolysis durability at low current density Steam Support layer: Ni/YSZ 1.2 khz 0 h 260 h 1315 h Z'' (Ω cm 2 ) khz 120 Hz 12 Hz 1.2 Hz Z' (Ω cm 2 ) Electrolysis: Si(OH) SiO + H O Impurities Impurities (gas) (ads)

19 850ºC, A/cm 2, 70% CO / 30% CO Electrolysis durability at low current density Carbon dioxide Cell voltage (mv) Support layer: Ni/YSZ Electrolysis time (h)

20 850ºC, A/cm 2, 70% CO / 30% CO Electrolysis durability at low current density Carbon dioxide Cell voltage (mv) Support layer: Ni/YSZ Electrolysis time (h) In-Plane voltage (mv) Electrolysis time (h)

21 850ºC, A/cm 2, 70% CO / 30% CO Electrolysis durability at low current density Carbon dioxide Z'' (Ω cm 2 ) Support layer: Ni/YSZ 1.2 khz 1.2 khz 120 Hz 12 Hz 1.2 Hz 0 h 250 h 500 h Z' (Ω cm 2 ) Δt Z'(f) / ln(f) (Ω cm 2 ) t = 500 h Time Degradation: 175 mv Frequence (Hz)

22 850ºC, A/cm 2, 70% CO / 30% CO Electrolysis durability at low current density Carbon dioxide Z'' (Ω cm 2 ) Support layer: Ni/YSZ 1.2 khz 1.2 khz 120 Hz 12 Hz 1.2 Hz 0 h 250 h 500 h Z' (Ω cm 2 ) Electrolysis: S S (g) (ads)

23 850ºC, A/cm 2, 70% CO / 30% CO Electrolysis durability at low current density Carbon dioxide Z'' (Ω cm 2 ) Support layer: Ni/YSZ 1.2 khz 1.2 khz 120 Hz 12 Hz 1.2 Hz 0 h 250 h 500 h Z' (Ω cm 2 ) Electrolysis: S S (g) (ads) Introduction of H : S + H H S (ads) 2 2 (g) 2

24 850ºC, A/cm 2, 45% CO / 45%H O / 10% H Electrolysis durability at low current density Carbon dioxide + steam 1025 Cell voltage (mv) Time (h)

25 850ºC, A/cm 2, 45% CO / 45%H O / 10% H Electrolysis durability at low current density Carbon dioxide + steam 1025 Cell voltage (mv) Time (h) 0.6 In-plane voltage (mv) Time (h)

26 850ºC, A/cm 2, 45% CO / 45%H O / 10% H Electrolysis durability at low current density Carbon dioxide + steam h 200 h 1340 h Z'' (Ω cm 2 ) khz 1.2 khz 120 Hz 12 Hz 1.2 Hz Z' (Ω cm 2 ) Δt Z'(f) / ln(f) (Ω cm 2 ) t = 200 h Time Maximal degradation: 75 mv Frequence (Hz)

27 850ºC, A/cm 2, 45% CO / 45%H O / 10% H Electrolysis durability at low current density Carbon dioxide + steam h 200 h 1340 h Z'' (Ω cm 2 ) khz 1.2 khz 120 Hz 12 Hz 1.2 Hz Z' (Ω cm 2 ) Electrolysis : Impurities Impurities (gas) (ads)

28 Electrolysis durability at high current density

29 850ºC, A/cm 2, 70%CO / 30% CO Electrolysis durability at high current density Steam or Carbon dioxide (Steam + Carbon dioxide) 2000 Cell voltage (mv) CO 2 electrolysis H 2 O electrolysis Electrolysis time (h) 850ºC, A/cm 2, 50%H 2 O / 50% H 2

30 Electrolysis durability at high current density Steam or Carbon dioxide (Steam + Carbon dioxide) 2000 Cell voltage (mv) CO 2 electrolysis H 2 O electrolysis Electrolysis time (h) 0 h 200 h 400 h Z'' (Ω cm 2 ) Z' (Ω cm 2 ) 850ºC, A/cm 2, 50%H 2 O / 50% H 2 850ºC, A/cm 2, 70%CO / 30% CO

31 850ºC, A/cm 2, 70%CO / 30% CO Electrolysis durability at high current density Steam or Carbon dioxide (Steam + Carbon dioxide) 2000 Cell voltage (mv) CO 2 electrolysis H 2 O electrolysis Electrolysis time (h) 850ºC, A/cm 2, 50%H 2 O / 50% H 2

32 850ºC, A/cm 2, 70%CO / 30% CO Electrolysis durability at high current density Steam or Carbon dioxide (Steam + Carbon dioxide) 2000 Cell voltage (mv) CO 2 electrolysis H 2 O electrolysis Electrolysis time (h) 850ºC, A/cm 2, 50%H 2 O / 50% H 2

33 Summary Degradation at low current densities No structural degradation Degradation related to adsorption of impurities from the applied gasses (or in raw materials) Degradation at high current densities Significant structural degradation Related to the overpotential

Poisoning of Solid Oxide Electrolysis Cells by Impurities

Poisoning of Solid Oxide Electrolysis Cells by Impurities Downloaded Sep 1 to 19.38.67.11. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp Journal of The Electrochemical Society, 157 1 1419-149 1 13-4651/1/157 1 /1419/11/$8.

More information

Energy Efficient Production of Pressurized Hydrogen - E2P2H2

Energy Efficient Production of Pressurized Hydrogen - E2P2H2 Energy Efficient Production of Pressurized Hydrogen - E2P2H2 (EUDP project commenced by DTU Energi in collaboration with HTAS, 2014-2016) Workshop, April 4 th 2017 Søren Højgaard Jensen Department of Energy

More information

SOEC: Materials, properties & challenges

SOEC: Materials, properties & challenges SOEC: Materials, properties & challenges Anne Hauch DTU Energy Conversion Acknowledgements to colleagues at DTU Energy Conversion hauc@dtu.dk Outline 1. Intro who am I and who are you? + learning objectives

More information

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS ECN-RX--05-083 SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS Søren Koch, Peter Vang Hendriksen and Mogens Mogensen (Risø National Laboratory, Denmark), Nico Dekker and Bert Rietveld

More information

Electrochemical characterization and performance evaluation

Electrochemical characterization and performance evaluation Electrochemical characterization and performance evaluation Mogens Mogensen Fuel Cells and Solid State Chemistry Risø National Laboratory Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark

More information

Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells Downloaded from orbit.dtu.dk on: Apr 13, 2018 Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg Published in: Journal of The

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of Energy Conversion and Storage, Technical University of

More information

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Downloaded from orbit.dtu.dk on: Jul 01, 2018 Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Hagen, Anke; Chen, Ming; Neufeld, Kai; Liu, Yi-Lin Published in: E C S Transactions

More information

Electrolysis for energy storage

Electrolysis for energy storage Electrolysis for energy storage Mogens B. Mogensen and Christodoulos Chatzichristodoulou Department of Energy Conversion and Storage Technical University of Denmark Acknowledgements to colleagues at DTU

More information

High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability Downloaded from orbit.dtu.dk on: Nov 26, 2017 High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

More information

Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials

Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials Christopher Graves crg2109@columbia.edu May 4, 2010 Sustainable Fuels Workshop Faculty House, Columbia Univ. Comparisons

More information

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Closing the Carbon Cycle: Fuels from Air, Phoenix, 29/9-2016 Theis L. Skafte (1,2), P. Blennow (1), J. Hjelm (2),

More information

Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability

Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability Downloaded from orbit.dtu.dk on: Jan 21, 2019 Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability Hauch, Anne; Brodersen, Karen; Chen, Ming; Mogensen, Mogens Bjerg

More information

Feeding CO 2 from air into solid oxide electrolyzer cells

Feeding CO 2 from air into solid oxide electrolyzer cells Feeding CO 2 from air into solid oxide electrolyzer cells Søren Lyng Ebbehøj M.Sc. Sustainable energy slebb@dtu.dk Department of Energy Conversion and Storage Technical University of Denmark Risø Campus

More information

Electrolysis for conversion of H2O and CO2 into green fuels

Electrolysis for conversion of H2O and CO2 into green fuels Downloaded from orbit.dtu.dk on: Nov 14, 2018 Electrolysis for conversion of H2O and CO2 into green fuels Mogensen, Mogens Bjerg Publication date: 2013 Link back to DTU Orbit Citation (APA): Mogensen,

More information

Relation Between Ni Particle Shape Change and Ni Migration in Ni YSZ Electrodes a Hypothesis

Relation Between Ni Particle Shape Change and Ni Migration in Ni YSZ Electrodes a Hypothesis Downloaded from orbit.dtu.dk on: Jan 14, 2019 Relation Between Ni Particle Shape Change and Ni Migration in Ni YSZ Electrodes a Hypothesis Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu; Chen, Ming; Tao,

More information

Silica segregation in the Ni/YSZ electrode

Silica segregation in the Ni/YSZ electrode Downloaded from orbit.dtu.dk on: Dec 08, 2017 Silica segregation in the Ni/YSZ electrode Hauch, Anne; Jensen, Søren Højgaard; Bilde-Sørensen, Jørgen; Mogensen, Mogens Bjerg Published in: Electrochemical

More information

Electrolyte Degradation in Anode Supported Microtubular YSZ-based. Solid Oxide Steam Electrolysis Cells at high voltages of operation 1

Electrolyte Degradation in Anode Supported Microtubular YSZ-based. Solid Oxide Steam Electrolysis Cells at high voltages of operation 1 Electrolyte Degradation in Anode Supported Microtubular YSZ-based Solid Oxide Steam Electrolysis Cells at high voltages of operation 1 M. A. Laguna-Bercero, R. Campana, A. Larrea, J. A. Kilner and V. M.

More information

Index - Final Report. Report compiled by: Ming Chen

Index - Final Report. Report compiled by: Ming Chen Index - Final Report 1. Final report 2 1.1 Project details 2 1.2 Executive summary 3 1.3 Project results 7 1.3.1 Overview and milestones 7 1.3.2 WP1 Cell development and testing 12 1.3.3 WP2 Interconnects

More information

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage Fuel Cell & Hydrogen Technologies JP SP2: Catalyst and Electrodes Borovetz, Bulgaria June 2 nd and 3 rd 2014 The need for localized electrochemical measurements and the promise of Controlled Atmosphere

More information

A Decade of Solid Oxide Electrolysis Improvements at DTU Energy

A Decade of Solid Oxide Electrolysis Improvements at DTU Energy Downloaded from orbit.dtu.dk on: Jan 21, 2019 A Decade of Solid Oxide Electrolysis Improvements at DTU Energy Hauch, Anne; Brodersen, Karen; Chen, Ming; Graves, Christopher R.; Jensen, Søren Højgaard;

More information

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER Josef Schefold, 21/09/17 Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER 1 Steam electrolysis with electrolyte supported solid oxide cell (SOC) Cell SOC

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Downloaded from orbit.dtu.dk on: Sep 18, 2018 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratory Christiansen, Niels; Hansen, J B.; Larsen, H H.; Linderoth, Søren; Larsen,

More information

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 483~488, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.483 Communication Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled

More information

Pressurized reversible operation of a 30-cell solid oxide cell stack using carbonaceous gases

Pressurized reversible operation of a 30-cell solid oxide cell stack using carbonaceous gases Downloaded from orbit.dtu.dk on: Jan 13, 2019 Pressurized reversible operation of a 30-cell solid oxide cell stack using carbonaceous gases Jensen, Søren Højgaard; Langnickel, Hendrik; Hintzen, N.; Chen,

More information

Analysis of electrode performance in molten carbonate electrolysis cell (MCEC)

Analysis of electrode performance in molten carbonate electrolysis cell (MCEC) Analysis of electrode performance in molten carbonate electrolysis cell (MCEC) Lan Hu, Göran Lindbergh, Carina Lagergren KTH Royal Institute of Technology Stockholm, Sweden Outline Background Experimental

More information

and Fuel Cells and Solid State Chemistry Division

and Fuel Cells and Solid State Chemistry Division Solid Oxide Fuel Cells and Gas Separation Membranes A.Hagen, P.V. Hendriksen, M. Søgaard Fuel Cells and Solid State Chemistry Division Risø DTU Outline Background Motivation Combination of Energy Conversion

More information

FD Electrolysis: Degradation Mechanisms In Solid Oxide Cells Operated With Reversing Current

FD Electrolysis: Degradation Mechanisms In Solid Oxide Cells Operated With Reversing Current FD Electrolysis: Degradation Mechanisms In Solid Oxide Cells Operated With Reversing Current Journal: Manuscript ID: FD-ART-02-1-0000.R1 Article Type: Paper Date Submitted by the Author: 01-Apr-1 Complete

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Christopher Graves Closing the Carbon Cycle: Fuels from Air conference at Arizona State

More information

A0808. SOFC Operation on Biogas: Impurity Threshold Levels

A0808. SOFC Operation on Biogas: Impurity Threshold Levels A0808 SOFC Operation on Biogas: Impurity Threshold Levels Hossein Madi (1), Christian Ludwig (2), Jan Van herle (1) (1) FUELMAT Group, Faculty of Engineering Sciences (STI), Ecole Polytechnique Fédérale

More information

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane Journal of the Korean Ceramic Society Vol. 52, No. 5, pp. 325~330, 2015. http://dx.doi.org/10.4191/kcers.2015.52.5.325 Communication Performance of Solid Oxide Fuel Cells with Direct Internal Reforming

More information

ForskEL Towards Solid Oxide Electrolysis Plants in 2020

ForskEL Towards Solid Oxide Electrolysis Plants in 2020 Final report for ForskEL 2015-1-12276 Towards Solid Oxide Electrolysis Plants in 2020 Report compiled by: Ming Chen Contributors: Department of Energy Conversion and Storage, Technical University of Denmark

More information

Testing and standardized test procedures for SOFC, SOEC and PEM testing. Eva Ravn Nielsen Center Manager, PhD

Testing and standardized test procedures for SOFC, SOEC and PEM testing. Eva Ravn Nielsen Center Manager, PhD Testing and standardized test procedures for SOFC, SOEC and PEM testing Eva Ravn Nielsen Center Manager, PhD 13-04-2015 Outline FCH Test Center - DTU Energy Testing Standardization of test methods Other

More information

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS Zadariana Jamil 1,2, Enrique Ruiz-Trejo 1, Paul Boldrin 1 and Nigel P Brandon 1 1 Imperial College London,UK 2 Faculty of Civil

More information

Electrochemical Impedance Studies of SOFC Cathodes

Electrochemical Impedance Studies of SOFC Cathodes Downloaded from orbit.dtu.dk on: Jul 02, 2018 Electrochemical Impedance Studies of SOFC Cathodes Hjelm, Johan; Søgaard, Martin; Wandel, Marie; Mogensen, Mogens Bjerg; Menon, Mohan; Hagen, Anke Published

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009)

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Florence LEFEBVRE-JOUD CEA LITEN/Program Manager 1 RelHy Partnership & Budget 4 years collaboration project:

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells

High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells G. Schiller, A. Ansar, O. Patz Deutsches Zentrum für Luft- und Raumfahrt (DLR) Pfaffenwaldring 38-4, D-7569 Stuttgart,

More information

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell 212 International Conference on Clean and Green Energy IPCBEE vol.27 (212) (212) IACSIT Press, Singapore Maximizing Hydrogen Production of A Solid xide Electrolyser Cell Qiong Cai 1+, Claire S. Adjiman

More information

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 SOEC: Key enabling Technology for sustainable Fuels and Feedstocks John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 +

More information

Development of Planar Metal Supported SOFC with Novel Cermet Anode

Development of Planar Metal Supported SOFC with Novel Cermet Anode Downloaded from orbit.dtu.dk on: Nov 04, 2018 Development of Planar Metal Supported SOFC with Novel Cermet Anode Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine; Persson, Åsa Helen; Brodersen, Karen;

More information

GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry

GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry Investigators Gareth Hughes, Graduate Researcher; Zhan Gao, Post-doctoral Researcher; Scott A Barnett, Professor, Materials

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

Lignite as a fuel for direct carbon solid oxide fuel cell

Lignite as a fuel for direct carbon solid oxide fuel cell Lignite as a fuel for direct carbon solid oxide fuel cell Janusz Jewulski, Marek Skrzypkiewicz, Michał Struzik, Iwona Lubarska-Radziejewska Institute of Power Engineering Fuel Cell Department Augustowka

More information

Proton Ceramic Steam Electrolysers

Proton Ceramic Steam Electrolysers Proton Ceramic Steam Electrolysers Einar Vøllestad 1, R. Strandbakke 1, Dustin Beeaff 2 and T. Norby 1 1 University of Oslo, Department of Chemistry, 2 CoorsTek Membrane Sciences AS Theoretical considerations

More information

Formation of Lanthanum Zirconate in Solid Oxide Electrolysis Cells

Formation of Lanthanum Zirconate in Solid Oxide Electrolysis Cells Formation of Lanthanum Zirconate in Solid Oxide Electrolysis Cells Experimental Studies Pedro Almeida, Departamento de Engenharia Mecânica, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa

More information

Degradation in Solid Oxide Cells During High Temperature Electrolysis

Degradation in Solid Oxide Cells During High Temperature Electrolysis INL/EXT-09-15617 Degradation in Solid Oxide Cells During High Temperature Electrolysis Manohar S. Sohal May 2009 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

More information

SOFC advances and perspectives

SOFC advances and perspectives SOFC advances and perspectives John T. S. Irvine University of St Andrews Warwick 31st January 2019 Applications Transport Stationary Residential Distributed Cogeneration Portable Premium UPS Military

More information

Brief Introduction to Fuel Cells, Hydrogen Production and Storage

Brief Introduction to Fuel Cells, Hydrogen Production and Storage Brief Introduction to Fuel Cells, Hydrogen Production and Storage Production Outline Intermediate Conversion Electrolysis Jens Oluf Jensen Energy Reforming Microbial Thermal Transmission Storage Fuel cells

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Introduction to Department of Energy Conversion and Storage Jens Oluf Jensen Proton Conductors Department of Energy Conversion and Storage Kemitorvet 207 DK-2800 Lyngby Denmark jojen@dtu.dk (DTU) Founded

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes.

The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes. The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes A. R. Hanifi 1, M. A. Laguna-Bercero 2, T. H. Etsell 1 and Partha Sarkar

More information

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION Fuel Cells & Electrolyzers Battery Solar Biomass 2 EXPERIMENTAL RESOURCES AT DIFFERENT SCALES 3 CONTEXT High

More information

GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry

GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry 1 GCEP award #51922: A Novel Solid Oxide Flow Battery Utilizing H-C-O Chemistry Investigators Gareth Hughes, Graduate Researcher; David Kennouche, Graduate Researcher; Zhan Gao, Post-doctoral Researcher;

More information

Carbon and Sulfur Tolerant anodes for SOFCs

Carbon and Sulfur Tolerant anodes for SOFCs Carbon and Sulfur Tolerant anodes for SOFCs Stylianos G. Neophytides FORTH Institute of Chemical Engineering Sciences Hydrogen days 2014, Prague 2-4 April, 2014 ΙΤΕ/ΕΙΧΗΜΥΘ Outline Introduction to SOFCs

More information

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY

I. INTRODUCTION. II. OBJECTIVE OF THE EXPERIMENT. III. THEORY I. INTRODUCTION. Chemical pollution is a serious problem that demands the attention of the scientific community in the early 21 st century. The consequences of pollution are numerous: heating of the atmosphere

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Electrochemical Energy Conversion Revised Roadmap

Electrochemical Energy Conversion Revised Roadmap International Institute for Carbon-Neutral Energy Research 1 Electrochemical Energy Conversion Revised Roadmap June 2017 A World Premier Institute 2 Division Objective This division conducts fundamental

More information

Passivation and Activation of SOFC Nanostructured Cathodes. Risoe National Laboratory, Technical University of Denmark, Roskilde 4000, Denmark

Passivation and Activation of SOFC Nanostructured Cathodes. Risoe National Laboratory, Technical University of Denmark, Roskilde 4000, Denmark 1243 10.1149/1.2729225, The Electrochemical Society Passivation and Activation of SOFC Nanostructured Cathodes W. G. Wang a,b, J. J. Bentzen a, S. H. Jensen a, N. Bonanos a, P. V. Hendriksen a, M. Mogensen

More information

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes Development of Nano-Structured Solid Oxide Fuel Cell Electrodes G. Schiller, S.A. Ansar, M. Müller German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-48, D-70569 Stuttgart,

More information

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte

Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells. Werner Sitte Fuel Cell Research Activities at the University of Leoben Focus: Solid Oxide Fuel Cells Werner Sitte Chair of Physical Chemistry, University of Leoben, Austria IEA Workshop Advanced Fuel Cells, TU Graz,

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

EIS diagnosis tool for high temperature devices from fuel cells to electrolysers

EIS diagnosis tool for high temperature devices from fuel cells to electrolysers EIS diagnosis tool for high temperature devices from fuel cells to electrolysers M. Cassir*, A. Nechache, A. Ringuedé * Group leader of Interfaces, Electrochemistry & Energy CNRS - Chimie ParisTech, 11

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Downloaded from orbit.dtu.dk on: Dec 20, 2017 Introduction to Department of Energy Conversion and Storage Jensen, Jens Oluf Publication date: 2013 Link back to DTU Orbit Citation (APA): Jensen, J. O. (2013).

More information

Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes

Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes M.A. da Silva, R. da Paz Fiuza, B.C. Guedes, L.A. Pontes, J.S. Boaventura This document appeared in Detlef Stolten, Thomas

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Synthesis of nanocarbon materials by PECVD: challenges to direct synthesis via CO 2 reduction using plasma-soec hybrid reactor

Synthesis of nanocarbon materials by PECVD: challenges to direct synthesis via CO 2 reduction using plasma-soec hybrid reactor 22 nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Synthesis of nanocarbon materials by PECVD: challenges to direct synthesis via CO 2 reduction using plasma-soec hybrid

More information

Recycling of carbon dioxide to produce ethanol

Recycling of carbon dioxide to produce ethanol Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 6679 6686 GHGT-11 Recycling of carbon dioxide to produce ethanol Youness El Fouih, Chakib Bouallou* MINES ParisTech, Centre Energétique

More information

Microtubular SOFCs for power generation, steam electrolysis and syngas production

Microtubular SOFCs for power generation, steam electrolysis and syngas production Microtubular SOFCs for power generation, steam electrolysis and syngas production M.A. Laguna-Bercero*, H. Monzón, A. Larrea, V.M. Orera Instituto de Ciencia de Materiales de Aragón (ICMA) Zaragoza, Spain

More information

Development of Novel NOx Sensors and System Integration with Alumina Heater Elements

Development of Novel NOx Sensors and System Integration with Alumina Heater Elements Development of Novel NOx Sensors and System Integration with Alumina Heater Elements UC Riverside PEMS 2016 International Conference & Workshop March 17, 2016 F. Bell, M. Boettcher, J. Chee, J. Fitzpatrick,

More information

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore.

One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore. 1 Two of the main uses of zinc are for galvanising and for making alloys. One of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from this ore. (a) Stage 1 Zinc

More information

Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas

Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas Design and Fabrication of Air breathing Solid Oxide Fuel Cell and its performance testing using Hydrogen gas 1 V. Savithiri, 2 R. Pradeep, 3 K. Praveen Krishna 1Department of Mechanical Engineering, St.

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

SOFC Degradation. Prof. Dr. Robert Steinberger-Wilckens Centre for Hydrogen & Fuel Cell Research University of Birmingham

SOFC Degradation. Prof. Dr. Robert Steinberger-Wilckens Centre for Hydrogen & Fuel Cell Research University of Birmingham 2 nd Joint European Summer School on Fuel Cell and Hydrogen Technology Crete, 17 th 28 th Sept. 2012 SOFC Degradation Prof. Dr. Robert Steinberger-Wilckens Centre for Hydrogen & Fuel Cell Research University

More information

Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks

Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks DOI: 10.1002/fuce.201000176 Effect of Contact between Electrode and Interconnect on Performance of SOFC Stacks W. B. Guan 1, H. J. Zhai 1, L. Jin 1,T.S.Li 1, and W. G. Wang 1 * 1 Ningbo Institute of Material

More information

Low-Cost Carbon Surface Passivation for Achieving Exceptionally Long Battery Life

Low-Cost Carbon Surface Passivation for Achieving Exceptionally Long Battery Life Low-Cost Carbon Surface Passivation for Achieving Exceptionally Long Battery Life NEXT-GENERATION ENERGY STORAGE 2016 Track 3: Banking on Batteries, Tuesday April 19 Dr. Alexander Bistrika President, echemion

More information

Carbon Neutral Production of Syngas Via High Temperature Electrolytic Reduction of Steam and CO 2

Carbon Neutral Production of Syngas Via High Temperature Electrolytic Reduction of Steam and CO 2 INL/N-7-1 PREPRINT Carbon Neutral Production of Syngas Via High Temperature Electrolytic Reduction of Steam and 7 ASME International Mechanical Engineering Congress and Exposition C. Stoots J. O Brien

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering R. Costa *, R. Spotorno, Z. Ilhan, A. Ansar German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Institut für

More information

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Corrosion Definition Electrochemical attack of metals

More information

SOLID OXIDE FUEL CELLS (SOFC)

SOLID OXIDE FUEL CELLS (SOFC) SOLID OXIDE FUEL CELLS (SOFC) Customized Solutions Innovation in Environmental Technology and Power Generation Product Overview SOFC SOFC Products Electrolyte Supported Cells Kerafol offers SOFCs with

More information

Corrosion Rate Measurement on C-Steel

Corrosion Rate Measurement on C-Steel Measurements of corrosion rate on Carbon-steel using Electrochemical (potentiodynamic Polarization, EIS etc.) technique. Corrosion Rate Measurement on C-Steel Abdullah Al Ashraf 1. Introduction: The degradation

More information

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering November 2004 Development of Intermediate-Temperature Solid Oxide Fuel Cells for

More information

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015 Electrode Product Application Japan Carlit Co.,Ltd 8 June 2015 1 1 Electrode Application A Plate The electrode consists of a titanium substrate which is coated with platinum group metals oxides We can

More information

HYDROGEN ABSORPTION INTO ALPHA TITANIUM ALLOYS

HYDROGEN ABSORPTION INTO ALPHA TITANIUM ALLOYS 16th International Corrosion Congress September 19-24, 25, Beijing, China HYDROGEN ABSORPTION INTO ALPHA TITANIUM ALLOYS Li Yan, J. J. Noël, Z. Qin, D. W. Shoesmith*, Department of Chemistry, University

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD

Testing and demonstration of fuel cells and hydrogen technologies at DTU. Eva Ravn Nielsen Center Manager, PhD Testing and demonstration of fuel cells and hydrogen technologies at DTU Eva Ravn Nielsen Center Manager, PhD 23-04-2018 Outline FCH Test Center - DTU Energy Testing Test procedures for SOFC/SOEC Demonstration

More information

Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1,

Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1, Influence of Steam Conversion Rate and Cathode Gas Composition on Performance of High-Temperature Steam Electrolysis Cell Shinichi Makino 1, Kazuya Yamada 1,Masatoshi Hodotsuka 1, Kentaro Matsunaga 1,

More information

Recent trends in E-fuels / Power2X

Recent trends in E-fuels / Power2X Recent trends in E-fuels / Power2X Professor, Head of section Section for Electrochemical Materials Peho@dtu.dk Sustainable Aviation Fuel - Workshop 2018, Copenhagen Outline Electrofuels What are they

More information

MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm

MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm MIE 517 Final Celebration of Learning Wednesday, April 19, 2017, 2-4:30pm Instructions: Answer all questions and show all work for which you wish to receive credit in the answer booklets. You may use one

More information

Aluminium Electrochemistry in Electrocoagulation Reactors Martin Mechelhoff

Aluminium Electrochemistry in Electrocoagulation Reactors Martin Mechelhoff Aluminium Electrochemistry in Electrocoagulation Reactors Martin Mechelhoff Imperial College London Department of Chemical Engineering London SW7 2AZ (UK) 213 th ECS Meeting, Phoenix, 18 th 23th May 2008

More information

High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following

High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following High Temperature Electrolysis Coupled to Nuclear Energy for Fuels Production and Load Following Bilge Yildiz, Mujid Kazimi, Charles Forsberg Massachusetts Institute of Technology Department of Nuclear

More information