Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials

Size: px
Start display at page:

Download "Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials"

Transcription

1 Recycling CO 2 by Electrolysis of CO 2 and H 2 O Economics and Electrode Materials Christopher Graves crg2109@columbia.edu May 4, 2010 Sustainable Fuels Workshop Faculty House, Columbia Univ.

2 Comparisons Closed-loop fuel cycles

3 Non-biological Infrastructure compatible Energy dense fuels closed-loop CO 2 -neutral

4 1. Review options for CO 2 recycling to fuels (heard about many today) 2. Briefly discuss part of my (recently completed) PhD work

5

6

7

8

9

10

11

12 Energy conversions Energy conversion Thermolysis O 2 CO 2 Thermochemical cycle CO H 2 O High-temperature electrolysis Low-temperature electrolysis H 2 C x H y Photoelectrolysis/ photolysis Largely determines the land area footprint, energy use, and capital cost of the system

13

14 Electrolysis Current state-of-the-art: Efficiency is not allimportant; capital cost can easily dominate. Economics Capital cost: Low internal resistance Low degradation Low manufacturing cost

15 High temperature electrolysis Thermodynamic advantage more efficient Use less electricity, more heat Resistive losses turned into useful heat Run near thermoneutral voltage near-100% electricity to chemical energy efficiency Faster reaction rates No need for precious metal catalysts Lower capital cost (more fuel produced per cell area) Reduced system cost + improved system energy efficiency No need for separate reverse water-gas shift reactor to produce syngas Waste heat from exothermic fuel synthesis useful, to rise steam

16 Electrolysis economics Capital cost: Can be traded off Low internal resistance Low degradation Low manufacturing cost Alkaline: X Solid oxide:? Prior talk Steady-state Transients (e.g. oxidation)

17

18 System energy balance 70% electricity to hydrocarbon fuel efficiency Solar 10-20% = 7-14% solar to fuel effic.

19 System economics 0.5 A/cm2

20 Intermittent operation (e.g. solar) 0.5 A/cm2

21 Can be operated at much higher current density than the 0.5 A/cm 2 assumed for low degradation, still at near 100% efficiency

22 Intermittent operation (e.g. solar) 2 A/cm2

23 How to improve Study degradation mechanisms of existing electrodes Modify existing electrodes Develop new electrodes Ceramic materials offer a number of potential advantages Developing a high performance ceramic electrode could improve the economics of electrolysis

24 Ceramics can offer: Mixed ionic-electronic conductivity Reactive surface not only TPB enhanced reaction kinetics More tolerant to impurities that collect at TPBs Fine microstructures No metal mobility/agglomeration Stability through oxidation-reduction Composed mostly of oxygen and alkaline/rare earths Cost

25 Recent electrode structure developments

26

27

28

29

30 Very high performance Polarization resistance SM LM Donor-doped strontium titanates range SVM STM SMM SCM SFM SNM SNM-p 3% H2O/H2 50% H2O/H2 50% CO2/CO 850 C STNM LSR P (kω cm)

31 Performance near open circuit not always indicative of true performance of these molybdates (and some other ceramics e.g. titanates). Some activate during reduction (electrolysis). Electrolysis Fuel cell mode

32 Summary (details in forthcoming papers) Sustainable Hydrocarbons by CO 2 Recycling Interesting energy carriers convenient gasoline like fuels produced from sustainable energy sources like solar and wind Feasible, and high temperature electrolysis is a very promising method Electricity price 2-3 cents per kwh for $2/gal synthetic gasoline New molybdate based ceramic electrodes Revealed interesting properties related to defect chemistry, decomposition to nanostructured surface Very high performance, promising materials for components of electrodes which could reduce the overall cost of the CO 2 -to-fuels system

33 Outlook Sustainable Hydrocarbons by CO 2 Recycling More thorough system analysis needed Heat management, complicated by intermittent operation R&D to mass-produce an integrated system and automate operation Co-electrolysis of CO 2 and H 2 O Optimize operating points and test with intermittent operation Modeling & simulations to further study where possible optimums are in the tradeoff between manufacturing cost, current density, and durability New molybdate based ceramic electrodes Study effects of modifying the composition and microstructure Optimize to incorporate into high performance electrodes

34 Thank you for your attention! Acknowledgements Columbia Klaus Lackner Alan West Paul Duby Risø Mogens Mogensen Sune Ebbesen Bhaskar Reddy Sudireddy All my colleagues Friends & family Funding: American Chemical Society Petroleum Research Fund SERC project, Programme Commission on Sustainable Energy and Environment, The Danish Council for Strategic Research

35 Current events could be avoided Fuels by CO 2 recycling land based, no need to pump from ocean floor

Solid Oxide Electrolysis Cells: Long-term Durability

Solid Oxide Electrolysis Cells: Long-term Durability Solid Oxide Electrolysis Cells: Long-term Durability Steam electrolysis Carbon dioxide electrolysis Co-electrolysis of steam and carbon dioxide Sune D Ebbesen, Christopher Graves, Anne Hauch, Søren H Jensen,

More information

Electrolysis for energy storage

Electrolysis for energy storage Electrolysis for energy storage Mogens B. Mogensen and Christodoulos Chatzichristodoulou Department of Energy Conversion and Storage Technical University of Denmark Acknowledgements to colleagues at DTU

More information

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of

PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of PRODUCTION OF 'GREEN NATURAL GAS' USING SOLID OXIDE ELECTROLYSIS CELLS (SOEC): STATUS OF TECHNOLOGY AND COSTS By: Mogens B. Mogensen, Department of Energy Conversion and Storage, Technical University of

More information

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power

Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Conversion of CO 2 to fuel and back using high temperature electrochemical cells and solar/wind power Christopher Graves Closing the Carbon Cycle: Fuels from Air conference at Arizona State

More information

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell

Maximizing Hydrogen Production of A Solid Oxide Electrolyser Cell 212 International Conference on Clean and Green Energy IPCBEE vol.27 (212) (212) IACSIT Press, Singapore Maximizing Hydrogen Production of A Solid xide Electrolyser Cell Qiong Cai 1+, Claire S. Adjiman

More information

Feeding CO 2 from air into solid oxide electrolyzer cells

Feeding CO 2 from air into solid oxide electrolyzer cells Feeding CO 2 from air into solid oxide electrolyzer cells Søren Lyng Ebbehøj M.Sc. Sustainable energy slebb@dtu.dk Department of Energy Conversion and Storage Technical University of Denmark Risø Campus

More information

Energy Efficient Production of Pressurized Hydrogen - E2P2H2

Energy Efficient Production of Pressurized Hydrogen - E2P2H2 Energy Efficient Production of Pressurized Hydrogen - E2P2H2 (EUDP project commenced by DTU Energi in collaboration with HTAS, 2014-2016) Workshop, April 4 th 2017 Søren Højgaard Jensen Department of Energy

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis

Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Carbon formation during conversion of CO 2 to synthetic fuels by means of electrolysis Closing the Carbon Cycle: Fuels from Air, Phoenix, 29/9-2016 Theis L. Skafte (1,2), P. Blennow (1), J. Hjelm (2),

More information

Present Research Status and Development Plan of Nuclear Hydrogen Production Programme in INET

Present Research Status and Development Plan of Nuclear Hydrogen Production Programme in INET Present Research Status and Development Plan of Nuclear Hydrogen Production Programme in INET Ping ZHANG INET, Tsinghua University, P.R.CHINA The Third Information Exchange Meeting of Nuclear Hydrogen

More information

HTR Process Heat Applications

HTR Process Heat Applications HTR Process Heat Applications Training Course on High Temperature Gas-cooled Reactor Technology October 19-23, Serpong, Indonesia Japan Atomic Energy Agency HTR Heat Applications Hydrogen production Hydrogen

More information

and Fuel Cells and Solid State Chemistry Division

and Fuel Cells and Solid State Chemistry Division Solid Oxide Fuel Cells and Gas Separation Membranes A.Hagen, P.V. Hendriksen, M. Søgaard Fuel Cells and Solid State Chemistry Division Risø DTU Outline Background Motivation Combination of Energy Conversion

More information

Poisoning of Solid Oxide Electrolysis Cells by Impurities

Poisoning of Solid Oxide Electrolysis Cells by Impurities Downloaded Sep 1 to 19.38.67.11. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp Journal of The Electrochemical Society, 157 1 1419-149 1 13-4651/1/157 1 /1419/11/$8.

More information

2012 Energy Storage Symposium

2012 Energy Storage Symposium 2012 Energy Storage Symposium Mogens Mogensen Research Professor, Department of Energy Conversion and Storage, Technical University of Denmark, DTU Risø Campus Renewable Energy Conversion and Storage Overview

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases

Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases Potential of solid oxide electrolyser (SOEC) in PtG and PtL applications WP3: System integration, value chains, business cases NEO-CARBON ENERGY 1ST RESEARCHERS SEMINAR 15.-16.12.2014 Marjut Suomalainen,

More information

Fuel Cells: Timing and limits to the transition to a hydrogen economy. Thomas J. Meyer. Strategic Research At LANL

Fuel Cells: Timing and limits to the transition to a hydrogen economy. Thomas J. Meyer. Strategic Research At LANL Fuel Cells: Timing and limits to the transition to a hydrogen economy Thomas J. Meyer SR-PRES_Fuel-cells_limits-to-Hydrogen.ppt 10/8/2003-1 CO 2 levels projected Energy Consumption by Fuel projected maximum

More information

Recycling of carbon dioxide to produce ethanol

Recycling of carbon dioxide to produce ethanol Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 6679 6686 GHGT-11 Recycling of carbon dioxide to produce ethanol Youness El Fouih, Chakib Bouallou* MINES ParisTech, Centre Energétique

More information

Demonstration of Technology Options for Storage of Renewable Energy

Demonstration of Technology Options for Storage of Renewable Energy Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.v. (IASS)

More information

IASS fact sheet 1/2014

IASS fact sheet 1/2014 IASS fact sheet 1/2014 Institute for Advanced Sustainability Studies (IASS) Potsdam, April 2014 Sustainable Synthetic Fuels Michele Ferrari, Alberto Varone, Stefan Stückrad, Robin J. White The extensive

More information

Carbon To X. Processes

Carbon To X. Processes World CTX Carbon To X Processes Processes and Commercial Operations World CTX: let s Optimize the Use of Carbon Resource Carbon To X Processes Carbon To X technologies are operated in more than 50 plants

More information

How can we create the sustainable hydrogen society?

How can we create the sustainable hydrogen society? How can we create the sustainable hydrogen society? Hydrogen Vision: 1) Hydrogen has to become a common commodity 2) Hydrogen has to be produced free of pollution and losses 3) Hydrogen has to be traded

More information

Restoring the Carbon Balance: Direct Air Capture and Recycling CO 2. ELLEN B STECHEL Arizona State University CO-DIRECTOR, ASU-LightWorks*

Restoring the Carbon Balance: Direct Air Capture and Recycling CO 2. ELLEN B STECHEL Arizona State University CO-DIRECTOR, ASU-LightWorks* Restoring the Carbon Balance: Direct Air Capture and Recycling CO 2 Date: Wednesday, 8 Feb 2017 Venue: SHATTUCK PLAZA HOTEL, Berkeley, CA ELLEN B STECHEL Arizona State University CO-DIRECTOR, ASU-LightWorks*

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production and storage: an overview

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Hydrogen production and storage: an overview Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Hydrogen production and storage: an overview Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova

More information

High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability

High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability Downloaded from orbit.dtu.dk on: Nov 26, 2017 High Temperature Co-electrolysis of Steam and CO2 in an SOC stack: Performance and Durability Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, Jens Ulrik

More information

HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS

HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS RERC 2014 16.06.2014 - Oslo HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS Magnus Thomassen, Tommy Mokkelbost SINTEF Materials and Chemistry Technology for a better society

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information

Electrochemical Energy Conversion Revised Roadmap

Electrochemical Energy Conversion Revised Roadmap International Institute for Carbon-Neutral Energy Research 1 Electrochemical Energy Conversion Revised Roadmap June 2017 A World Premier Institute 2 Division Objective This division conducts fundamental

More information

Electrodes and fuel cells cases and visions

Electrodes and fuel cells cases and visions Electrodes and fuel cells cases and visions Peter Holtappels Head of Programme Electrochemistry peho@risoe.dtu.dk Fuel Cells and Solid State Chemistry Division Risø National Laboratory for Sustainable

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Master Energy Energy Technology Options for a Carbon Free Future. Master 2

Master Energy Energy Technology Options for a Carbon Free Future. Master 2 Master Energy Energy Technology Options for a Carbon Free Future Master 2 Programme Content Core module Introduction to energy Energy systems thermodynamic modeling Life cycle of energy systems Energy

More information

Investigation on performance of SOFC in hydrocarbon fuel

Investigation on performance of SOFC in hydrocarbon fuel Investigation on performance of SOFC in hydrocarbon fuel S. Senthil Kumar, Sharad Chauhan, B. Shriprakash, S. T. Aruna CSIR National Aerospace Laboratories Bangalore-560017 Presentation at COMSOL 2016,

More information

CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process. R. Chaudhary, G. van Rooij, S. Li, V.

CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process. R. Chaudhary, G. van Rooij, S. Li, V. CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process R. Chaudhary, G. van Rooij, S. Li, V. Hessel Micro Flow Chemistry & Process Technology (SFP) Prof.

More information

Electrochemistry at Haldor Topsøe SOEC and Battery Materials

Electrochemistry at Haldor Topsøe SOEC and Battery Materials Electrochemistry at Haldor Topsøe SOEC and Battery Materials Søren Dahl, Electrochemisty R&D, Haldor Topsoe CINF Summer School 2016 - Reactivity of nanoparticles for more efficient and sustainable 1 energy

More information

Power2Gas. The potential of CO 2 -neutral fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden

Power2Gas. The potential of CO 2 -neutral fuels. Adelbert Goede. Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden Power2Gas The potential of CO 2 -neutral fuels Adelbert Goede Waldo Bongers, Martijn Graswinckel, Erik Langereis and Richard van de Sanden Win2Gas consortium Workshop Power2Gas: from Theory2Practice, 18

More information

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage Fuel Cell & Hydrogen Technologies JP SP2: Catalyst and Electrodes Borovetz, Bulgaria June 2 nd and 3 rd 2014 The need for localized electrochemical measurements and the promise of Controlled Atmosphere

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS PSFC/RR-01-1 HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS L. Bromberg, D.R. Cohn, A. Rabinovich and N. Alexeev December 11, 2000 * Plasma Science and Fusion Center

More information

Renewable Energy Conversion and Storage - Overview

Renewable Energy Conversion and Storage - Overview Downloaded from orbit.dtu.dk on: Jun 28, 2018 Renewable Energy Conversion and Storage - Overview Mogensen, Mogens Bjerg Publication date: 2012 Link back to DTU Orbit Citation (APA): Mogensen, M. B. (2012).

More information

Review on hydrogen production technologies from solar energy

Review on hydrogen production technologies from solar energy European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas

Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas International Gas Union Research Conference 14 Potential of thermally integrated high-temperature electrolysis and methanation for the storage of energy by Power-to-Gas Stephan Anger TU Bergakademie Freiberg,

More information

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Electrolyzers Laurea in Scienza dei Materiali Materiali Inorganici Funzionali Electrolyzers Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova H 2 by Electrolysis High purity

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

Renewable. Affordable. Energy Everywhere

Renewable. Affordable. Energy Everywhere Renewable. Affordable. Energy Everywhere Company Presentation Investors Company Presentation Sunfire 20.09.2017 2 Company facts Knowhow ~90 Employees Skills in Ceramics, Stack + System Production, Engineering,

More information

Andy Muto Kevin McCabe Daniel Real. Energy and Environment Division, Southern Research, Durham, North Carolina 27712

Andy Muto Kevin McCabe Daniel Real. Energy and Environment Division, Southern Research, Durham, North Carolina 27712 sco 2 Power Cycles with Integrated Thermochemical Energy Storage Using an MgO Based sco 2 Sorbent in Direct Contact with Working Fluid for Grid Energy Storage Applications Andy Muto Kevin McCabe Daniel

More information

High Temperature Solid- Oxide Electrolyzer 2500 Hour Test Results at the Idaho National Laboratory

High Temperature Solid- Oxide Electrolyzer 2500 Hour Test Results at the Idaho National Laboratory INL/CON-09-16888 PREPRINT High Temperature Solid- Oxide Electrolyzer 2500 Hour Test Results at the Idaho National Laboratory AIChE Annual Meeting Carl Stoots James O Brien Stephen Herring Keith Condie

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Clean Coal Technologies Conference 2009 19 May 2009 Joshua Mermelstein

More information

Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells Downloaded from orbit.dtu.dk on: Apr 13, 2018 Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg Published in: Journal of The

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

Solar Fuels Renewable Options Beyond Biofuels

Solar Fuels Renewable Options Beyond Biofuels DLR.de Chart 1 > Solar Fuels > Robert Pitz-Paal > 09.10.2015 Solar Fuels Renewable Options Beyond Biofuels Robert Pitz-Paal, Christian Sattler Institut of Solar Research DLR.de Chart 2 > Solar Fuels >

More information

Your partner for sustainable hydrogen generation siemens.com/silyzer

Your partner for sustainable hydrogen generation siemens.com/silyzer Hydrogen Solutions Your partner for sustainable hydrogen generation siemens.com/silyzer Renewable energy Growth Renewable energy is playing an increasingly important role worldwide. It s the backbone of

More information

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU 2 0 Plastics Recycling 9 7 8 3 Datchanee Pattavarakorn Industrial Chemistry, Science, CMU Why recycle plastics? Waste emissions Industrial waste Domestic waste Why recycle plastics? Waste emissions 640

More information

Fossil, Biomass, and Synthetic Fuels

Fossil, Biomass, and Synthetic Fuels Fossil, Biomass, and Synthetic Fuels Why do we care about heat engines? Waste heat U. S. electricity generation = 1.3 x 10 19 J/y Assuming 40% efficiency = 8 x 10 18 J/y waste heat Volume Lake Superior

More information

Recent trends in E-fuels / Power2X

Recent trends in E-fuels / Power2X Recent trends in E-fuels / Power2X Professor, Head of section Section for Electrochemical Materials Peho@dtu.dk Sustainable Aviation Fuel - Workshop 2018, Copenhagen Outline Electrofuels What are they

More information

The power to create renewable carbon-neutral ethanol

The power to create renewable carbon-neutral ethanol The power to create renewable carbon-neutral ethanol Eco Global Fuels (EGF) provides solutions to two key energy problems: waste CO 2 greenhouse gas emissions the need for renewable carbon-neutral transport

More information

Introduction to Department of Energy Conversion and Storage

Introduction to Department of Energy Conversion and Storage Introduction to Department of Energy Conversion and Storage Jens Oluf Jensen Proton Conductors Department of Energy Conversion and Storage Kemitorvet 207 DK-2800 Lyngby Denmark jojen@dtu.dk (DTU) Founded

More information

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur.

Roadmap: Batteries. Replace Cobalt entirely with low cost materials. Development of fluoridebased cathodes Develop Li-Sulphur. Roadmap: Batteries Self assembly A123 High production and material costs Reduce use of Cobalt, then replace it with low cost Replace Cobalt entirely with low cost Low production and material costs Low

More information

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel Dr. William A. Summers Program Manger, Energy Security Directorate June 11, 2009 Fifth International Hydrail Conference

More information

ENCAP SP4 Chemical looping combustion

ENCAP SP4 Chemical looping combustion ENCAP SP4 Chemical looping combustion CASTOR-ENCAP-CACHET-DYNAMIS workshop Thierry GAUTHIER, IFP 1 Content Background Chemical Looping Combustion (CLC) SP4 objectives SP4 Development of stable reactive

More information

HTR-TN. Liquid Hydrocarbons. European Commission, Joint Research Centre, Institute for Energy NL-1755 ZG Petten, The Netherlands. Michael A.

HTR-TN. Liquid Hydrocarbons. European Commission, Joint Research Centre, Institute for Energy NL-1755 ZG Petten, The Netherlands. Michael A. HTR-TN High Temperature Reactor Technology Network Let s Nuclear Power talk for the about Production of Liquid Hydrocarbons Michael A. Fütterer European Commission, Joint Research Centre, Institute for

More information

NH O H 2 O N 2 ΔG = kj/mol ref 3.

NH O H 2 O N 2 ΔG = kj/mol ref 3. Ammonia for Renewable Energy Systems Gregory M. Kimball Department of Chemistry, California Institute of Technology, Pasadena, CA 91125 30 May 2007 1) Introduction Renewable energy sources such as solar

More information

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS

PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS PERFORMANCE OF Ni- ELECTRODEPOSITED GDC ANODES FOR SOLID OXIDE FUEL CELLS Zadariana Jamil 1,2, Enrique Ruiz-Trejo 1, Paul Boldrin 1 and Nigel P Brandon 1 1 Imperial College London,UK 2 Faculty of Civil

More information

PART I BASIS OF SINTERING SCIENCE

PART I BASIS OF SINTERING SCIENCE [26.6.2004 12:22am] [1 8] [Page No. 1] PART I BASIS OF SINTERING SCIENCE When thermal energy is applied to a powder compact, the compact is densified and the average grain size increases. The basic phenomena

More information

PCE122 Hydrogen Production by Steam Reforming of Hydrocarbons

PCE122 Hydrogen Production by Steam Reforming of Hydrocarbons PCE122 Hydrogen Production by Steam Reforming of Hydrocarbons H.H. Sheikh Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E www.ictd.ae ictd@ictd.ae Course Introduction: The use of hydrogen for petrochemicals,

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation

Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Renewable NH3 and Direct NH3 Fuel Cells: Canadian R&D for Clean Distributed Electricity Generation Presented at 9 th Annual NH3 Fuel Conference San Antonio, TX Andrew McFarlan, Ph.D. October 1 2012 CanmetENERGY

More information

Solar Hydrogen Production

Solar Hydrogen Production Solar Hydrogen Production University of Oslo Centre for Materials and Nanotechnology Athanasios Chatzitakis a.e.chatzitakis@smn.uio.no Japan-Norway Energy Science Week 2015 27-28 May 2015 Oslo Innovation

More information

Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process

Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process Daniel Salerno, Harvey Arellano-Garcia, Günter Wozny Berlin Institute of Technology Chair of

More information

Large Scale Hydrogen Production Using Nuclear Energy

Large Scale Hydrogen Production Using Nuclear Energy Large Scale Hydrogen Production Using Nuclear Energy William A. Summers Program Manager Energy Security Department Savannah River National Laboratory Third International Hydrail Conference Salisbury, North

More information

Rune Bredesen Vice President Research

Rune Bredesen Vice President Research Hydrogen related R&D at SINTEF Materials and Chemistry Rune Bredesen Vice President Research SINTEF Materials and Chemistry SINTEF Materials and Chemistry Who we are SINTEF is a non profit polytechnic

More information

Meyer Steinberg Vice President and Chief Scientist HCE LLC, Melville, NY

Meyer Steinberg Vice President and Chief Scientist HCE LLC, Melville, NY The Highly Efficient Integrated Plasma Fuel Cell (IPFC) Energy Cycle for Conversion of Fossil and Biomass Fuels to Electric Power Generation and Hydrogen and Liquid Transportation Fuel Production with

More information

Decentralized hydrogen production from renewable resources

Decentralized hydrogen production from renewable resources S C I E N C E P A S S I O N T E C H N O L O G Y Decentralized hydrogen production from renewable resources Viktor HACKER, Sebastian BOCK, Robert ZACHARIAS Fuel Cell and Hydrogen Systems Group Institute

More information

Justin Beck Ryan Johnson Tomoki Naya

Justin Beck Ryan Johnson Tomoki Naya Justin Beck Ryan Johnson Tomoki Naya Propose electrochemical system for converting CO2 to portable fuels Perform economic analysis for process Compare results and potential to some storage alternatives

More information

Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco

Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco Hydrogen Production Technologies An Overview Sai P. Katikaneni Research & Development Centre Saudi Aramco World Green Energy Forum 2010: Hydrogen and Fuel Cells Gyeoungju, South Korea November 17-20, 2010

More information

ENERGY. Energy. Power is energy over time. Power. Mechanical Energy. Types of Energy. Ability to do work Unit: Joule (J) J = (kg x m 2 )/s 2

ENERGY. Energy. Power is energy over time. Power. Mechanical Energy. Types of Energy. Ability to do work Unit: Joule (J) J = (kg x m 2 )/s 2 Energy ENERGY Ability to do work Unit: Joule (J) J = (kg x m 2 )/s 2 Reading: Supplemental Text Materials Chapter 11: pages 225-238 Power Power is energy over time Energy over time Watts (W) 1 W = 1J/s

More information

ENERGY. Reading: Supplemental Text Materials Chapter 11: pages

ENERGY. Reading: Supplemental Text Materials Chapter 11: pages ENERGY Reading: Supplemental Text Materials Chapter 11: pages 225-238 Energy Ability to do work Unit: Joule (J) J = (kg x m 2 )/s 2 Power Energy over time Watts (W) 1 W = 1J/s Power is energy over time

More information

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter

Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter RESEARCH Exhaust Aftertreatment AUTHORS Potential of a Chemical Heat Storage as a Heat for a Catalytic Converter Michael Albrecht is Research Assistant at the Institute of Internal Combustion Engines at

More information

Index - Final Report. Report compiled by: Ming Chen

Index - Final Report. Report compiled by: Ming Chen Index - Final Report 1. Final report 2 1.1 Project details 2 1.2 Executive summary 3 1.3 Project results 7 1.3.1 Overview and milestones 7 1.3.2 WP1 Cell development and testing 12 1.3.3 WP2 Interconnects

More information

Towards the development of low cost non-platinum based catalysts for catalytic water splitting

Towards the development of low cost non-platinum based catalysts for catalytic water splitting Towards the development of low cost non-platinum based catalysts for catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Dr. Usman Ali Rana What

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009)

Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Innovative Solid Oxide Electrolyser Stacks for Efficient and Reliable Hydrogen production (213009) Florence LEFEBVRE-JOUD CEA LITEN/Program Manager 1 RelHy Partnership & Budget 4 years collaboration project:

More information

Concept Model: A Regenerative Ammonia Fuel Cell System

Concept Model: A Regenerative Ammonia Fuel Cell System Concept Model: A Regenerative Ammonia Fuel Cell System Jason C. Ganley NHThree, LLC Ammonia Carbon-free Liquid Fuel October 13, 2009 1 The Hydrogen Economy The basis of any fuel-based energy economy: 1)

More information

Fuels from Sunlight, Water and Carbon Dioxide: A Thermochemical Approach

Fuels from Sunlight, Water and Carbon Dioxide: A Thermochemical Approach Fuels from Sunlight, Water and Carbon Dioxide: A Thermochemical Approach CeO2-x O 2 Sossina M. Haile Materials Science / Chemical Engineering g California Institute of Technology H 2 CeO 2 15 C 8 C CeO

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

GIF activities related to H2 production. GIF / INPRO Interface Meeting Vienna, 1-3 March 2010

GIF activities related to H2 production. GIF / INPRO Interface Meeting Vienna, 1-3 March 2010 GIF activities related to H2 production GIF / INPRO Interface Meeting Vienna, 1-3 March 2010 Producing H 2 using Nuclear Energy H 2 is already a highly valuable chemical reactant, with established need

More information

Electrolysis for conversion of H2O and CO2 into green fuels

Electrolysis for conversion of H2O and CO2 into green fuels Downloaded from orbit.dtu.dk on: Nov 14, 2018 Electrolysis for conversion of H2O and CO2 into green fuels Mogensen, Mogens Bjerg Publication date: 2013 Link back to DTU Orbit Citation (APA): Mogensen,

More information

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST

REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST REDUCTION OF CO 2 EMISSION TO METHANE USING HYDROGENATION WITH NICKEL (110) SURFACE CATALYST G. Santoshi 1, Ch. SaiRam 2, M. Chaitanya 3 1,2,3 Civil Engineering,Miracle Educational Society Group of Institutions,

More information

Lecture No. (7) Rubber Fillers

Lecture No. (7) Rubber Fillers Lecture No. (7) Rubber Fillers Introduction of Rubber Fillers Rubbers in general are seldom used in their only form because of they are too weak to fulfill practical requirements for many applications

More information

THE FUTURE OF SOLAR FUELS. When could they become competitive? Remko Detz

THE FUTURE OF SOLAR FUELS. When could they become competitive? Remko Detz THE FUTURE OF SOLAR FUELS When could they become competitive? Remko Detz WHAT ARE SOLAR FUELS? AND THEIR COSTS? 2 The future of solar fuels Source: Detz et al., 2018. TNO 3500 employees 3 The future of

More information

Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali. CO 2 pollutant or resource?

Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali. CO 2 pollutant or resource? Laurea Magistrale in Scienza dei Materiali Materiali Inorganici Funzionali CO 2 pollutant or resource? Prof. Dr. Antonella Glisenti -- Dip. Scienze Chimiche -- Università degli Studi di di Padova Geological

More information

System Optimization and Material Development of Solid Oxide Cells for Energy Conversion and Storage

System Optimization and Material Development of Solid Oxide Cells for Energy Conversion and Storage University of South Carolina Scholar Commons Theses and Dissertations 2018 System Optimization and Material Development of Solid Oxide Cells for Energy Conversion and Storage Libin Lei University of South

More information

Industrial Solutions. Methanol plants. How you profit from our one-stop shop

Industrial Solutions. Methanol plants. How you profit from our one-stop shop Industrial Solutions plants How you profit from our one-stop shop 2 plants 3 A portfolio to meet all your needs Whatever your production requirements may be, we can meet them. Whether you need 10 or 10,000

More information

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types INL/EXT-07-13575 Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types M. G. McKellar J. E. O Brien J. S. Herring September 2007 The

More information

System Integration Renewable energy to the industry

System Integration Renewable energy to the industry System Integration Renewable energy to the industry Workshop Project Design for System Integration November 11-2017 ISPT Day - Amersfoort Flow of the workshop 1. Theme selection group formation 2. Exploring

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

Batteries and fuel cell research

Batteries and fuel cell research Batteries and fuel cell research Sri Narayan worked for 20 years at NASA s Jet Propulsion Laboratory (JPL) where he led the fuel cell research activities for over 15 years and also headed the Electrochemical

More information