Analysis of water production costs of a nuclear desalination plant with a nuclear heating reactor coupled with MED processes

Size: px
Start display at page:

Download "Analysis of water production costs of a nuclear desalination plant with a nuclear heating reactor coupled with MED processes"

Transcription

1 Desalination 190 (2006) Analysis of water production costs of a nuclear desalination plant with a nuclear heating reactor coupled with MED processes Shaorong Wu Institute of Nuclear Energy Technology, Tsinghua University, Beijing, China Tel. +86 (10) ; Fax +86 (10) ; srwu@mail.tsinghua.edu.cn Received 20 June 2005; accepted 23 August 2005 Abstract A nuclear heating reactor (NHR) was designed with the required inherent safety and simplified design features. Power capacity of the NHR-200 (200 MW(th), with steam production of 380 t/h) is compatible with reasonably sized desalination plants. Thermal-hydraulic parameters of the produced steam (2.4 bar and 124EC) are suitable for coupling with distillation processes. Economic competitiveness of the NHR desalination plant is the key point to which the public and decision-makers are paying good deal of attention. Coupling of the NHR with selected MED processes and design parameters of an integrated desalination plant are described. Results of analyses of water production costs are presented as well. Based on the economic evaluation, the average energy cost of the nuclear plant may reach 5.44 $/t of steam, and the provided water production cost may reach 0.72 $/m 3 and 0.76 $/m 3 for coupling with HT VTE MED and LT HTE MED processes, respectively. Keywords: Nuclear desalination plant; Nuclear heating reactor (NHR); Multi-effect distillation process (MED); Economic analysis; Water production cost 1. Introduction Some coastal locations and islands in China where both fresh water and energy sources are severely lacking show a strong interest in potable water production by seawater desalination. For these cases, small- or medium-size seawater desalination plants using nuclear energy could be a suitable solution. A nuclear heating reactor (NHR), developed by the Institute of Nuclear Energy Technology, Tsinghua University, China, was designed with inherent safety and simplified design features. Power capacity of the NHR-200 (200 MW(th)) with steam production of 380 t/h is compatible with reasonably sized desalination plants and thermal-hydraulic parameters of the produced steam (2.4 bar and 124EC) are suitable for coupling with distillation processes. The integrated nuclear desalination plant couples two proven technologies: the NHR and /06/$ See front matter 2006 Elsevier B.V. All rights reserved

2 288 S. Wu / Desalination 190 (2006) the MED process. A secondary loop and a steam loop were incorporated between the nuclear reactor and the MED process as a safety barrier. The integrated desalination plant could provide 120,000 to 160,000 m 3 /d of potable water. The economical competitiveness of the NHR desalination plant is the key point to which the public and decision-makers are paying a good deal of attention. 2. Design parameters of the nuclear heating reactor The reactor structure of the NHR-200 is shown in Fig. 1. The NHR-200 is a vessel-type light-water reactor with an integrated arrangement, natural circulation of the primary coolant, Table 1 Main design parameters of the NHR-200 Operation mode Heat only Reactor power, MWt 200 Core outlet temperature, EC 212 Core inlet temperature, EC 155 Pressure at the primary circuit, MPa 2.5 Outlet temperature of the secondary circuit, EC 165 Inlet temperature of the secondary circuit, EC 135 Pressure at the secondary circuit, MPa 3.0 Outlet steam temperature of the motive 126 steam generator, EC Outlet steam pressure of the motive 0.24 steam generator, MPa Flow rate of motive steam supplied from 328 NHR to the MED process, t/h self-pressurized performance and dual-vessel structure. The core is located at the bottom of the reactor pressure vessel (RPV). Primary heat exchangers are arranged on the periphery in the upper part of the RPV. The system pressure is maintained by inert gas and steam. The containment vessel fits tightly around the RPV so that the core will not become uncovered under any postulated leakage at the reactor coolant pressure boundary. The reactor primary coolant circulates due to density differences between hot and cold regions in the RPV. There is a long riser on the core outlet to increase the natural circulation capacity. The main thermal hydraulic parameters of the NHR-200 are listed in Table 1. Fig. 1. Structure of the NHR-200 reactor. 3. Design parameters of the selected desalination process Two types of desalination processes were selected for comparative analysis. Their design parameters are listed in Table 2.

3 Table 2 Design parameters of the selected desalination processes S. Wu / Desalination 190 (2006) Type of desalination process Inlet steam temperature in MED process, EC Top brine temperature, EC Installed unit capacity of MED process, m 3 /d Unit number Number of effects GOR HT VTE MED , LT HTE MED 125/ , , with heat pump Coupling of NHR with desalination process Two coupling schemes were selected for the comparative analysis: C NHR-200 coupled with LT HTE MED (low temperature multi-effect distillation with horizontal tube evaporators), shown in Fig. 2. C NHR-200 coupled with HT VTE MED (high temperature, multi-effect distillation with vertical tube evaporators), shown in Fig. 3. For both cases, the design parameters of the NHR with heat-only mode are the same for these two coupling schemes. In Fig. 2 it can be seen that the saturated steam with higher temperature (125EC) generated in the steam generator of the NHR-200 was directly conducted to the inlet of the heat pump (a steam ejector) as its motive steam. Some amount of steam with lower pressure is drawn out from a middle effect of the LT HTE MED process and blended with the motive steam in the mixing chamber of the ejector. At the exit of the heat pump, the mixed steam reaches a temperature of 73EC. This mixed steam is conducted to the first effect of the LT HTE MED desalination process as its motive steam. Part of the condensate from the first effect was pumped back to the motive steam generator of the heating reactor as its feed water. Meanwhile, another part of the condensate from the first effect must be conducted to the produced water line to keep the total mass balance of the system. The total water production of the NHR+LT HTE MED coupling scheme was 118,080 m 3 /d, which is lower than that of the NHR+HT VTE MED coupling scheme due to the lower temperature of its motive steam (73EC) and therefore a lower GOR (15). In Fig. 3 it can be seen that the saturated steam with a temperature of 125EC, generated in the steam generator is directly conducted to the first effect of the HT VTE MED process and the condensate from the first effect was pumped back to the steam generator as its feed water. Therefore, the motive steam circuit also works as an additional barrier between the nuclear reactor and the desalination process. The NHR-200+HT VTE MED coupling scheme has a higher efficiency (GOR 21.5) due to the higher top brine temperature (120EC) and therefore a higher useful total temperature difference. 5. Calculations of water cost by using DEEP DEEP software [1 4] was selected for the calculation of water production costs. By using the collected technical and economical data as the input data into the DEEP program, the water costs for both HT VTE MED and LT HTE MED processes were calculated. The main assumptions are listed in Table 3. The power cost calculation

4 290 S. Wu / Desalination 190 (2006) Fig. 2. Coupling scheme of the NHR-200 with the LT HT MED desalination process.

5 S. Wu / Desalination 190 (2006) Fig. 3. Coupling scheme of the NHR-200 with the HT VTE MED desalination process.

6 292 S. Wu / Desalination 190 (2006) Table 3 Main assumptions Desalination plant type HT VTE MED LT HTE MED Installed capacity of distillation part, m 3 /d 170, ,000 Distillation plant design cooling water temperature, EC Seawater total dissolved solids (TDS), ppm 31,500 31,500 Distillation plant product water TDS, ppm Distillation plant optional unit size, 3 /d 85,000 30,000 Maximum brine temperature, EC Water plant specific power use, kw(e)h/m Yearly discount rate: 5.85% Yyearly interest rate: 5.85% Plant economic life: 30 y Purchased electricity cost: 0.06 $kw(e)/h Table 4 NHR-200 power cost calculations Total specific construction cost, W/kW(t) Total construction cost, M$ 58 Interest during construction (IDC), M$ 6 Total plant investment, M$ 64 Specific investment cost, $/kw(t) 321 Levelized fixed charge rate, % 7.15 Annual levelized capital cost, M$ 4.5 Annual fuel cost, M$ 4.2 Annual O&M cost, M$ 4.1 Annual electric power cost 0.94 (heat only plants), M$ Annual levelized decommissioning cost, M$ 0.53 Total annual required revenue of power 14.3 plant, M$ Average energy cost, $/t, steam 5.44 results are given in Table 4. The results of water production cost calculations for both HT VTE MED and LT HTE MED processes are jointly listed in Table 5, shown in order for a convenient comparative review. Table 5 Water production cost calculation results Distillation process HT VTE MED LT THE MED Installed water production 170, ,000 capacity, m 3 /d Annual average water 55,239,999 39,766,594 production, m 3 Total construction cost, M$ Interest during construction, M$ Total investment, M$ Specific investment cost, $/(m 3 /d) Annual water plant fixed charge, M$ Annual water plant heat cost 14.3 (heat plant), M$ 14.3 Annual purchased electric power cost, M$ Annual water plant O&M cost, M$ Total annual required revenue, M$ Total water cost, $/m

7 6. Analysis of the calculated energy and water costs 6.1. Analysis on the calculated energy cost According to the above results for the nominal design condition, the energy cost breakdown of the NHR-200 is shown in Fig. 4. S. Wu / Desalination 190 (2006) Fig. 4. Energy cost breakdown of the NHR Levelized capital cost, US$/t of steam: (31.5%). 2 Nuclear fuel cost, US$/t of steam: (29.4%). 3 O&M cost, US$/t of steam: (28.7%). 4 Consumed electric power cost (for heat only plants), US$/t of steam: (6.57%). 5 Decommissioning cost, US$/t of steam: (3.83%). Total energy cost, US$/t of steam: 5.44 (100%). Fig. 6. Components of water cost for the LT HTE MED process. 1 Heat plant levelized capital cost, US$: (15%). 2 Nuclear fuel cost, US$: (14%). 3 Heat plant O&M cost, US$: (14%). 4 Heat plant consumed electric power cost, US$: (3%). 5 Decommissioning cost, US$ : (2%). 6 Water plant fixed charge, US$: (26%). 7 Water plant electric power cost, US$: (16%). 8 Water plant O&M cost, US$: (10%). Total water cost, US$/m 3 : 0.76 (100%) Comparison of energy and water costs produced by both a nuclear heating plant and a fossil fuel power plant As an example, the cost of steam with pressure of about 3 4 bar, produced by an oil-fired plant at a city in northeast China and the expected water production costs are given in Table 6 and are compared with that of the NHR-200. Fig. 5. Components of water cost for the HT VTE MED process. 1 Heat plant levelized capital cost: US$ (11%). 2 Nuclear fuel cost: US$ (11%). 3 Heat plant O&M cost: US$ (10%). 4 Heat plant consumed electric power cost: US$ (2%). 5 Decommissioning cost: US$ (1%). 6 Water plant fixed charge: US$ (29%). 7 Water plant electric power cost: US$ (23%). 8 Water plant O&M cost: US$ (13%). Total water cost: US$/m (100%). Table 6 Comparison of energy and water costs produced by both NHR-200 and fossil fuel power plants Plant type Steam cost a, US$/t Oil-fired plant NHR Water cost b, US$/m 3 a With an assumption of oil price of 100 US$/t. b Coupled with HT VHE MED process and with all the same assumptions and input parameters for both plants.

8 294 S. Wu / Desalination 190 (2006) Analysis of the calculated water cost The calculated components of water cost for the HT VTE MED and LT HTE MED processes are shown in Figs. 5 and 6, respectively. 7. Conclusions Under the conditions in China, the energy and water production costs of an oil-fired plant (for an oil price of 100 US$/t, and coupled with the HT VTE MED process), are about 1.6 times and 1.2 times higher than that of the NHR-200 plant, respectively. Water costs produced by an integrated NHR desalination plant coupled with HT VTE MED or LT HTE MED can be about 0.72 US$/m 3 and 0.76 US$/m 3, respectively. Considering the high quality of the product water, these costs are acceptable. The base unit construction cost and electricity consumption cost have a leading effect on further reduction in the water production cost of a desalination plant using a NHR reactor coupled to the MED process. It is proposed to continue the research with a view further to decrease water production costs and improve economic competitiveness. Acknowledgement The investigation presented in this paper was supported by a CRP project of the International Atomic Energy Agency. References [1] Desalination Economic Evaluation Program, User s Manual, Computer Manual Series No. 14, IAEA, Vienna, Austria, [2] Methodology for the Economic Evaluation of Cogeneration/Desalination Options: A User s Manual, Computer Manual Series No. 12, IAEA, Vienna, Austria, [3] Examining the Economics of Seawater Desalination Using the DEEP Code, IAEA-TECDOC-1186, [4] Publications and Studies Using the IAEA Software, Desalination Economic Evaluation Program DEEP, Working Material, IAEA 622-I3, 2000.

NUCLEAR HEATING REACTOR AND ITS APPLICATION

NUCLEAR HEATING REACTOR AND ITS APPLICATION NUCLEAR HEATING REACTOR AND ITS APPLICATION Zhang Yajun* and Zheng Wenxiang INET, Tsinghua University, Beijing China *yajun@dns.inet.tsinghua.edu.cn Abstract The development of nuclear heating reactor

More information

Economic Aspect for Nuclear Desalination Selection in Muria Peninsula

Economic Aspect for Nuclear Desalination Selection in Muria Peninsula IAEA-CN-164-1P05 Economic Aspect for Nuclear Desalination Selection in Muria Peninsula Sudi Ariyanto and Siti Alimah Center for Nuclear Energy Development (PPEN) BATAN Jl. Kuningan Barat, Mampang Prapatan

More information

DE-TOP User s Manual. Version 2.0 Beta

DE-TOP User s Manual. Version 2.0 Beta DE-TOP User s Manual Version 2.0 Beta CONTENTS 1. INTRODUCTION... 1 1.1. DE-TOP Overview... 1 1.2. Background information... 2 2. DE-TOP OPERATION... 3 2.1. Graphical interface... 3 2.2. Power plant model...

More information

Co-generation of Electricity and Desalted Water by Gas Turbine MHTGR

Co-generation of Electricity and Desalted Water by Gas Turbine MHTGR Co-generation of Electricity and Desalted Water by Gas Turbine MHTGR Shutang Zhu 1 *, Ying Tang 2, Weiwei Qi 1, Jing Zhu 1 and Suyuan Yu 1 1 Institute of Nuclear and New Energy Technology, Tsinghua University,

More information

Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator

Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator Developing a Design and Simulation Tool for Coupling Thermal Desalination Plants with Nuclear Reactors by using APROS Simulator Khairy Agha,, Khalid Al Fared, Ali Rashed, and Salem Ghurbal Simulation Group,

More information

Desalination using the PBMR DPP as heat source

Desalination using the PBMR DPP as heat source Desalination using the PBMR DPP as heat source J.P. van Ravenswaay, R. Greyvenstein, G. du Plessis Presented by Willem Kriel -1- Outline Introduction Water Scarcity Desalination PBMR Desalination Overview

More information

FEASIBILITY STUDY ON DEPLOYMENT OF THE FIRST UNIT OF RUTA-70 REACTOR IN OBNINSK: DISTRICT HEATING, TECHNOLOGICAL, AND MEDICAL APPLICATIONS

FEASIBILITY STUDY ON DEPLOYMENT OF THE FIRST UNIT OF RUTA-70 REACTOR IN OBNINSK: DISTRICT HEATING, TECHNOLOGICAL, AND MEDICAL APPLICATIONS International Conference on Non-Electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications 16 19 April 2007, Oarai, Japan FEASIBILITY STUDY ON

More information

IAEA-TECDOC Examining the economics of seawater desalination using the DEEP code

IAEA-TECDOC Examining the economics of seawater desalination using the DEEP code IAEA-TECDOC-1186 Examining the economics of seawater desalination using the DEEP code November 2000 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section

More information

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region

Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region Specific Design Consideration of ACP100 for Application in the Middle East and North Africa Region IAEA Technical Meeting on Technology Assessment of Small Modular Reactors for Near Term Deployment 2 5

More information

FRESH WATER GENERATORS ONBOARD A FLOATING PLATFORM

FRESH WATER GENERATORS ONBOARD A FLOATING PLATFORM FRESH WATER GENERATORS ONBOARD A FLOATING PLATFORM P.K. TEWARI, R.K. VERMA, B.M. MISRA, H.K. SADHULKAN Desalination Division (Chemical Engineering Group), Bhabha Atomic Research Centre, Bombay, India Abstract

More information

Nuclear Desalination: A Viable Option for Producing Fresh Water- Feasibility and Techno-Economic Studies. Ahmad Hussain, FouadAbolaban

Nuclear Desalination: A Viable Option for Producing Fresh Water- Feasibility and Techno-Economic Studies. Ahmad Hussain, FouadAbolaban Nuclear Desalination: A Viable Option for Producing Fresh Water- Feasibility and Techno-Economic Studies Ahmad Hussain, FouadAbolaban Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz

More information

SMALL MODULAR REACTORS (SMRS)

SMALL MODULAR REACTORS (SMRS) SMALL MODULAR REACTORS (SMRS) Duplication of KANUPP Incorporating Current SMR Applications, Technology & SMR Features Jamshed Azim Hashmi Chief Engineer (Retd), PAEC Chairman Emeritus, PNRA Javed Iqleem

More information

SMR INTEGRATION OF NUSCALE SMR WITH DESALINATION TECHNOLOGIES

SMR INTEGRATION OF NUSCALE SMR WITH DESALINATION TECHNOLOGIES Proceedings of the ASME 2014 Small Modular Reactors Symposium SMR2014 April 15-17, 2014, Washington, D.C., USA SMR2014-3392 INTEGRATION OF NUSCALE SMR WITH DESALINATION TECHNOLOGIES D. T. Ingersoll NuScale

More information

The IAEA desalination economic evaluation programme (DEEP) KHAMIS, Ibrahim

The IAEA desalination economic evaluation programme (DEEP) KHAMIS, Ibrahim The IAEA desalination economic evaluation programme (DEEP) KHAMIS, Ibrahim Summary of Presentation Introduction General structure of DEEP Further development Conclusion Oarai 16-19 April 2007 2007-06-12

More information

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration

Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration GIF SCWR System Steering Committee Vienna, Austria Oct. 29, 2009 Outline Why SCWR? SCWR Reference Parameters Conceptual Designs

More information

Chapter-2 LITERATURE REVIEW. A brief review of previous and ongoing research investigations on thermal

Chapter-2 LITERATURE REVIEW. A brief review of previous and ongoing research investigations on thermal Chapter-2 LITERATURE REVIEW A brief review of previous and ongoing research investigations on thermal desalination processes is presented in this chapter. The chapter begins with the introduction of the

More information

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China

Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Small Modular Nuclear Reactor (SMR) Research and Development (R&D) and Deployment in China Danrong Song, Biao Quan Nuclear Power Institute of China, Chengdu, China songdr@gmail.com Abstract Developing

More information

Design Verification Program of SMART

Design Verification Program of SMART GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1047 Design Verification Program of SMART Si-Hwan Kim, Keung Koo Kim,* Ji Won Yeo, Moon Hee Chang and Sung Quun Zee Korea Atomic Energy Research Institute

More information

FLOATING NUCLEAR POWER STATION OF APWS-80 TYPE FOR ELECTRICITY GENERATION AND FRESH WATER PRODUCTION

FLOATING NUCLEAR POWER STATION OF APWS-80 TYPE FOR ELECTRICITY GENERATION AND FRESH WATER PRODUCTION FLOATING NUCLEAR POWER STATION OF APWS-80 TYPE FOR ELECTRICITY GENERATION AND FRESH WATER PRODUCTION K.V. ZVEREV Ministry of Atomic Energy V.I. POLUNICHEV OKB Mechanical Engineering Yu.A. SERGEEV Institute

More information

An Overview of Global Activities in Nuclear Desalination

An Overview of Global Activities in Nuclear Desalination An Overview of Global Activities in Nuclear Desalination I. Khamis International Atomic energy Agency (IAEA) Vienna Austria & P.K. Tewari Head Desalination Division BARC Mumbai 400085 India Reactor Types

More information

Novel coupling of NPP with MED-RO Hybrid

Novel coupling of NPP with MED-RO Hybrid Novel coupling of NPP with MED-RO Hybrid Leon Awerbuch, Dean of IDA Desalination Academy, President International Desalination Consultancy Assoctiates LLC IAEA s Technical Meeting on User/Vendor Interface

More information

Waste to energy for seawater desalination plant

Waste to energy for seawater desalination plant Waste to energy for seawater desalination plant Ing. Edmond Zeneli, Prof.Ing.František Jirouš Dr.Sc Abstract The solid waste management is, in different contexts, a very critical issue. The use of landfills

More information

Heat exchanger equipment of TPPs & NPPs

Heat exchanger equipment of TPPs & NPPs Heat exchanger equipment of TPPs & NPPs Lecturer: Professor Alexander Korotkikh Department of Atomic and Thermal Power Plants TPPs Thermal power plants NPPs Nuclear power plants Content Steam Generator

More information

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551 R.A. Penzin, G.A. Sarychev All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, Russia,

More information

The Automatic Control Design and Simulation of Reactor Control System in Small Modular Reactor. Nuclear Power Institute of China January, 2014

The Automatic Control Design and Simulation of Reactor Control System in Small Modular Reactor. Nuclear Power Institute of China January, 2014 The Automatic Control Design and Simulation of Reactor Control System in Small Modular Reactor Nuclear Power Institute of China January, 2014.1 CONTENTS 1. Introduction 2. The Small Modular Reactor (SMR)

More information

Effect of Desalination Plant Performance on Water Cost in Dual-Purpose Plant for Production of Water and Electricity

Effect of Desalination Plant Performance on Water Cost in Dual-Purpose Plant for Production of Water and Electricity Effect of Desalination Plant Performance on Water Cost in Dual-Purpose Plant for Production of Water and Electricity NARMINE H. ALY *, HOREYA A. ARAFA ** * Desalination Lab., Nuclear research center **Engineering

More information

PROSPECTS OF AN INTEGRATED NUCLEAR DESALINATION SYSTEM

PROSPECTS OF AN INTEGRATED NUCLEAR DESALINATION SYSTEM PROSPECTS OF AN INTEGRATED NUCLEAR DESALINATION SYSTEM Si-Hwan Kim and Young-Dong Hwang. Korea Atomic Energy Research Institute, Yuseong, Daejon, Republic of Korea 1. Introduction Currently over one billion

More information

Global Clean Water Desalination Alliance and Nuclear Energy H 2 O -CO 2

Global Clean Water Desalination Alliance and Nuclear Energy H 2 O -CO 2 Global Clean Water Desalination Alliance and Nuclear Energy H 2 O -CO 2 Leon Awerbuch, Dean of IDA Desalination Academy, President International Desalination Consultancy Assoctiates LLC IAEA Technical

More information

Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System

Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System Experimental Research on Non-Condensable Gases Effects in Passive Decay Heat Removal System LIU Yang, JIA Hai-jun Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

More information

Reactor Technology and Cogeneration for a Cleaner Environment

Reactor Technology and Cogeneration for a Cleaner Environment Reactor Technology and Cogeneration for a Cleaner Environment I. Khamis Head, Non-electric Applications Unit Nuclear Power Technology Development Section Department Nuclear Energy Content Reactor technology

More information

IAEA-TECDOC Safety aspects of nuclear plants coupled with seawater desalination units

IAEA-TECDOC Safety aspects of nuclear plants coupled with seawater desalination units IAEA-TECDOC-1235 Safety aspects of nuclear plants coupled with seawater desalination units August 2001 The originating Section of this publication in the IAEA was: Engineering Safety Section International

More information

A discussion of"heat pumps as a source of heat energy for desalination of seawater"

A discussion ofheat pumps as a source of heat energy for desalination of seawater DESALINATION ELSEVIER Desalination 169 (004) 161-165 www.elsevier.com/locate/desal A discussion of"heat pumps as a source of heat energy for desalination of seawater" Jinzeng Chen, Suyi Huang* Energy and

More information

Advanced High Temperature Reactor Project PBMR relaunch

Advanced High Temperature Reactor Project PBMR relaunch Advanced High Temperature Reactor Project PBMR relaunch D.R. Nicholls Chief Nuclear Officer, Eskom Africa Utility Week, CTICC May 2017 Potential for Pebble Bed Modular Reactor - PBMR PBMR was based on

More information

An Overview of Global Activities in Nuclear Desalination

An Overview of Global Activities in Nuclear Desalination An Overview of Global Activities in Nuclear Desalination I. Khamis International Atomic energy Agency (IAEA) Vienna Austria & P.K. Tewari Head Desalination Division BARC Mumbai 400085 India Fuel Percentage

More information

ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING

ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING ANALYSIS ON NON-UNIFORM FLOW IN STEAM GENERATOR DURING STEADY STATE NATURAL CIRCULATION COOLING Susyadi 1 and T. Yonomoto 2 1 Center for Reactor Technology and Nuclear Safety - BATAN Puspiptek, Tangerang

More information

Technologies of HTR-PM Plant and its economic potential

Technologies of HTR-PM Plant and its economic potential IAEA Technical Meeting on the Economic Analysis of HTGRs and SMRs 25-28 August 2015, Vienna, Austria Technologies of HTR-PM Plant and its economic potential Prof. Dr. Yujie Dong INET/Tsinghua University

More information

Nuclear Desalination and Hybrid Energy Systems. Dr. Salah Ud-Din Khan Assistant Professor

Nuclear Desalination and Hybrid Energy Systems. Dr. Salah Ud-Din Khan Assistant Professor Nuclear Desalination and Hybrid Energy Systems Dr. Salah Ud-Din Khan Assistant Professor 5/26/2016 Outlines Energy estimation scenarios in KSA Nuclear desalination system and SMRs Coupled nuclear desalination

More information

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev

Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev Scenarios of Heavy Beyond-Design-Basis Accidents in HTGRs N.G. Kodochigov, Yu.P. Sukharev IAEA Technical Meeting on the Safety of High Temperature Gas Cooled Reactors in the Light of the Fukushima Daiichi

More information

FBNR Letter FIXED BED NUCLEAR REACTOR FBNR

FBNR Letter FIXED BED NUCLEAR REACTOR FBNR FBNR Letter FIXED BED NUCLEAR REACTOR FBNR http://www.rcgg.ufrgs.br/fbnr.htm Farhang.Sefidvash@ufrgs.br Dear coworkers and potential coworkers around the world, As number of coworkers is increasing, we

More information

STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT

STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT STEAM GENERATOR LEAKAGE AT THE BN-350 DESALINATION PLANT M. Ragheb 12/13/2010 INTRODUCTION The BN-350 sodium cooled fast reactor was constructed near the city of Aktau, formerly Shevchenko on the Caspian

More information

Desalination. A. Introduction

Desalination. A. Introduction Desalination A. Introduction 1. Seventy percent of the planet is covered with water, but only 2.5% of that is freshwater. Nearly 70% of this freshwater is frozen in the icecaps of Antarctica and Greenland.

More information

NON-ELECTRICITY APPLICATION OF NUCLEAR ENERGY: SOME GENERAL ISSUES AND PROSPECTS

NON-ELECTRICITY APPLICATION OF NUCLEAR ENERGY: SOME GENERAL ISSUES AND PROSPECTS NON-ELECTRICITY APPLICATION OF NUCLEAR ENERGY: SOME GENERAL ISSUES AND PROSPECTS Yu.N.Kuznetsov, B.A.Gabaraev Research and Development Institute of Power Engineering Moscow, Russia IAEA Conference Oarai,2007

More information

A Research Reactor Simulator for Operators Training and Teaching. Abstract

A Research Reactor Simulator for Operators Training and Teaching. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 A Research Reactor Simulator for Operators Training and Teaching Ricardo Pinto de Carvalho and José Rubens

More information

VVER-440/213 - The reactor core

VVER-440/213 - The reactor core VVER-440/213 - The reactor core The fuel of the reactor is uranium dioxide (UO2), which is compacted to cylindrical pellets of about 9 height and 7.6 mm diameter. In the centreline of the pellets there

More information

Passive Cooldown Performance of Integral Pressurized Water Reactor

Passive Cooldown Performance of Integral Pressurized Water Reactor Energy and Power Engineering, 2013, 5, 505-509 doi:10.4236/epe.2013.54b097 Published Online July 2013 (http://www.scirp.org/journal/epe) Passive Cooldown Performance of Integral Pressurized Water Reactor

More information

IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region Gustavo Alonso, Ramon Ramirez, Carmen Gomez, Jorge Viais Instituto Nacional de Investigaciones Nucleares

More information

HTR-PM Project Status and Test Program

HTR-PM Project Status and Test Program IAEA TWG-GCR-22 HTR-PM Project Status and Test Program SUN Yuliang Deputy Director, INET/ Tsinghua University March 28 April 1, 2011 1 Project organization Government INET R&D, general design, design of

More information

AGGIE CHALLENGE. Nuclear Powered Water Desalination Plant

AGGIE CHALLENGE. Nuclear Powered Water Desalination Plant AGGIE CHALLENGE Nuclear Powered Water Desalination Plant Executive Summary Theoretical calculations were performed around a turbine, multistage jet ejector and multi effect evaporator to describe the optimal

More information

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor

Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the Test Facility for an Integral Reactor Science and Technology of Nuclear Installations, Article ID 18182, 6 pages http://dx.doi.org/1.1155/214/18182 Research Article Investigation of TASS/SMR Capability to Predict a Natural Circulation in the

More information

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety IEA/SHC Task 57, Subtask B Draft proposals for new test procedures B4: Final Draft Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety HE Zinian Beijing

More information

Written Presentation Power and Desalination Integrated Systems : Today s Trends

Written Presentation Power and Desalination Integrated Systems : Today s Trends Written Presentation Power and Desalination Integrated Systems : Today s Trends Abstract Jacques Andrianne Tractebel Energy Engineering 7 avenue Ariane, B-1200 Brussels, Belgium Due to the fuel cost increase

More information

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions

Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized and Depressurized Conditions 2nd International Topical Meeting on HIGH TEMPERATURE REACTOR TECHNOLOGY Beijing, CHINA, September 22-24, 2004 #Paper F02 Thermal Response of a High Temperature Reactor during Passive Cooldown under Pressurized

More information

Sea water Desalination. LT-MED driven by diesel engine exhaust waste heat

Sea water Desalination. LT-MED driven by diesel engine exhaust waste heat Sea water Desalination LT-MED driven by diesel engine exhaust waste heat Content Shortage of water resources and possible solution Seawater desalination LT-MED driven by diesel engine exhaust waste heat

More information

ANALYSIS OF CANDU6 REACTOR STATION BLACKOUT EVENT CONCOMITANT WITH MODERATOR DRAINAGE

ANALYSIS OF CANDU6 REACTOR STATION BLACKOUT EVENT CONCOMITANT WITH MODERATOR DRAINAGE U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 2, 2016 ISSN 2286-3540 ANALYSIS OF CANDU6 REACTOR STATION BLACKOUT EVENT CONCOMITANT WITH MODERATOR DRAINAGE Daniel DUPLEAC 1 Consequences of CANDU 6 station

More information

Desalination systems powered by solar energy

Desalination systems powered by solar energy Desalination systems powered by solar energy International Conference on Renewable Energy Desalination Tunis, 11.06.2012 Dr. -Ing. Joachim Koschikowski Fraunhofer Institute for Solar Energy Systems ISE

More information

Small Nuclear Steam Generators for Alberta's Bitumen Resources

Small Nuclear Steam Generators for Alberta's Bitumen Resources Small Nuclear Steam Generators for Alberta's Bitumen Resources Dr. Ian J. Potter, Alberta Research Council Dr. Harold F. McFarlane, Idaho National Laboratory Western Focus Seminar 30th Annual Conference

More information

TERMO-HYDRAULICS AND TERMO-MECHANICAL LOADING OF VVER-440 REACTOR PRESSURE VESSEL

TERMO-HYDRAULICS AND TERMO-MECHANICAL LOADING OF VVER-440 REACTOR PRESSURE VESSEL TERMO-HYDRAULICS AND TERMO-MECHANICAL LOADING OF VVER-440 REACTOR PRESSURE VESSEL G. Gálik 1, V. Kutiš 2, J. Paulech 3, V. Goga 4 Abstract: This article describes a pressure thermal shock simulation methodology

More information

COLD NEUTRON SOURCE AT CMRR

COLD NEUTRON SOURCE AT CMRR COLD NEUTRON SOURCE AT CMRR Hu Chunming Shen Wende, Dai Junlong, Liu Xiankun ( 1 ) Vadim Kouzminov, Victor Mityukhlyaev / 2 /, Anatoli Serebrov, Arcady Zakharov ( 3 ) ABSTRACT As an effective means to

More information

COMPUTER MANUAL SERIES No. 14. Desalination Economic Evaluation Program (DEEP) User s Manual

COMPUTER MANUAL SERIES No. 14. Desalination Economic Evaluation Program (DEEP) User s Manual COMPUTER MANUAL SERIES No. 14 Desalination Economic Evaluation Program (DEEP) User s Manual INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 2000 The originating Section of this publication in the IAEA was:

More information

Non-electric Applications of Nuclear Energy

Non-electric Applications of Nuclear Energy Non-electric Applications of Nuclear Energy Ibrahim Khamis Department Nuclear Energy, Division Nuclear power International Atomic Energy Agency Contents Project on Non-Electric Applications Introduction

More information

NUCLEAR POWER FOR SALT WATER CONVERSION

NUCLEAR POWER FOR SALT WATER CONVERSION NUCLEAR POWER FOR SALT WATER CONVERSION Pressure on water resources is resulting in many countries from population growth, rising living standards, and the increasing demands of industrialization; there

More information

CONTENTS CO-GENERATING WATER-DESALINATING FACILITY POWERED BY SVBR-75/100 NUCLEAR REACTOR DESIGN ORGANIZATIONS INVOLVED IN THE PROJECT

CONTENTS CO-GENERATING WATER-DESALINATING FACILITY POWERED BY SVBR-75/100 NUCLEAR REACTOR DESIGN ORGANIZATIONS INVOLVED IN THE PROJECT CONTENTS CO-generating water-desalinating facility powered by SVBR-75/100 NUCLEAR 1 REACTOR Design organizations involved in the project 1 Layout of co-generating nuclear-powered water desalinating facility

More information

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria

Technical University of Sofia, Department of Thermal and Nuclear Power Engineering, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria BgNS TRANSACTIONS volume 20 number 2 (2015) pp. 143 149 Comparative Analysis of Nodalization Effects and Their Influence on the Results of ATHLET Calculations of VVER-1000 Coolant Transient Benchmark Phase

More information

Global Water Issues and Nuclear Seawater Desalination

Global Water Issues and Nuclear Seawater Desalination Global Water Issues and Nuclear Seawater Desalination World Nuclear University Summer Institute 2009, Oxford, UK Toshio Konishi Content Three Questions 1. Global water issues: what, why and where? 2. Seawater

More information

ECONOMY ASPECT FOR NUCLEAR DESALINATION SELECTION IN MURIA PENINSULA

ECONOMY ASPECT FOR NUCLEAR DESALINATION SELECTION IN MURIA PENINSULA ECONOMY ASPECT FOR NUCLEAR DESALINATION SELECTION IN MURIA PENINSULA Sudi Ariyanto and Siti Alimah Center for Nuclear Energy Development (PPEN) BATAN Jl. Kuningan Barat, Mampang Prapatan Jakarta 12710

More information

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident

Naturally Safe HTGR in the response to the Fukushima Daiichi NPP accident IAEA Technical Meeting on on Re evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor Fuel and Structural Materials, 10 12 July 2012, Vienna, Austria Naturally

More information

Small and Modular Reactor Development, Safety and Licensing in Korea

Small and Modular Reactor Development, Safety and Licensing in Korea Small and Modular Reactor Development, Safety and Licensing in Korea IAEA TWG-LWR Vienna, June 18-20, 2013 Presented by Jong-Tae Seo 1 Outline I. SMR Development in Korea II. SMART Development III. SMART

More information

WATER DESALINATION. Shaping our world

WATER DESALINATION. Shaping our world WATER DESALINATION Shaping our world WATER DESALINATION About Water Desalination Fresh Water is Essential for Life Water is necessary for life. We need fresh water for drinking every day. But we also need

More information

Comparison of Technical and Economic Performance of the Main Desalination Processes with and without Renewable Energy Coupling

Comparison of Technical and Economic Performance of the Main Desalination Processes with and without Renewable Energy Coupling Comparison of Technical and Economic Performance of the Main Desalination Processes with and without Renewable Energy Coupling Ali Al-Qaraghuli and L.L. Kazmerski National Renewable Energy Laboratory,

More information

Thermodynamic Simulation of an Advanced Hybrid Solar-Gas Seawater Desalination System

Thermodynamic Simulation of an Advanced Hybrid Solar-Gas Seawater Desalination System SolarPACES 24 Oaxaca, Mexico 12th International Symposium on October 6-8, 24 Solar Power and Chemical Energy Systems Thermodynamic Simulation of an Advanced Hybrid Solar-Gas Seawater Desalination System

More information

Power Engineering II. Technological circuits of thermal power plants

Power Engineering II. Technological circuits of thermal power plants Technological circuits of thermal power plants Lay out scheme of coal power plant climatetechwiki.com Technological circuits 2 Coal and ash circuit Air and gas circuit Feed water and steam circuit Cooling

More information

Thermal Fluid Characteristics for Pebble Bed HTGRs.

Thermal Fluid Characteristics for Pebble Bed HTGRs. Thermal Fluid Characteristics for Pebble Bed HTGRs. Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Beijing, China Oct 22-26, 2012 Overview Background Key T/F parameters

More information

THE EFFECT OF FOULING ON PERFORMANCE AND DESIGN ASPECTS OF MULTIPLE EFFECTS DESALINATION SYSTEMS. Furqan Tahir Maimoon Atif Mohammed A.

THE EFFECT OF FOULING ON PERFORMANCE AND DESIGN ASPECTS OF MULTIPLE EFFECTS DESALINATION SYSTEMS. Furqan Tahir Maimoon Atif Mohammed A. THE EFFECT OF FOULING ON PERFORMANCE AND DESIGN ASPECTS OF MULTIPLE EFFECTS DESALINATION SYSTEMS Furqan Tahir Maimoon Atif Mohammed A. Antar CONTENTS Introduction Problem Definition & Objectives Methodology

More information

Plant System Design Features of SMART

Plant System Design Features of SMART GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1049 Plant System Design Features of SMART Juhyeon Yoon*, Seung Yeob Ryu, Byung Seon Choi, Manki Lee and Sung Kyun Zee Korea Atomic Energy Research

More information

Small Reactors R&D in China. ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna

Small Reactors R&D in China. ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna Small Reactors R&D in China ZHENG Mingguang Ph D Presented on the meeting of TWG-LWR June 18 th -20 th 2013 IAEA, Vienna CONTENT 1 Introduction of SMR 2 CAP150 developed by SNERDI/SNPTC 3 CAP FNPP developed

More information

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE

Station Blackout Analysis for a 3-Loop Westinghouse PWR Reactor Using TRACE The Egyptian Arab Journal of Nuclear Sciences and Applications Society of Nuclear Vol 50, 3, (229-239) 2017 Sciences and Applications ISSN 1110-0451 Web site: esnsa-eg.com (ESNSA) Station Blackout Analysis

More information

The HTR/VHTR Project in Framatome ANP

The HTR/VHTR Project in Framatome ANP The HTR/VHTR Project in Framatome ANP Framatome ANP Dominique HITTNER HTR-VHTR Project R&D manager Framatome ANP Framatome ANP The reference concept of ANTARES programme: a flexible heat source for heat

More information

Economic and Financial Assessment of Nuclear Desalination Plant in in Madura Island

Economic and Financial Assessment of Nuclear Desalination Plant in in Madura Island Economic and Financial Assessment of Nuclear Desalination Plant in in Madura Island Sudi Ariyanto, Djoko Birmano, Suparman Center for Nuclear Energy Development National Nuclear Energy Agency of INDONESIA

More information

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development A. Introduction The IAEA Report on Reactor and Spent Fuel Safety in the Light of

More information

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading ANTARES Application for Cogeneration Oil Recovery from Bitumen and Upgrading Michel Lecomte Houria Younsi (ENSEM) Jérome Gosset (ENSMP) ENC Conference Versailles 11-14 December 2005 1 Presentation Outline

More information

Steam Generator Ageing Management in Slovakia current practices and related issues

Steam Generator Ageing Management in Slovakia current practices and related issues International Atomic Energy Agency Meeting on Update and Upgrade of IAEA-TECDOC on Ageing Management of Steam Generators IAEA, Vienna, 15 18 June 2009 Steam Generator Ageing Management in Slovakia current

More information

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB)

Elena Dinca CNCAN Daniel Dupleac - UPB Ilie Prisecaru UPB. Politehnica University of Bucharest, Romania (UPB) RELAP/SCDAP Sensitivity Study on the Efficiency in Severe Core Degradation Prevention of Depressurization and Water Injection into Steam Generators following SBO at a CANDU-6 NPP National Commission for

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.3.2017 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics Technical

More information

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2008

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2008 1944-19 Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies 19-30 May 2008 Gas-Cooled Reactors Technology Options, Operating Research Reactors and Demonstration Plant Project

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Nuclear Power Plants Authority, 4 El-Nasr Avenue, Nasr City, P.O. Box 8191, Nasr City 11371, Cairo, Egypt

Nuclear Power Plants Authority, 4 El-Nasr Avenue, Nasr City, P.O. Box 8191, Nasr City 11371, Cairo, Egypt International Nuclear Energy, Article ID 569658, 6 pages http://dx.doi.org/10.1155/2014/569658 Research Article A Parametric Study of the Impact of the Cooling Water Site Specific Conditions on the Efficiency

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

Horizontal Falling Film Brine Concentrator

Horizontal Falling Film Brine Concentrator Horizontal Falling Film Brine Concentrator The 3rd International Sede Boqer Conference on Water Technologies, 2012: Advanced Technologies in Water Management Tuesday 16 October 2012 Dr. Yony Weiss, VP,

More information

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5]

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5] KNOWLEDGE: K1.01 [2.5/2.5] P283 The transfer of heat from the reactor fuel pellets to the fuel cladding during normal plant operation is primarily accomplished via heat transfer. A. conduction B. convection

More information

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor

Safety Analysis Results of Representative DEC Accidental Transients for the ALFRED Reactor FR13 - TECHNICAL SESSION 3.5: Fast reactor safety: post-fukushima lessons and goals for next-generation reactors Paper n. IAEA-CN-199/260 Safety Analysis Results of Representative DEC Accidental Transients

More information

Low Temperature Thermal Desalination (LTTD): new sustainable desalination process. S. Kathiroli and Purnima Jalihal

Low Temperature Thermal Desalination (LTTD): new sustainable desalination process. S. Kathiroli and Purnima Jalihal Int. J. Nuclear Desalination, Vol. 3, No. 1, 2008 69 Low Temperature Thermal Desalination (LTTD): new sustainable desalination process Marco Rognoni* Saline Water Specialists S.r.l. (SWS) Largo Buffoni,

More information

CAREM: AN INNOVATIVE-INTEGRATED PWR

CAREM: AN INNOVATIVE-INTEGRATED PWR 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-S01-2 CAREM: AN INNOVATIVE-INTEGRATED PWR Rubén MAZZI INVAP Nuclear Projects

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

Nuclear power applications: Supplying heat for homes and industries

Nuclear power applications: Supplying heat for homes and industries Nuclear power applications: Supplying heat for homes and industries More countries are interested in applying smaller sized nuclear reactors to help meet industrial and urban heating needs When the first

More information

A High Temperature Gas Loop to Simulate VHTR and Nuclear Hydrogen Production System

A High Temperature Gas Loop to Simulate VHTR and Nuclear Hydrogen Production System 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20) Espoo, Finland, August 9-14, 2009 SMiRT 20-Division 10, Paper 1870 A High Temperature Gas Loop to Simulate VHTR and

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

IAEA-TECDOC-1444 Optimization of the coupling of nuclear reactors and desalination systems

IAEA-TECDOC-1444 Optimization of the coupling of nuclear reactors and desalination systems IAEA-TECDOC-1444 Optimization of the coupling of nuclear reactors and desalination systems Final report of a coordinated research project 1999 2003 June 2005 IAEA-TECDOC-1444 Optimization of the coupling

More information

Conceptual Design of Nuclear CCHP Using Absorption Cycle

Conceptual Design of Nuclear CCHP Using Absorption Cycle Conceptual Design of Nuclear CCHP Using Absorption Cycle International Conference on Opportunities and Challenges for Water Cooled Reactors in the 21 st Century Vienna, Austria, October 27-30, 2009 Gyunyoung

More information

EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR

EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR EXPERIMENTAL INVESTIGATION OF A SCALED REACTOR CAVITY COOLING SYSTEM WITH AIR FOR THE VHTR M. A. Muci 1, D. D. Lisowski 2, M. H. Anderson 3, and M. L. Corradini 3 1 : Duke Energy, 139 East 4 th Street

More information