Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design

Size: px
Start display at page:

Download "Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design"

Transcription

1 Performance Objectives and the AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, PE, SE State of Alaska DOT&PF Bridge Section Juneau, Alaska

2 Performance Objectives AASHTO Guide Specifications for LRFD Seismic Bridge Design (SGS) is primarily a displacement-based design approach SGS addresses a single performance objective No collapse as a result of the single hazard level (1000 year event)

3 Performance Objectives User expectations, down time, economics Need for better seismic bridge performance Minimal damage ~ some yielding Repairable damage ~ spalling No collapse ~ buckling or rupture A functional level EQ may be needed (100 year event) with minimal or repairable damage

4 Performance Objectives CALTRANS MTD 20-1 (July 2010) Oregon DOT also has multiple hazard level design approach

5 Performance Objective How to design for performance objectives? Displacement ductility Plastic hinge rotation Material strain limits SGS provides strain limits (e.g. Table ) Perhaps add performance objective strain limits

6 No Collapse Performance SGS strain-based deformation limits Figure Table Figure 8.5-1

7 Performance Objective Some performance strain limits of interest Concrete tensile cracking Concrete compressive spalling Confined concrete core crushing Longitudinal bar tensile yielding Longitudinal bar buckling Longitudinal bar tensile rupture Transverse bar yielding Transverse bar rupture

8 Performance Objective Sample strain limits Performance Objective Concrete Strain Limit (Compression) Steel Strain Limit (Tension) Minimal (proposed) ~ in/in ~ in/in Repairable (proposed) Spalling of cover concrete, onset of bar buckling, etc. ε sh onset of strain hardening, residual concrete crack width less than about 1mm, etc. No Collapse (from SGS) ε cu = *ρ s *f y *ε su /f cc ε R su = 0.09 in/in for d b #10 ε R su = 0.06 in/in for d b #11

9 Performance Objective But it s more than just strain limits Permanent drift and settlement limits Multiple EQ hazard levels Statistical calibration / fragility curves Indirect seismic hazards User expectations after EQ event

10 EQ Load History Effects Comparison between quasi-static and the standard three-cycle loading protocol Lateral Force (kips) Displacement (mm) µ 3 µ 4 µ 6 µ 8 µ 10 µ 14 µ 18 µ 1.5 µ 20 µ µ 2 µ 1 Fy' 3/4 Fy' 1/2 Fy' 1/4 Fy' µ 12 µ 16 Tension Rupture Lateral Force (kn) Displacement (in) (Kowalsky et al NCSU)

11 EQ Load History Effects SGS reduced ultimate tensile strain, ε R su, based upon 3-cycle laboratory loading protocol SGS appears conservative but one-size-fitsall may be inadequate Strain limits based upon anticipated EQ deformations may be warranted

12 EQ Load History Effects FHWA Seismic Retrofitting Manual ε ap = 0.08 * (2 * N f ) -1/2 where: ε ap = low-cycle fatigue strain amplitude N f = equivalent equal amplitude cycles N f = 3.5*(T n ) -1/3 2 < N f < 10 T n = natural period of bridge φ p = 2 * ε ap / (D )

13 EQ Load History Effects Ongoing research includes directional considerations

14 Strain to Deformation Integration : load shear moment (curvature M-φ) slope deflection Numerous approaches to integrate Analytical plastic hinge length is a simplification used to transform curvature to rotation (slope) and is used in the SGS

15 Plastic Hinge Length, L p y ~ φ y * L 2 / 3 u ~ y + p p ~ θ p * L θ p ~ (φ u - φ y )* L p

16 Plastic Hinge Length, L p where: L p = 0.08 * L * f ye * d bl L = distance from hinge to zero moment f ye = expected bar yield stress d bl = longitudinal column bar diameter Moment gradient part (column) and a strain penetration part (footing / cap / shaft)

17 Plastic Hinge Length, L p Reducing either the moment gradient part or the strain penetration part will reduce u Calibrated to the ultimate strain limit and corresponding deformation Modifications may be required to better correlate deformations at lower strain values

18 Plastic Hinge Length, L p Curvature dependent plastic hinge length

19 Sidetrack - ABC Connections Method of connecting and anchoring reinforcement to prefabricated elements Grouted Bar Couplers Mechanical Bar Couplers Grouted Ducts Welded Bar Splices

20 Sidetrack - ABC Connections

21 Sidetrack - ABC Connections Can develop full tensile strength of bar Stiffer stress-strain than un-spliced bar These devices may reduce the analytical plastic hinge length Smaller L p suggest higher strains at smaller displacement (performance objectives?)

22 Longitudinal Bar Buckling SGS defines bar failure on tensile rupture Under cyclic loading, tensile bar rupture is often proceeded by bar buckling which is proceeded by a large tensile strain and yielding of the transverse reinforcement Will likely need strain limits for bar buckling

23 Longitudinal Bar Buckling Bar buckling performance limit

24 Longitudinal Bar Buckling FHWA Seismic Retrofitting Manual where: ε b = 2 * f y / E s ε b = bar buckling strain = ½ * ε y f y = yield stress E s = modulus of elasticity φ p = ε b / (c d ) - φ y

25 Longitudinal Bar Buckling Compressive stress during tensile strain

26 Longitudinal Bar Buckling UW (Berry and Eberhard) bar buckling drift limits based upon the column test database bb /L = 3.25*(1+k e_bb *ρ eff *d b /D)*(1-P/A g *f c )*(1+L/10*D) where: k e_bb = 40 for rectangular, 150 for circular and 0 if s/d b > 6 ρ eff = ρ s *f ys /f c d b = diameter of longitudinal column bars L = distance between plastic hinge and contraflexure point D = column diameter or depth in direction of loading

27 Longitudinal Bar Buckling NCSU research approach

28 Longitudinal Bar Buckling NCSU recommendations s εt 0.09, if 3 d < bl s εt 0.06, if 4 d > bl s s εt ( 3), if 3< < 4 d d 0.10 bl bl ε = t 15 ε c d d bl h s 1 d bl (0, 0.07) (0.01, 0.07) Tensile Strain (0.0133, ) 0.02 (0.0196, 0) Compressive Strain s dh s εt 1.7 εc d d d bl bl bl

29 Longitudinal Bar Buckling NCSU recommendations (0, 0.07) (0.01, 0.07) 0.08 Tensile Strain (0.0133, ) Tensile Strain (0.012, 0.04) 0.02 (0.0196, 0) Compressive Strain Compressive Strain

30 Concrete Filled Steel Pipes

31 Concrete Filled Steel Pipes + Minimize in-water work, no cofferdam + High strength, stiffness, seismic resistance + Open ended piles for obstruction removal + Scour and liquefaction resistant - Pile availability (API 5L vs. ASTM A 252) - Field welding, QC and QA - How to connect to weaker cap beam? - Below ground hinging

32 Concrete Filled Steel Pipes

33 Strain Limits for CFSP AKDOT sponsored research at NCSU First principles (equilibrium compatibility) 33 < D/t < 192 (piles and drilled shafts) With and without reinforcing steel Straight seam and spiral welded Buckling and rupture strain limits Analytical plastic hinge length (ongoing)

34 Strain Limits for CFSP Large lateral deformation capacity Good force-deformation / hysteretic response

35 Strain Limits for CFSP Onset of buckling and rupture Ductility 2, Δ=2.04 in Ductility 3, Δ= 3.06 in Ductility 4, Δ= 4.08in Ductility 5, Δ=6.12 in Ductility 6, Δ=8.17 in Rupture at Ductility 6 pull 2

36 Strain Limits for CFSP Onset of pipe wall buckling (tensile strain) ε b ~ (D/t) / 9,000 Reduced ultimate tensile strain ε R su ~ in./in.

37 Nontraditional Systems

38 Direct Displacement Design Start with performance objective (strain, deflection or ductility limits) Size the member (column diameter) Reinforce to specified resistance (ρ l ) Check non-seismic load combinations

39 Direct Displacement Design Advantages + insensitive to initial stiffness + relatively easy to use + different methodology for QC/QA Disadvantages - equivalent viscous damping - complex geometry limitations - limited utilization to date

40 Questions - Thank you

Effect of Axial load on deformation capacity of RC column

Effect of Axial load on deformation capacity of RC column Effect of load on deformation capacity of RC column N. G. Patoliya 1, Prof. C. S. Sanghvi 2 1 Narmada, Water Resources, Water Supply and Kalpsar Department, Government of Gujarat,, patoliyanirav@yahoo.co.in

More information

Strain Limits for Concrete Filled Steel Tubes in AASHTO Seismic Provisions. PIs: Mervyn Kowalsky and James Nau RA: Nicole King

Strain Limits for Concrete Filled Steel Tubes in AASHTO Seismic Provisions. PIs: Mervyn Kowalsky and James Nau RA: Nicole King Strain Limits for Concrete Filled Steel Tubes in AASHTO Seismic Provisions PIs: Mervyn Kowalsky and James Nau RA: Nicole King Project Overview Seismic behavior of reinforced concrete filled steel pipe

More information

Overview of Structural Design and Detailing. (Caltrans Practice) Amir M. Malek, PE, PhD. Senior Bridge Engineer (Technical Specialist)

Overview of Structural Design and Detailing. (Caltrans Practice) Amir M. Malek, PE, PhD. Senior Bridge Engineer (Technical Specialist) Overview of Structural Design and Detailing of Large Diameter Drilled Shafts (Caltrans Practice) Amir M. Malek, PE, PhD Senior Bridge Engineer (Technical Specialist) Office of Bridge Design Services California

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017 ABC-UTC Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC ABSTRACT March, 2017 Accelerated Bridge Construction (ABC) is a method of bridge construction designed

More information

Ductility of Welded Steel Column to Cap Beam Connections Phase 2

Ductility of Welded Steel Column to Cap Beam Connections Phase 2 Ductility of Welded Steel Column to Cap Beam Connections Phase 2 Test 2 Summary Report 1 June 2011 1. Executive Summary Prepared for: Alaska Department of Transportation and Public Facilities Alaska University

More information

Seismic Performance of Steel Bridge Piers Containing Composite Connections

Seismic Performance of Steel Bridge Piers Containing Composite Connections Seismic Performance of Steel Bridge Piers Containing Composite Connections S.J. Fulmer, M.J. Kowalsky & J.M. Nau Department of Civil, Construction and Envinronmental Engineering, North Carolina State University,

More information

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS José I. Restrepo 1, Inho Ha 2 and M.J.Nigel Priestley 3 Abstract This paper discusses the results of two large-scale models of Four-Cast-In-Drilled-

More information

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering CFT Column-to-Cap Beam Connections for Accelerated Bridge Construction in Seismic Regions Lisa Marie Berg A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

Seismic Design and Retrofit. Reginald DesRoches Professor and Associate Chair Georgia Institute of Technology

Seismic Design and Retrofit. Reginald DesRoches Professor and Associate Chair Georgia Institute of Technology Seismic Design and Retrofit Detailing Fundamentals Reginald DesRoches Professor and Associate Chair Georgia Institute of Technology Learning Outcomes List the types of detailing that increase a bridges

More information

Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns

Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns Y. Feng, M.J. Kowalsky & J.M. Nau North Carolina State University, Raleigh SUMMARY: Ensuring that

More information

SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP COMPOSITES

SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP COMPOSITES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 58 SEISMIC REHABILITATION OF REINFORCED CONCRETE BRIDGE COLUMNS IN MODERATE EARTHQUAKE REGIONS USING FRP

More information

Seismic Design of Ductile Shear Walls

Seismic Design of Ductile Shear Walls Seismic Design of Ductile Shear Walls 12:30 PM 2:30 PM Bennett Banting Lecture Outline 1. 2004 and 2014 Standards Overview (15) 2. Moderately Ductile Squat Shear Walls a) 2004 Design (15) b) 2014 Design

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS

EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-, Paper No. 77 EXPERIMENTAL STUDY OF THE EFFECT OF REINFORCEMENT STABILITY ON THE CAPACITY OF REINFORCED CONCRETE COLUMNS

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

NCHRP Project Michael Culmo, PE CME Associates, Inc.

NCHRP Project Michael Culmo, PE CME Associates, Inc. NCHRP Project 12-102 Michael Culmo, PE CME Associates, Inc. Acknowledgements NCHRP: Waseem Dekelbab Project Panel Ahmad Abu-Hawash Iowa DOT Norman P. Marzano Jr. Rhode Island DOT Carmen Swanwick Utah DOT

More information

Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns

Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns Mostafa Tazarv 1 and M. Saiid Saiidi 2 1 Assistant Professor, Dept. of Civil and Env. Eng., South Dakota State University,

More information

Experimental research on reduced beam section to concrete-filled steel tubular column joints with RC slab

Experimental research on reduced beam section to concrete-filled steel tubular column joints with RC slab Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 15, Sydney, Australia Experimental research on reduced beam section to concrete-filled

More information

Evaluation of Analysis Methods in Predicting Limit States for Performance-Based Seismic Design

Evaluation of Analysis Methods in Predicting Limit States for Performance-Based Seismic Design Evaluation of Analysis Methods in Predicting Limit States for Performance-Based Seismic Design Lauren K. Fedak & Rigoberto Burgueño Michigan State University, East Lansing, MI, U.S.A. Pedro F. Silva The

More information

7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS

7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS Page 130 7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS 7.1 General 7.1.1 Scope (1) P For the design of composite steel concrete buildings, Eurocode 4 applies. The following rules are additional

More information

Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit

Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit Seismic Evaluation and Retrofit of Beam- Column Joints of Mid-America Bridges Part 2: Steel Sheet and Plate Retrofit Genda Chen, Ph.D., P.E. Associate Professor of Civil Engineering Department of Civil,

More information

CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH

CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH CYCLIC BEHAVIOR OF SLENDER R/C COLUMNS WITH INSUFFICIENT LAP SPLICE LENGTH S.Eshghi 1 and V.Zanjanizadeh 2 1 Assistant Professor of International Institute of Earthquake Engineering and Seismology (IIEES),

More information

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 4 Paper No. 2198 SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS Juan F. Correal 1, M. Saiid

More information

Appendix M 2010 AASHTO Bridge Committee Agenda Item

Appendix M 2010 AASHTO Bridge Committee Agenda Item Appendix M 2010 AASHTO Bridge Committee Agenda Item 2010 AASHTO BRIDGE COMMITTEE AGENDA ITEM: SUBJECT: LRFD Bridge Design Specifications: Section 5, High-Strength Steel Reinforcement TECHNICAL COMMITTEE:

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2016 to December 31, 2016 Period Year 1 Project Development and Seismic Evaluation of Pier Systems w/ Pocket Connections and Square

More information

DS Attachments. Design Specifications

DS Attachments. Design Specifications DS Attachments Design Specifications Attachment DS1: Revised Article 2.1 Definitions o Revision of current article to include definitions of emulative and hybrid systems Attachment DS2: Revised Article

More information

PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES

PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES International Journal of Bridge Engineering (IJBE), Special Issue 2017, pp. 25-52 PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES M. J. Ameli 1,

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

Precast Columns with Mechanically Spliced Connections for Accelerated Bridge Construction in Seismic Zones. Zachary B. Haber 1

Precast Columns with Mechanically Spliced Connections for Accelerated Bridge Construction in Seismic Zones. Zachary B. Haber 1 Precast Columns with Mechanically Spliced Connections for Accelerated Bridge Construction in Seismic Zones Abstract Zachary B. Haber 1 In recent years, a number of laboratory and analytical studies have

More information

CALTRANS SDC PROCEDURE

CALTRANS SDC PROCEDURE CALTRANS SDC PROCEDURE Robert Matthews H&N Infrastructure 3/7/2002 CALTRANS SDC PROCEDURE Slide No. 1 OVERVIEW APPLICABILITY OF SDC PRELIMINARY STRUCTURE SIZING LOCAL MEMBER DUCTILITY STAND-ALONE FRAME

More information

AASHTO LRFD Seismic Bridge Design. Jingsong Liu July 20, 2017

AASHTO LRFD Seismic Bridge Design. Jingsong Liu July 20, 2017 AASHTO LRFD Seismic Bridge Design Jingsong Liu July 20, 2017 History of AASHTO Seismic Specifications 1981: ATC-6, Seismic Design Guidelines for Highway Bridges. 1983: Guide Specifications for Seismic

More information

Basic quantities of earthquake engineering. Strength Stiffness - Ductility

Basic quantities of earthquake engineering. Strength Stiffness - Ductility Basic quantities of earthquake engineering Strength Stiffness - Ductility 1 Stength is the ability to withstand applied forces. For example a concrete element is weak in tension but strong in compression.

More information

ANNEX 10. Special requirements recommended for structures subject to seismic actions. 1 Scope. 2 Basis of design. 2.1 Fundamental requirements

ANNEX 10. Special requirements recommended for structures subject to seismic actions. 1 Scope. 2 Basis of design. 2.1 Fundamental requirements ANNEX 10 Special requirements recommended for structures subject to seismic actions 1 Scope This Annex sets out the special requirements which are recommended for structural concrete structures subject

More information

DUCTILITY REQUIREMENTS FOR BUILDINGS

DUCTILITY REQUIREMENTS FOR BUILDINGS DUCTILITY REQUIREMENTS FOR BUILDINGS Prof. P. C. Vasani, Applied Mechanics Department, L. D. College of Engineering, Ahmedabad 380015. profvasani@rediffmail.com Bhumika B. Mehta M. E. CIVIL - (CASAD) Sem

More information

Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP)

Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP) Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP) M. Mashal, S. White, & A. Palermo Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch.

More information

Performance Based Seismic Bridge Design What Is It and How Is It Different from Today s Practice

Performance Based Seismic Bridge Design What Is It and How Is It Different from Today s Practice Performance Based Seismic Bridge Design What Is It and How Is It Different from Today s Practice Lee Marsh PhD PE President/CEO BergerABAM, Inc June 12, 2017 2017 AASHTO SCOBS Meeting Spokane, WA Presentation

More information

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1 Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction Bijan Khaleghi 1 Abstract Ductility of precast prestressed girder bridges can be achieved by proper detailing of pier

More information

HRC T-Headed Bars Advantages for the user

HRC T-Headed Bars Advantages for the user HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Headed Bars Advantages for the user HRC T-headed bars have some special characteristics which distinguish them from conventional reinforcement. HRC T-heads

More information

Bridge reinforced concrete column limit state definition

Bridge reinforced concrete column limit state definition Bridge reinforced concrete column limit state definition Danusa H. Tavares Authors: D. H. Tavares, L. I. Cardona and P. Paultre Earthquake Engineering and Structural Dynamics Research Center Centre de

More information

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS Juan G. Arias Acosta, Graduate Student David H. Sanders, Professor and Project PI University of Nevada, Reno NEESR SG 53737

More information

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2 INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD Abstract Guangfeng Zhang 1, Shigeki Unjoh 2 This paper aims to provide an analysis method

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT Oct. 1, 2015 to December 31, 2015 Period Submitted by M. Saiidi, A. Itani, and A. Mohebbi Department of Civil and Environmental Engineering

More information

Concrete-Filled Tube Bridges for Accelerated Bridge Construction

Concrete-Filled Tube Bridges for Accelerated Bridge Construction Concrete-Filled Tube Bridges for Accelerated Bridge Construction Professor Dawn Lehman Professor Charles Roeder Max Stephens (Former Graduate Student) What is a Concrete Filled Steel Tube? o Concrete Filled

More information

Fragility Curves for Seismically Retrofitted Concrete Bridges

Fragility Curves for Seismically Retrofitted Concrete Bridges Fragility Curves for Seismically Retrofitted Concrete Bridges S.-H. Kim Department of Civil and Environmental Engineering, University of California, Irvine, USA. ABSTRACT: This study presents the development

More information

Seismic Design Principles for RC Structures

Seismic Design Principles for RC Structures CE 490 Int. to Earthquake Engineering Seismic Design Principles for RC Structures H. Sucuoğlu Introduction Seismic design of structural systems is essentially based on an inherent ductile response under

More information

Reinforced Concrete Column Design

Reinforced Concrete Column Design Reinforced Concrete Column Design Compressive Strength of Concrete f cr is the average cylinder strength f c compressive strength for design f c ~2500 psi - 18,000 psi, typically 3000-6000 psi E c estimated

More information

Post-EQK Damage Assessment of Bridges

Post-EQK Damage Assessment of Bridges Post-EQK Damage Assessment of Bridges Marc J. Veletzos, Ph.D., P.E. Merrimack College Post-Earthquake Reconnaissance Workshop 2015 EERI Annual Meeting April 3, 2015 Some Questions for You Who is An Undergraduate

More information

SEISMIC RETROFIT OF RECTANGULAR BRIDGE COLUMNS USING CFRP WRAPPING MESAY ABEBAW ENDESHAW

SEISMIC RETROFIT OF RECTANGULAR BRIDGE COLUMNS USING CFRP WRAPPING MESAY ABEBAW ENDESHAW SEISMIC RETROFIT OF RECTANGULAR BRIDGE COLUMNS USING CFRP WRAPPING By MESAY ABEBAW ENDESHAW A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CIVIL ENGINEERING

More information

BS EN :2004 EN :2004 (E)

BS EN :2004 EN :2004 (E) Contents List 1. General 1.1 Scope 1.1.1 Scope of Eurocode 2 1.1.2 Scope of Part 1-1 of Eurocode 2 1.2 Normative references 1.2.1 General reference standards 1.2.2 Other reference standards 1.3 Assumptions

More information

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Principles of Earthquake Engineering of Bridges Part 1: Principles & Approach by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Presentation

More information

EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS

EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 578 EXPERIMENTAL STUDY ON THE SEISMIC PERFORMANCE OF EXTERNALLY CONFINED REINFORCED CONCRETE COLUMNS Munawar

More information

Seismic Detailing of RC Structures (IS: )

Seismic Detailing of RC Structures (IS: ) Seismic Detailing of RC Structures (IS:13920-1993) Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Outline This lecture covers: Covers important clauses of IS13920 With particular

More information

Effect of Reinforcement Grade and Ratio on Seismic Performance of Reinforced Concrete Columns

Effect of Reinforcement Grade and Ratio on Seismic Performance of Reinforced Concrete Columns ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title No. 113-S77 Effect of Reinforcement Grade and Ratio on Seismic Performance of Reinforced Concrete Columns by David Trejo, Timothy B. Link, and André R. Barbosa

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS

EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS Abstract Junichi Sakai 1, Hyungil Jeong 2 and Stephen A. Mahin 3 To minimize residual displacements

More information

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Deformation Capacity of RC Structural Walls without Special

More information

Seismic. Department University

Seismic. Department University Seismic Performance of Next t Generation Bridge Components for Accelerat ted Bridge Construction (ABC) TEST MODEL: Headedd Couplerr No Pedestal (HCNP) Graduate Assistant: Zachary B. Haber, PhD Student

More information

Fragility Curves for Seismically Retrofitted Concrete Bridges

Fragility Curves for Seismically Retrofitted Concrete Bridges Fragility Curves for Seismically Retrofitted Concrete Bridges S.-H. Kim Department of Civil and Environmental Engineering, University of California, Irvine, USA. ABSTRACT: This study presents the development

More information

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading SP-237 11 Damage Assessment of Reinforced Concrete Columns Under High Axial Loading by S. Kono, H. Bechtoula, M. Sakashita, H. Tanaka, F. Watanabe, and M.O. Eberhard Synopsis: Damage assessment has become

More information

AASHTO LRFD. Reinforced Concrete. Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University

AASHTO LRFD. Reinforced Concrete. Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University AASHTO LRFD Reinforced Concrete Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University steinber@ohio.edu Ohio University (July 2007) 1 AASHTO LRFD This material is copyrighted by Ohio

More information

Failure Mechanism of Reinforced Concrete Structural Walls with and without confinement

Failure Mechanism of Reinforced Concrete Structural Walls with and without confinement Failure Mechanism of Reinforced Concrete Structural Walls with and without confinement A. Benavent-Climent, D. Escolano-Margarit, University of Granada, Granada, Spain A. Klenke & S. Pujol Purdue University,

More information

DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS

DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS Abstract 17th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS David Sanders, PhD 1, Mohammed

More information

Residual Seismic Performance of Reinforced Concrete Bridge Piers After Moderate Earthquakes

Residual Seismic Performance of Reinforced Concrete Bridge Piers After Moderate Earthquakes ACI STRUCTURAL JOURNAL Title no. 105-S10 TECHNICAL PAPER Residual Seismic Performance of Reinforced Concrete Bridge Piers After Moderate Earthquakes by Young-Soo Chung, Chang Kyu Park, and Christian Meyer

More information

Development of a FRP-Wrapped Spiral Corrugated Tube for Seismic Performance of Reinforced Concrete Columns

Development of a FRP-Wrapped Spiral Corrugated Tube for Seismic Performance of Reinforced Concrete Columns Development of a FRP-Wrapped Spiral Corrugated Tube for Seismic Performance of Reinforced Concrete Columns *Chung-Che Chou 1), Chung-Sheng Lee 2), Kai-Yi Wu 3) and V-Liam Chin 4) 1), 3), 4) Department

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT January 1, 2017 to March 31, 2017 Period Year 1 Project Development and Seismic Evaluation of Pier Systems w/ Pocket Connections and Square

More information

SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS

SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS International Journal of Bridge Engineering (IJBE), Special Issue 2017, pp. 99-123 SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS Alireza Mohebbi 1, M. Saiid

More information

Deformation Capacity and Performance-Based Seismic Design for Reinforced Concrete Shear Walls

Deformation Capacity and Performance-Based Seismic Design for Reinforced Concrete Shear Walls Deformation Capacity and Performance-Based Seismic Design for Reinforced Concrete Shear Walls Ying Zhou* 1, Dan Zhang 2, Zhihua Huang 3 and Dan Li 4 1 Professor, State Key Laboratory of Disaster Reduction

More information

SeismoBuild Verification Report (TBDY) For version 2018

SeismoBuild Verification Report (TBDY) For version 2018 SeismoBuild Verification Report (TBDY) For version 2018 Copyright Copyright 2002-2018 Seismosoft Ltd. All rights reserved. SeismoBuild is a registered trademark of Seismosoft Ltd. Copyright law protects

More information

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS 6 th International Conference on Advanced Composite Materials in Bridges and Structures 6 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes Kingston, Ontario,

More information

Seismic Behavior of Concrete Columns Confined with Steel and Fiber-Reinforced Polymers

Seismic Behavior of Concrete Columns Confined with Steel and Fiber-Reinforced Polymers ACI STRUCTURAL JOURNAL Title no. 99-S8 TECHNICAL PAPER Seismic Behavior of Concrete Columns Confined with Steel and Fiber-Reinforced Polymers by Shamim A. Sheikh and Grace Yau Results from an experimental

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

STEEL JACKETING FOR IMPROVEMENT OF COLUMN STRENGTH AND DUCTILITY

STEEL JACKETING FOR IMPROVEMENT OF COLUMN STRENGTH AND DUCTILITY STEEL JACKETING FOR IMPROVEMENT OF COLUMN STRENGTH AND DUCTILITY 55 Kenji SAKINO 1 And Yuping SUN SUMMARY In order to prevent loss of human life and property due to future earthquakes, the steel jacket

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips

Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips Seismic Retrofit Of RC Columns With Inadequate Lap-Splice Length By External Post-Tensioned High-Strength Strips M. Samadi Department of civil engineering., Mashhad Branch, Islamic Azad University, Mashhad,

More information

CYCLIC BEHAVIOR OF AN INNOVATIVE STEEL SHEAR WALL SYSTEM

CYCLIC BEHAVIOR OF AN INNOVATIVE STEEL SHEAR WALL SYSTEM 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2576 CYCLIC BEHAVIOR OF AN INNOVATIVE STEEL SHEAR WALL SYSTEM Qiuhong ZHAO 1 and Abolhassan ASTANEH-ASL

More information

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION Yoshikazu TAKAHASHI 1 And Hirokazu IEMURA 2 SUMMARY The flexural and shear behaviors of rectangular hollow reinforced concrete columns

More information

SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED REINFORCEMENT

SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED REINFORCEMENT Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 25-29, 2018 Los Angeles, California SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED

More information

Reinforced Concrete Structures

Reinforced Concrete Structures Reinforced Concrete Structures Outline Hyatt, Baguio, Phillipine Islands, 1991 Basics of Reinforced Concrete Types of Reinforced Concrete Structures Deficiencies Rehabilitation Strategies 1 Properties

More information

Assessment of material strain limits for defining plastic regions in concrete structures

Assessment of material strain limits for defining plastic regions in concrete structures Assessment of material strain limits for defining plastic regions in concrete structures A.F. Walker & R.P. Dhakal University of Canterbury, Christchurch, New Zealand. 2008 NZSEE Conference ABSTRACT: The

More information

BEHAVIOR OF RC BRIDGE COLUMNS UNDER CYCLIC FLEXURAL-TORSIONAL LOADINGS WITH MODERATE SHEAR

BEHAVIOR OF RC BRIDGE COLUMNS UNDER CYCLIC FLEXURAL-TORSIONAL LOADINGS WITH MODERATE SHEAR October 12-17, 28, Beijing, China BEHAVIOR OF RC BRIDGE COLUMNS UNDER CYCLIC FLEXURAL-TORSIONAL LOADINGS WITH MODERATE SHEAR S. Suriya Prakash 1, A. Belarbi 2 and A. Ayoub 3 1 PhD Candidate, 2 Distinguished

More information

Seismic Analysis and Response Fundamentals. Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc

Seismic Analysis and Response Fundamentals. Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc Seismic Analysis and Response Fundamentals Lee Marsh Senior Project Manager BERGER/ABAM Engineers, Inc Learning Outcomes Identify Earthquake Inertial Forces/Loadings Describe the Interrelation Between

More information

Retrofitting methods

Retrofitting methods Retrofitting methods EDCE: Civil and Environmental Engineering CIVIL 706 - Advanced Earthquake Engineering EDCE-EPFL-ENAC-SGC 2016-1- Content Strategies Weakening Steel bracing Reinforced concrete shear

More information

Seismic Analysis and Design of Flared Bridge Columns

Seismic Analysis and Design of Flared Bridge Columns Seismic Analysis and Design of Flared Bridge Columns by Hisham Nada 1, David Sanders 2, and M. Saiid Saiidi 3 ABSTRACT Past earthquakes have shown that flared columns are susceptible to premature shear

More information

Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity

Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity M. Mashal & A. Palermo Department of Civil and Natural Resources Engineering, University of Canterbury,

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

Technical Note. High-Strength Reinforcing Bars ENGINEERING. Introduction ETN-M-8-16

Technical Note. High-Strength Reinforcing Bars ENGINEERING. Introduction ETN-M-8-16 ENGINEERING ETN-M-8-16 High-Strength Reinforcing Bars Technical Note Introduction Grade 60 reinforcing steel, with a yield strength of 60,000 psi, is the most commonly used Grade in North America. Recent

More information

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS M. T. Shedid 1, W. W. El-Dakhakhni 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Hamilton.

More information

SECTION H COLUMNS SUBJECTED TO FLEXURE AND AXIAL

SECTION H COLUMNS SUBJECTED TO FLEXURE AND AXIAL 95 This paper isthe result of deliberations of the Society's discussion group on SEISMIC DESIGN OF DUCTILE MOMENT RESISTING REINFORCED CONCRETE FRAMES SECTION H COLUMNS SUBJECTED TO FLEXURE AND AXIAL R.

More information

Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations

Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations *Seungpil Kim 1), Myoungsu Shin 2), and Mark Aschheim 3) 1), 2) School of Urban and Environmental Engineering, UNIST, Ulsan

More information

Seismic Behaviour of RC Shear Walls

Seismic Behaviour of RC Shear Walls Ductile Detailing of RC Structures :: IS:13920-1993 1993 Short Course on Seismic Design of RC Structures Durgesh C. Rai Department of Civil Engineering, IIT Kanpur The material contained in this lecture

More information

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS Chapter 4 EXPERIMENTAL RESULTS 4.1 Introduction This chapter presents the results from the half scale interior Corcon rib beam-column subassemblage and the FRP repaired subassemblage. As described in chapter

More information

Chapter 2 Notation and Terminology

Chapter 2 Notation and Terminology Reorganized 318 Chapter Titles Chapter 1 General 1.1 Scope 1.2 Purpose 1.3 Interpretation 1.4 Drawings and Specifications 1.5 Testing and Inspection 1.6 Administatration and Enforcement 1.6.1 Retention

More information

SUMMARY SHEETS OF HYBRID CONNECTIONS

SUMMARY SHEETS OF HYBRID CONNECTIONS APPENDIX E SUMMARY SHEETS OF HYBRID CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix E E-1 APPENDIX E SUMMARY SHEETS OF HYBRID CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix E E-2 Location:

More information

BRIDGE DESIGN MEMORANDUM DM0115

BRIDGE DESIGN MEMORANDUM DM0115 BRIDGE DESIGN MEMORANDUM To: RPG Structural Engineers Design Consultants Date: November 3, 05 Re: SCDOT Seismic Design Specifications for Highway Bridges, Version.0 Revisions to Section 3, Section 6, Section

More information

ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME

ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No.2613 ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME Motoo SAISHO 1 and Katsuhiko GOTO 2 SUMMARY Seismic

More information

Minimum confinement reinforcement for prestressed concrete piles and a rational seismic design framework

Minimum confinement reinforcement for prestressed concrete piles and a rational seismic design framework Civil, Construction and Environmental Engineering Civil, Construction and Environmental Engineering ublications 1-2016 Minimum confinement reinforcement for prestressed concrete piles and a rational seismic

More information

REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES ABSTRACT

REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES ABSTRACT Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 26, San Francisco, California, USA Paper No. 1421 REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES

More information

M. Bruneau 1, Y. Alzeni 2, P. Fouché 2

M. Bruneau 1, Y. Alzeni 2, P. Fouché 2 Steel Innovations Conference 2013 Christchurch, New Zealand 21-22 February 2013 SEISMIC BEHAVIOR OF CONCRETE-FILLED STEEL SANDWICH WALLS AND CONCRETE-FILLED STEEL TUBE COLUMNS M. Bruneau 1, Y. Alzeni 2,

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information