Standard Test Procedures Manual

Size: px
Start display at page:

Download "Standard Test Procedures Manual"

Transcription

1 STP Standard Test Procedures Manual Section: 1. SCOPE 1.1. Description of Test This method describes the quantitative determination of the distribution of particle sizes in soils. The distribution of particle sizes larger than 71 um is determined by a sedimentation process, using a hydrometer to secure the necessary data. 2. APPARATUS AND MATERIALS 2.1. Equipment Required Balance - sensitive to 0.01 g. Stirring apparatus - mechanically operated, with an electrical motor able to turn a vertical shaft at a speed of not less than 10,000 r.p.m. without load. The shaft shall have a stirring paddle made of metal, plastic, or hard rubber. The paddle shall be not less than 19.0 mm or more than 38.1 mm above the bottom of the dispersion cup. For details of the paddle and dispersion cup see Figure Hydrometer - graduated to read in grams per litre of suspension and conforming to requirements for hydrometer 152 H in ASTM Specification E 100. Sedimentation Cylinder - glass, 457 mm in height, 63.5 mm in diameter and marked for 1000 ml volume. Thermometer - accurate to 0.5 o C. Sieves - full set of Canadian metric sieves. Water bath or constant temperature room - to maintain the soil suspension at or near 20 o C during the analysis. If a room can be controlled at a constant temperature no water bath is necessary. Beaker ml. Timing device - a watch or clock with a second hand. Oven or hot plate. Date: Page 1 of 8

2 Standard Test Procedures Manual STP Materials Required Dispersing agent - prepare a solution of sodium hexametaphosphate (sometimes called sodium metaphosphate) in distilled or demineralized water. Use 40 g of sodium hexametaphosphate/litre of solution. Make new solutions at least once a month as it will slowly revert to the orthophosphate form causing a decrease in dispersive action. Water - either distilled or demineralized water. It should be kept at the same temperature as the test is to be run. The basic temperature for the hydrometer test is 20 o C. Page: 2 of 8 Date:

3 Standard Test Procedures Manual STP PROCEDURE 3.1. Test Procedure Obtain about 500 g of representative material to be tested as described in method STP 104. Air dry the sample thoroughly and weigh it. Break up aggregations in a mortar using a rubber covered pestle. Screen over a 2.00 mm sieve, then re-grind the coarser fraction and re-sieve. Combine the finer fractions for use in the hydrometer test. Wash the coarse fraction over a 2.00 mm sieve, then dry and weigh it for use in calculating the percentage of coarse material. Determine the hydroscopic moisture content of the air-dry fine fraction by method STP (oven drying). Weigh out a sample of the air-dry fine fraction for the hydrometer test. If the soil is predominately clay and silt, use approximately 50 g, but if the soil is mostly sand, use approximately 100 g. Place sample in 250 ml beaker, cover with 125 ml of sodium hexametaphosphate. Stir by hand until thoroughly wet and allow to soak at least 16 hours. At the end of the soaking period, disperse the sample further by transferring the complete sample to the dispersion cup. Use distilled or demineralized water to wash out beaker into cup so all the sample is transferred. Add water, if necessary, so cup is more than half full. Stir for a period of 1 minute using stirring apparatus. Immediately transfer the solution to the sedimentation cylinder and add distilled or demineralized water to the 1000 ml mark. Cover the end of the cylinder with the palm of the hand (or a rubber stopper), turn the cylinder upside down and back 30 times for a period of 1 minute. Loosen any soil remaining in the bottom of the cylinder during the first few turns by shaking the cylinder the inverted position. At the end of the 1 minute shaking period, set the cylinder on a stable surface, free from vibrations. Take hydrometer readings at the following intervals (measured from the beginning of sedimentation): 2, 5, 15, 30, 60, 250, and 1,440 minutes. Other times may be used if desired to obtain more or less data. Date: Page: 3 of 8

4 Standard Test Procedures Manual STP To take a hydrometer reading, carefully insert the hydrometer about 20 s before the reading is due. Insert it to the approximately depth for the reading. Take reading at the top of the meniscus formed by the suspension around the stem. Carefully remove the hydrometer immediately after the reading and place it with a spinning motion in a beaker of distilled or demineralized water. Enter the data on Form MR-8 Figure (Mechanical Analysis of Soil), in the columns "TIME", "TEMPERATURE", and "HYDROMETER READING ORIGINAL." Sieve Analysis of 71 mm Material After the final hydrometer reading, was the suspension through a 71 mm sieve with tap water. Dry the retained material in an oven at 110 o ± 5 o C. Sieve the material on the following sieves: 71 mm, 160 mm, 250 mm, 400 mm, 900 mm. Enter the cumulative weights to the left side of the column marked "WEIGHT PASSING" on Form MR-8 (Figure ) Composite Correlation for Hydrometer Hydrometer reading corrections are required to compensate for temperature and density changed in the dispersing fluid. Corrections are determined by doing a "blank" test without soil, as described below. At the same time as the test is being run on the soil, prepare a second sedimentation cylinder with 125 ml of the dispersing solution but no soil. Fill the cylinder to the 100 ml mark with water and mix well by shaking. Place the cylinder in the same area or in a water bath with the soil test cylinder. Take hydrometer readings periodically in the same manner as for the soil test. Because the readings do not vary much, take only 3 or 4 readings over the sedimentation period. condition. Enter the corrected readings in the column marked "CORRECTED FOR CALGON & TEMPERATURE." Page: 4 of 8 Date:

5 Standard Test Procedures Manual STP RESULTS AND CALCULATIONS 4.1. Calculations Use the formulas given to calculate each of the following quantities: Hydroscopic Moist. = Air Dry Wt. - Oven Dry Wt. x 100 Oven Dry Wt. % Pass mm Sieve Total Sample Wt. - Wt. Ret x 100 Total Sample Wt. Oven dry wt. of dispersed sample W d = Air Dry Wt. x % Hydroscopic Moist. Wt. of Dispersed Sample Corrected to total sample basis = w W = Oven Dry Wt. x 100 % Pass mm Enter appropriate values in the columns marked "K" and "L" on Form MR-8. The required values are obtained from the tables on the form. K depends on temperature, while L depends on the original uncorrected hydrometer reading. Calculate grain diameter from each hydrometer reading using the formula following, and enter the data in the correct column on the form. Grain Diameter = K L T All the values required for the calculations are taken from the data previously recorded in the various columns. Calculated percentage (P) of total test sample in suspension for each hydrometer reading and enter the data in the final column on the form. Use the following formula to calculate P: P = R x 100 W Where R = corrected by hydrometer reading W = dispersed weight of sample corrected to total sample Date: Page: 5 of 8

6 Standard Test Procedures Manual basis, as previously calculated. STP Calculate the sieve analysis portion of the test and enter the values in the column on the form marked "PERCENTAGE PASSING." For the fraction retained on the 2.00 mm sieve, base calculations on the total air dry weight of sample. For the fraction passing the 2.00 mm sieve, adjust the cumulative weights passing each sieve to the "weight dispersed basis" or W d as previously calculated. First obtain the weight accumulated on the balance for the material from the 71 mm sieve to the 2.00 mm sieve. Subtract this weight from W d and use this difference as an adjustment to each sieve size as shown in the following example. Assume weight dispersed or W d = 49.5 g Weight after washing over 71 mm and drying = 15 Adjustment = 34.5 Sieve Cumulated Wt. Adjusted Wt mm 15.0 g 49.5 g 400 mm 20.5 g 45.0 g 71 mm 1.0 g 35.5 g Calculate percent passing each sieve using the formula: % Pass. = Adjusted Wt. x 100 W Enter the values for the percentages passing for both the coarse and fine fractions in the "SIEVE ANALYSIS" section of Form MR-8 (Figure ) Reporting Results Combine the results of the sieve analysis and hydrometer analysis and report on Form MR-38. The form includes a graphical presentation of data. 5. ADDED INFORMATION 5.1. References ASTM D Page: 6 of 8 Date:

7 Standard Test Procedures Manual STP General The hydrometer test is an application of Stokes Law, which in essence states that larger particles fall more quickly in a suspending fluid, while finer particles remain in suspension longer. The time at which the hydrometer readings are taken determines the size of particle remaining in suspension, while the reading on the hydrometer determines the amount of that size. Several assumptions are made about particles shape and other test conditions, so the results are somewhat approximate. The sieve portion and hydrometer portion of the test may not exactly line up. The method as presented, assumes a particle specific gravity of For most purposes this will be sufficiently accurate even though S.G.'s may be somewhat lower or higher. If further refinement is required, additional corrections may be found in the reference. Results are used to indicate whether the soil is frost susceptible and for comparing soils from different areas or strata. Because the sample size is small, take extra care to obtain representative material. Considerable care should also be taken in all weighing and liquid volume measurements. The sample must be completely dispersed and remain dispersed throughout the test. Be sure the dispersing agent is not more than one month old. Also make sure the stirring paddle is not badly worn. Some soil (like heavy clays) tend to coagulate and form curds and then settle quickly giving false readings. If you see any evidence of coagulation, you must re-run the test. Reducing the sample size to 25 g sometimes helps this problem. Date: Page: 7 of 8

8 Standard Test Procedures Manual STP MECHANICAL ANALYSIS OF SOIL VALUE OF L SEIVE ANALYSIS HYD RDG. L HYD RDG. L HYD RDG. L SIEVE WT % SAMPLE NO SIZE PASS PASS TESTED BY mm DATE mm SAMPLE WEIGHT mm mm mm um VALUE OF K um TEMP O C K TEMP O C K um um um DETERMINATION OF SIZE AND PERCENTAGE OF SOIL IN SUSPENSION HYDROMETRE READING MIN CORRECTION GRAIN % OF TOTAL TEST TIME TEMP ORIG. CORRECTED FOR COEFFICIENTS DIA. SAMPLE IN CALGON & TEMP T L K k L / T SUSPENSION FIGURE Page: 8 of 8 Date:

Standard Test Method for Particle-Size Analysis of Soils 1

Standard Test Method for Particle-Size Analysis of Soils 1 Designation: D 422 6 (Reapproved 2002) Standard Test Method for Particle-Size Analysis of Soils 1 This standard is issued under the fixed designation D 422; the number immediately following the designation

More information

SEDIMENTATION ANALYSIS

SEDIMENTATION ANALYSIS SEDIMENTATION ANALYSIS Lab. Report NO. 5 DEFINITION Sedimentation (hydrometer and pipette) analysis defines the grain size distribution curve of soils that are too fine to be tested with sieves. Sedimentation

More information

METHOD A6 THE DETERMINATION OF THE GRAIN SIZE DISTRIBUTION IN SOILS BY MEANS OF A HYDROMETER

METHOD A6 THE DETERMINATION OF THE GRAIN SIZE DISTRIBUTION IN SOILS BY MEANS OF A HYDROMETER METHOD A6 THE DETERMINATION OF THE GRAIN SIZE DISTRIBUTION IN SOILS BY MEANS OF A HYDROMETER SCOE This method covers the quantitative determination of the distribution of particle sizes in soils. The distribution

More information

Laboratory 2 Hydrometer Analysis Atterberg Limits Sand Equivalent Test

Laboratory 2 Hydrometer Analysis Atterberg Limits Sand Equivalent Test Laboratory 2 Hydrometer Analysis Atterberg Limits Sand Equivalent Test INTRODUCTION Grain size analysis is widely used for the classification of soils and for specifications of soil for airfields, roads,

More information

Institute of Technology of Cambodia

Institute of Technology of Cambodia Contents SIEVE ANALYSIS... 2 I. Introduction... 2 II. Method and Equipment... 2 1. Method in Sieve Analysis... 2 2. Equipment... 2 3. Data table of Soil... 3 4. Formula for calculating the percent of retaining

More information

Particle Size Distribution Analysis for Ceramic Pot Water filter production

Particle Size Distribution Analysis for Ceramic Pot Water filter production Particle Size Distribution Analysis for Ceramic Pot Water filter production Maria del Mar Duocastella and Kai Morrill Potters Without Borders, Enderby, British Columbia, Canada - September 2012 Abstract:

More information

Laboratory Soil Classification

Laboratory Soil Classification Laboratory Soil Classification Lin Li, Ph.D. Center for Environmentally Sustainable Transportation in Cold Climates University of Alaska Fairbanks June 6 th, 2016 2016 Summer Transportation Institute,

More information

Effect of hydrometer type on particle size distribution of fine grained soil

Effect of hydrometer type on particle size distribution of fine grained soil Effect of hydrometer type on particle size distribution of fine grained soil A. Kaur* & G.C. Fanourakis University of Johannesburg, Johannesburg, South Africa ABSTRACT: The particle size distribution of

More information

Materials Testing and and and and and and and and 2-88

Materials Testing and and and and and and and and 2-88 FM 5-472 C1 Change 1 Headquarters Department of the Army Washington, DC, 29 December 2000 Materials Testing 1. Change FM 5-472, 27 October 1999, as follows: Remove Old Pages Insert New Pages 2-65 and 2-66

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 205-5 Standard Test Procedures Manual 1. SCOPE 1.1. Description of Test 1.2. Application of Test This method describes the procedure for determining the relationship between the moisture content and

More information

Math Matters: Dissecting Hydrometer Calculations

Math Matters: Dissecting Hydrometer Calculations Math Matters: Dissecting Hydrometer Calculations By Jonathan Sirianni, Senior Laboratory Assessor 2 Posted: April 2013 In the 16th century Galileo and the Tower of Pisa made famous the fact that two objects,

More information

EXPERIMENT 1 SIEVE AND HYDROMETER ANALYSIS (GRAIN SIZE ANALYSIS) (PREPARED BY : AHMAD FAIZAL MANSOR)

EXPERIMENT 1 SIEVE AND HYDROMETER ANALYSIS (GRAIN SIZE ANALYSIS) (PREPARED BY : AHMAD FAIZAL MANSOR) EXPERIMENT 1 SIEVE AND HYDROMETER ANALYSIS (GRAIN SIZE ANALYSIS) (PREPARED BY : AHMAD FAIZAL MANSOR) 1.0 OBJECTIVE This test is performed to determine the percentage of different grain sizes contained

More information

Name Lab Section Date. Sediment Lab

Name Lab Section Date. Sediment Lab Name Lab Section Date. Investigating Stokes Law Sediment Lab ds = density of solid, g/cm dw = density of water, g/cm g = gravity, 980 cm/second 2 D = particle diameter in centimeters μ = molecular viscosity,

More information

LABORATORY 3 SOIL ANALYSIS

LABORATORY 3 SOIL ANALYSIS VEGETATION DESCRIPTION AND ANALYSIS 2017 LABORATORY 3 SOIL ANALYSIS OBJECTIVE This lab will obtain four key soil parameters from the samples collected from Shawnee Gowan s Grizzly Glacier project relevés.

More information

hydrometer set operating instructions All it takes for environmental research

hydrometer set operating instructions All it takes for environmental research hydrometer set operating instructions 1 2 3 4 5 6 10 7 8 9 Contents On these operating instructions...2 1. Description...2 2. Installation...2 3. Preparing samples for particle size analysis...4 3.1 Principle...4

More information

To determine relevant properties of aggregates used in the making of hot mix asphalt (HMA).

To determine relevant properties of aggregates used in the making of hot mix asphalt (HMA). Analysis, Uncompacted Voids of Fine Aggregates, Sand Equivalent Test OBJECTIVE: EQUIPMENT: To determine relevant properties of aggregates used in the making of hot mix asphalt (HMA). A set of sieves (",

More information

SAMPLING AND TESTING AGGREGATES

SAMPLING AND TESTING AGGREGATES SAMPLING AND TESTING AGGREGATES Testing As stated in the previous chapter, the Producer shall furnish and maintain a plant laboratory, meeting the requirements of Section 106.07 of the Road and Bridge

More information

LABORATORY TESTING SECTION. Method of Test for CALIBRATION OF MECHANICAL SIEVE SHAKER

LABORATORY TESTING SECTION. Method of Test for CALIBRATION OF MECHANICAL SIEVE SHAKER Commonwealth of Pennsylvania PA Test Method No. 608 Department of Transportation 7 Pages 1. SCOPE LABORATORY TESTING SECTION Method of Test for CALIBRATION OF MECHANICAL SIEVE SHAKER 1.1 This method of

More information

3. Brush adhering grains from the outside of the measure and determine the mass of the cylinder and contents to the nearest 0.1g.

3. Brush adhering grains from the outside of the measure and determine the mass of the cylinder and contents to the nearest 0.1g. Uncompacted Voids of Fine Aggregates, Sand Equivalent Test, Binder Viscosity OBJECTIVE: EQUIPMENT: To determine relevant properties and specification compliance of aggregates and binders used in the making

More information

SECTION IV - SAMPLING AND TESTING AGGREGATES

SECTION IV - SAMPLING AND TESTING AGGREGATES SECTION IV - SAMPLING AND TESTING AGGREGATES Testing Sieve Analysis Aggregate gradation (sieve analysis) is the distribution of particle sizes expressed as a percent of the total dry weight. Gradation

More information

TESTS ON AGGREGATES 58

TESTS ON AGGREGATES 58 TESTS ON AGGREGATES 58 59 3.1 DETERMINATION OF INDICES (FLAKINESS AND ELONGATION) STANDARD IS: 2386 (Part 1) 1963. DEFINITION The Flakiness Index of aggregates is the percentage by weight of particles

More information

DETERMINATION OF WORKABILITY OF FRESH CONCRETE BY SLUMP TEST

DETERMINATION OF WORKABILITY OF FRESH CONCRETE BY SLUMP TEST DETERMINATION OF WORKABILITY OF FRESH CONCRETE BY SLUMP TEST Aim: To determine the workability of concrete by Slump test as per IS : 1199-1959 Mould - in the form of the frustum of a cone having the following

More information

CHAPTER 3 CHARACTERIZATION OF MANUFACTURED SAND

CHAPTER 3 CHARACTERIZATION OF MANUFACTURED SAND 41 CHAPTER 3 CHARACTERIZATION OF MANUFACTURED SAND 3.1 GENERAL The characteristics of concrete mainly depend upon the properties of materials used. Grading, mineralogical composition, shape and texture

More information

State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR WASHING AND SIEVE ANALYSIS OF COARSE AND FINE AGGREGATE

State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR WASHING AND SIEVE ANALYSIS OF COARSE AND FINE AGGREGATE State of Nevada Department of Transportation Materials Division Test Method Nev. T206G METHOD OF TEST FOR WASHING AND SIEVE ANALYSIS OF COARSE AND FINE AGGREGATE SCOPE This test method covers the procedure

More information

CHAPTER 2 SIEVE ANALYSIS AND FINENESS MODULUS

CHAPTER 2 SIEVE ANALYSIS AND FINENESS MODULUS CHAPTER 2 SIEVE ANALYSIS AND FINENESS MODULUS Sampling Since the reason for sampling aggregates is to determine the gradation (particle size) of the aggregate, it is necessary that they be sampled correctly.

More information

Drinking Water Treatment

Drinking Water Treatment Introduction History of Water Treatment Drinking Water Treatment Water has always played a prominent role in human civilization. When people first began settling in one place and growing crops for sustenance,

More information

CEEN Laboratory 1 Mechanical Sieve Analysis Specific Gravity of Soil Solids Gravimetric/Volumetric Relations

CEEN Laboratory 1 Mechanical Sieve Analysis Specific Gravity of Soil Solids Gravimetric/Volumetric Relations INTRODUCTION CEEN 3160 - Laboratory 1 Mechanical Sieve Analysis Specific Gravity of Soil Solids Gravimetric/Volumetric Relations Grain size analysis is widely used for the classification of soils and for

More information

May 1, 2000 LAB MANUAL SPECIFIC GRAVITY & ABSORPTION of COARSE AGGREGATE AASHTO Designation T 85 (Mn/DOT Modified)

May 1, 2000 LAB MANUAL SPECIFIC GRAVITY & ABSORPTION of COARSE AGGREGATE AASHTO Designation T 85 (Mn/DOT Modified) May 1, 2000 LAB MANUAL 1204.0 1204 SPECIFIC GRAVITY & ABSORPTION of COARSE AGGREGATE AASHTO Designation T 85 (Mn/DOT Modified) 1204.1 GENERAL This test method is intended for use in determining the bulk

More information

DETERMINING MOISTURE CONTENT OF BITUMINOUS MIXTURES

DETERMINING MOISTURE CONTENT OF BITUMINOUS MIXTURES Test Procedure for DETERMINING MOISTURE CONTENT OF BITUMINOUS MIXTURES TxDOT Designation: Tex-212-F Effective Date: March 2016 1. SCOPE 1.1 Use this test method to determine the moisture content of any

More information

APPENDIX D ANSWERS TO STUDY QUESTIONS/PROBLEMS

APPENDIX D ANSWERS TO STUDY QUESTIONS/PROBLEMS APPENDIX D ANSWERS TO STUDY QUESTIONS/PROBLEMS Chapter 2 Quality Assurance Program Questions 1. What determines the lot size for a specified material accepted under the Statistical QA Program? B. The discretion

More information

METHOD OF TEST FOR FREEZING-AND-THAWING OF COARSE AGGREGATE

METHOD OF TEST FOR FREEZING-AND-THAWING OF COARSE AGGREGATE Ministry of Transportation, Ontario Test Method LS-614, Rev. No. 17 Laboratory Testing Manual Date : 97 08 01 Page 1 of 8 METHOD OF TEST FOR FREEZING-AND-THAWING OF COARSE AGGREGATE 1. SCOPE 1.1 This method

More information

BULK SPECIFIC GRAVITY OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166 (11)

BULK SPECIFIC GRAVITY OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166 (11) BULK SPECIFIC GRAVITY OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166 (11) Scope This procedure covers the determination of bulk specific gravity (G mb ) of

More information

CE 344 Geotechnical Engineering Sessional-I (Lab Manual)

CE 344 Geotechnical Engineering Sessional-I (Lab Manual) CE 344 Geotechnical Engineering Sessional-I (Lab Manual) Department of Civil Engineering Ahsanullah University of Science and Technology January 2018 Preface Geotechnical Engineering is the specialty of

More information

Development Team. Paper No: 5 Water Resources and Management Module 6 : Processing of Hydrometer Data. Environmental Sciences

Development Team. Paper No: 5 Water Resources and Management Module 6 : Processing of Hydrometer Data. Environmental Sciences Paper No: 5 Module 6 : Processing of Hydrometer Data Principal Investigator & Co- Principal Investigator Paper Coordinator Content Writer Content Reviewer Development Team Prof. R.K. Kohli Prof. V.K. Garg

More information

METHOD A2 THE DETERMINATION OF THE LIQUID LIMIT OF SOILS BY MEANS OF THE FLOW CURVE METHOD

METHOD A2 THE DETERMINATION OF THE LIQUID LIMIT OF SOILS BY MEANS OF THE FLOW CURVE METHOD METHOD A2 1 SCOPE THE DETERMINATION OF THE LIQUID LIMIT OF SOILS BY MEANS OF THE FLOW CURVE METHOD Definition The liquid limit of a soil as defined below is determined by using the device specified to

More information

1. Fineness Standard EN describes two methods of determining the fineness of cement: sieving method air permeability method ( Blaine)

1. Fineness Standard EN describes two methods of determining the fineness of cement: sieving method air permeability method ( Blaine) TESTING of CEMENT (EN 197 Standard) 1. Fineness Standard EN 196-6 describes two methods of determining the fineness of cement: sieving method air permeability method ( Blaine) Sieving Method This method

More information

M. It is expressed in units such a g/cc,

M. It is expressed in units such a g/cc, Experiment 2 Density Part I: Density of a solid Density is defined as mass per unit volume, D = V M. It is expressed in units such a g/cc, g/ml, lb/ft 3, etc. Determination of mass is done by weighing

More information

Dry matter content and fibre content

Dry matter content and fibre content Revised 1996 Black liquor Dry matter content and fibre content 0 Introduction This SCAN-test Standard replaces SCAN-N 22:77 from which it differs in that it also provides a procedure for the determination

More information

p 0 0 Department of Agriculture, Division of Conservation Notice of Hearing on Proposed Administrative Regulations, Statewide

p 0 0 Department of Agriculture, Division of Conservation Notice of Hearing on Proposed Administrative Regulations, Statewide p 0 0 d Department of Agriculture, Division of Conservation Notice of Hearing on Proposed Administrative Regulations, Statewide SECRETARY OF STATE oor me A public hearing will be conducted at 10:00 a.m.,

More information

METHOD OF TEST FOR QUANTITATIVE EXTRACTION OF ASPHALT CEMENT AND ANALYSIS OF EXTRACTED AGGREGATE FROM BITUMINOUS PAVING MIXTURES

METHOD OF TEST FOR QUANTITATIVE EXTRACTION OF ASPHALT CEMENT AND ANALYSIS OF EXTRACTED AGGREGATE FROM BITUMINOUS PAVING MIXTURES 4. APPARATUS 4.1 BALANCES: Of sufficient capacity and sensitivity for miscellaneous weighing, with associated accessories such as balance pans... 4.2 DRYING PANS: Seamless enamel, stainless steel, or aluminum

More information

BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE

BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE Test Procedure for BULK SPECIFIC GRAVITY AND WATER ABSORPTION OF AGGREGATE Texas Department of Transportation TxDOT Designation: Tex-201-F Effective Dates: November 2004 December 2010. 1. SCOPE 1.1 This

More information

AGGREGATE Performance Exam

AGGREGATE Performance Exam AG-1 Special Requirements Test Method Test Designation Page Combined ACI Aggregate Base Testing Technician Level 1 certifications will satisfy the requirements for these tests. Must be obtained within

More information

PLANS for the Chesapeake Bay A Teacher s Guide

PLANS for the Chesapeake Bay A Teacher s Guide 1 Nutrient Enrichment of Phytoplankton in the Chesapeake Estuary A MWEE for 9 th Grade Environmental Science Classes Fifth Day of PLANS Teacher led classroom activity supported by PLANS staff via online

More information

7/7/2011. Outline. Introduction. Introduction. Cement Properties. Introduction. Introduction Standard Methods for Testing Concrete

7/7/2011. Outline. Introduction. Introduction. Cement Properties. Introduction. Introduction Standard Methods for Testing Concrete Standard Methods for Testing Concrete Ingredient CE 231 Construction Materials July 5 th, 2011 Withit PANSUK Department of Civil Engineering Faculty of Engineering Chulalongkorn University Outline Introduction

More information

PRESENTATION OF "GSA"

PRESENTATION OF GSA PRESENTATION OF "GSA" We are glad to submit to your attention our NEW PATENTED instrument G S A (Grain Size Analyser) which allows particle size characterisation of soil by sedimentation according to ASTM

More information

B Soil Particle Analysis Procedure

B Soil Particle Analysis Procedure B-6175 8-05 Soil Particle Analysis Procedure On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure Bruce Lesikar Professor and Extension Program Leader for Biological and Agricultural

More information

CEEN-043 LABORATORY 4 AGGREGATES FOR PORTLAND CEMENT CONCRETE

CEEN-043 LABORATORY 4 AGGREGATES FOR PORTLAND CEMENT CONCRETE CEEN-43 LABORATORY 4 AGGREGATES FOR PORTLAND CEMENT CONCRETE Aggregates for Portland Cement Concrete Overview Aggregates generally occupy 7 8% of the volume of concrete and can therefore be expected strongly

More information

GEL Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Grade: /25

GEL Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Grade: /25 GEL 4250 - Hydrogeology (Groundwater) LAB 2: POROSITY & HYDRAULIC CONDUCTIVITY - Porosity Segment - Name: Section: Grade: /25 COMPLETE & TURN IN ONLY PAGES THAT HAVE A FIELD FOR YOUR NAME. ALL OTHER PAGES

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered civil engineer, mechanical engineer, fire protection engineer, and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

Drilling Technologies

Drilling Technologies Drilling Technologies WTC-11-2550 September 2011 API 13C (ISO 13501) Sieve and Conductance Testing Global Wire de Colombia S. A. S. Intertek Westport Technology Center 6700 Portwest Drive Houston, Texas

More information

Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for

Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation 7 Pages 1. SCOPE LABORATORY TESTING SECTION Method of Test for THE MOISTURE-DENSITY RELATIONS OF SOILS (Using a 2.5 kg (5.5-lb.)

More information

Soil Mechanics Laboratory Manual

Soil Mechanics Laboratory Manual Department of Civil and Construction Engineering Soil Mechanics Laboratory Manual 2017-2018 Engr. Rana Muhammad Sajid Chapter-1 MOISTURE CONTENT...3 Moisture Content Determination by Oven drying method......3

More information

Fines fraction of paper stock by wet screening

Fines fraction of paper stock by wet screening T 26 cm-94 PROVISIONAL METHOD 979 CLASSICAL METHOD 990 REVISED 994 994 TAPPI The information and data contained in this document were prepared by a technical committee of the Association. The committee

More information

Sieve Opening, mm Opening, in Soil Type. Cobbles mm 3 in. Gravel mm (2.0 mm) #4 [# 10 for AASHTO) ~0.2 in (~0.

Sieve Opening, mm Opening, in Soil Type. Cobbles mm 3 in. Gravel mm (2.0 mm) #4 [# 10 for AASHTO) ~0.2 in (~0. CE 340, Sumer 2015 Soil Classification 1 / 6 The geotechnical engineer predicts the behavior of soils for his or her clients (structural engineers, architects, contractors, etc). A first step is to classify

More information

Thermal Conduction and Surface Area

Thermal Conduction and Surface Area Chapter 16 Thermal Energy and Heat Investigation 16A Thermal Conduction and Surface Area Background Information The quantity of energy transferred by heat from a body depends on a number of physical properties

More information

Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation Revised May Pages LABORATORY TESTING SECTION

Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation Revised May Pages LABORATORY TESTING SECTION Commonwealth of Pennsylvania PA Test Method No. 106 Department of Transportation Revised 7 Pages 1. SCOPE LABORATORY TESTING SECTION Method of Test for THE MOISTURE-DENSITY RELATIONS OF SOILS (Using a

More information

Standard Test Procedures Manual

Standard Test Procedures Manual STP 208-3 Standard Test Procedures Manual 1. SCOPE 1.1. Description of Test This method describes the procedure for determining the relationship between the moisture content and density for soil cement

More information

APPENDIX D - ANSWERS TO PROBLEMS & QUESTIONS

APPENDIX D - ANSWERS TO PROBLEMS & QUESTIONS APPENDIX D - ANSWERS TO PROBLEMS & QUESTIONS Section II Bonded Weighperson Program 1. The Daily Summary Sheet is filled out by the: C. Weighperson 2. The purpose of the Bonded Weighperson Program is to

More information

Copper Odyssey. Chemical Reactions of Copper

Copper Odyssey. Chemical Reactions of Copper Name Lab Partner(s) Copper Odyssey Chemical Reactions of Copper Date Period Elemental copper metal will be converted into copper (II) ion and then brought through a series of compound conversions until

More information

TESTING SINGLE-COMPONENT POLYURETHANE WATERPROOFING

TESTING SINGLE-COMPONENT POLYURETHANE WATERPROOFING Test Procedure for TESTING SINGLE-COMPONENT POLYURETHANE WATERPROOFING TxDOT Designation: Tex-615-J Effective Date: August 1999 1. SCOPE 1.1 Use this method to test a single-component polyurethane coal-tar-modified

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Soil Classification Presented by: Civil Engineering Academy Is an aggregate of loose mineral and organic particles. Exhibits strong and permanent cohesive forces

More information

Mechanical Analysis of Soil. Mechanical Analysis of Soil. CIVL 1112 Sieve Analysis 1/7. As complex as it is, soil can be described simply.

Mechanical Analysis of Soil. Mechanical Analysis of Soil. CIVL 1112 Sieve Analysis 1/7. As complex as it is, soil can be described simply. IVL 111 1/7 As complex as it is, soil can be described simply. It consists of four major components: air, water, organic matter, and mineral matter. The structure of soil determines its suitability for

More information

Concrete Field Testing Technician Study Guide

Concrete Field Testing Technician Study Guide Concrete Field Testing Technician Study Guide ASTM C 172 SAMPLING FRESH CONCRETE 1. The maximum allowable time between obtaining the first and final portions of a composite sample is minutes. (Section

More information

Test specimens from asphalt mixture pavement will be sampled according to AASHTO R 67.

Test specimens from asphalt mixture pavement will be sampled according to AASHTO R 67. BULK SPECIFIC GRAVITY (Gmb) OF COMPACTED ASPHALT MIXTURES USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166 Scope This procedure covers the determination of bulk specific gravity (Gmb) of compacted

More information

Laboratory Manual. Concrete and aggregate. Content

Laboratory Manual. Concrete and aggregate. Content Laboratory Manual Concrete and aggregate Content Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Section 8 Section 9 Trial Mix Slump Density of Compacted Fresh Concrete Making of

More information

VISCOSITY, INHERENT (One Point)

VISCOSITY, INHERENT (One Point) VISCO.02-1 VISCOSITY, INHERENT (One Point) PRINCIPLE SCOPE A weighed starch sample is dispersed in sodium hydroxide solution using a standard technique. Relative viscosity of the sample dispersion is determined

More information

4.1 DETERMINATION OF SPECIFIC GRAVITY

4.1 DETERMINATION OF SPECIFIC GRAVITY TESTS ON CEMENT 94 4.1 DETERMINATION OF SPECIFIC GRAVITY STANDARD IS: 4031-1988. DEFINITION Specific Gravity is defined as the ratio of the mass of the cement to the mass of an equal volume of kerosene.

More information

Moisture in soils: Types of water in soil sample: University of Baghdad College of Engineering Soil Mechanics Laboratory ( ) 3 rd year

Moisture in soils: Types of water in soil sample: University of Baghdad College of Engineering Soil Mechanics Laboratory ( ) 3 rd year Experiment No. 1: Water Content & Atterberg Limits Test: Moisture in soils: Naturally occurring soils nearly always contain water as a part of their structure. The moisture content of a soil is assumed

More information

as filler rocks blast furnace slag form the body reduce shrinkage 70-80% of the volume clean, hard, strong, durable graded in size

as filler rocks blast furnace slag form the body reduce shrinkage 70-80% of the volume clean, hard, strong, durable graded in size UNIT 2 AGGREGATES AGGREGATES AGGREGATES are the materials basically used as filler with binding material in the production of mortar and concrete They are derived from igneous, sedimentary and metamorphic

More information

Objective To determine the penetration value of an asphalt cement sample.

Objective To determine the penetration value of an asphalt cement sample. 2 Transportation Laboratory The grades of the asphalt cement depending on the penetration in 1/10 mm are: AC 20 30 ( hard & not effect with temperature ) used for inclined planes due to its high viscosity.

More information

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30 MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30 Scope This procedure covers mechanical analysis of aggregate recovered from bituminous mix samples in accordance with AASHTO T 30-13. This

More information

Experiment: Measurements

Experiment: Measurements Experiment: Measurements I. INTRODUCTION Measurements are essential to experimental sciences such as chemistry, physics, biology, and geology. The measurements are usually made using the metric system

More information

Tex-121-E, Soil-Lime Testing

Tex-121-E, Soil-Lime Testing Overview Effective dates: August 1999 - July 2002. This method consists of two parts. 'Part I, Compressive Strength Test Methods (Laboratory Mixed)' determines the unconfined compressive strength as an

More information

CHARACTERIZATION OF CERAMIC SHELLS FABRICATED USING YTTRIA AS REINFORCING FILLER

CHARACTERIZATION OF CERAMIC SHELLS FABRICATED USING YTTRIA AS REINFORCING FILLER CHARACTERIZATION OF CERAMIC SHELLS FABRICATED USING YTTRIA AS REINFORCING FILLER A. Chennakesava Reddy Assistant Professor, Department of Mechanical Engineering M.J. College of Engineering & Technology,

More information

MASS PER CUBIC FOOT (METER), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF FRESHLY MIXED CONCRETE (Kansas Test Method KT-20)

MASS PER CUBIC FOOT (METER), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF FRESHLY MIXED CONCRETE (Kansas Test Method KT-20) 5.9.20 MASS PER CUBIC FOOT (METER), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF FRESHLY MIXED CONCRETE (Kansas Test Method ) 1. SCOPE This method of test covers the procedure for determining the mass per cubic

More information

WEEK 5 ACTIVITY. Lecture (2 hours)

WEEK 5 ACTIVITY. Lecture (2 hours) WEEK 5 ACTIVITY Lecture (2 hours) LEARNING OUTCOMES Week 5 : (3HL) Coverage : Physical Characteristics and Classification of Soils : Density, PSD, ATL, Organic matter, ph value, Compaction test Learning

More information

PHYSICAL CHANGE OR CHEMICAL CHANGE?

PHYSICAL CHANGE OR CHEMICAL CHANGE? PHYSICAL CHANGE OR CHEMICAL CHANGE? STUDENT BOOK Chapter 2, page 58 LAB 24 OBSERVATION TOOLBOX Pages 18 19, 32, 39 40 Goal Distinguish between a physical change and a chemical change. Observation criteria

More information

Standard Test Method for Index of Aggregate Particle Shape and Texture 1

Standard Test Method for Index of Aggregate Particle Shape and Texture 1 Designation: D 98 00 Standard Test Method for Index of Aggregate Particle Shape and Texture This standard is issued under the fixed designation D 98; the number immediately following the designation indicates

More information

2015 CORNELL SOIL HEALTH TRAIN-THE-TRAINER WORKSHOP AUGUST 5-8, 2015 ITHACA, NY. Wet Aggregate Stability Test

2015 CORNELL SOIL HEALTH TRAIN-THE-TRAINER WORKSHOP AUGUST 5-8, 2015 ITHACA, NY. Wet Aggregate Stability Test 2015 CORNELL SOIL HEALTH TRAIN-THE-TRAINER WORKSHOP AUGUST 5-8, 2015 ITHACA, NY Background / References: Wet Aggregate Stability Test The Wet Aggregate Stability (WAS) Test assesses the extent to which

More information

CEEN Geotechnical Engineering - Laboratory Session 1 Mechanical Sieve Analysis, Specific Gravity of Solids, Volumetric/Gravimetric Relations

CEEN Geotechnical Engineering - Laboratory Session 1 Mechanical Sieve Analysis, Specific Gravity of Solids, Volumetric/Gravimetric Relations OBJECTIVE: EQUIPMENT: To obtain data necessary for the classification of a soil sample. A set of sieves (3/8", Nos. 4, 10, 16, 40, 100, 200 and Pan), brushes for cleaning sieves, balance, sieve shaker,

More information

Introduction to Geotechnical Engineering, 2e Das/Sivakugan Chapter 2 Grain-Size Analysis Cengage Learning Engineering. All Rights Reserved.

Introduction to Geotechnical Engineering, 2e Das/Sivakugan Chapter 2 Grain-Size Analysis Cengage Learning Engineering. All Rights Reserved. Chapter 2 Grain-Size Analysis 1 Learning Objectives and Outline To learn the size ranges for gravels, sands, and fines To understand how soils are formed To be able to develop the grain-size distribution

More information

Total Dissolved Solids

Total Dissolved Solids Total Dissolved Solids LabQuest 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment

More information

Introduction to Geotechnical Engineering 2nd Edition Das SOLUTIONS MANUAL

Introduction to Geotechnical Engineering 2nd Edition Das SOLUTIONS MANUAL Introduction to Geotechnical Engineering 2nd Edition Das SOLUTIONS MANUAL Full clear download at: https://testbankreal.com/download/introduction-geotechnicalengineering-2nd-edition-das-solutions-manual/

More information

BACKGROUND: Porosity permeability. PART I Materials Procedure EMPTY the tube.

BACKGROUND: Porosity permeability. PART I Materials Procedure EMPTY the tube. Name: Water Movement (adapted from Wards) LAB BACKGROUND: While some precipitation falls to the earth and runs off into streams and river, another portion seeps slowly through the soil into the upper layers

More information

Bulk Density Protocol

Bulk Density Protocol Bulk Density Protocol Purpose To measure the soil bulk density of each horizon in your soil profile. Overview Students obtain a soil sample in the field using a container with a measured volume. The soil

More information

Commonwealth of Pennsylvania PA Test Method No. 507 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for

Commonwealth of Pennsylvania PA Test Method No. 507 Department of Transportation October Pages LABORATORY TESTING SECTION. Method of Test for Commonwealth of Pennsylvania PA Test Method No. 507 Department of Transportation 6 Pages 1. SCOPE LABORATORY TESTING SECTION Method of Test for BULK SPECIFIC GRAVITY (SATURATED SURFACE-DRY BASIS), ABSORPTION,

More information

State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR DENSITY (UNIT WEIGHT) AND VOLUME OF CONCRETE

State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR DENSITY (UNIT WEIGHT) AND VOLUME OF CONCRETE State of Nevada Department of Transportation Materials Division METHOD OF TEST FOR DENSITY (UNIT WEIGHT) AND VOLUME OF CONCRETE SCOPE This test method describes the procedure for determining the density

More information

CONCRETE TECHNOLOGY LABORATORY

CONCRETE TECHNOLOGY LABORATORY MANUAL FOR CONCRETE TECHNOLOGY LABORATORY IV YEAR I SEMESTER UNDERGRADUATE COURSE IN CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY MANGALPALLY 501 510

More information

Scientist Guide. Nails for Breakfast? Introduction. Activity Overview. Materials

Scientist Guide. Nails for Breakfast? Introduction. Activity Overview. Materials Scientist Guide Nails for Breakfast? Introduction The periodic table of elements contains many elements that are essential for life, including oxygen, carbon and nitrogen. But did you know that iron (Fe)

More information

Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet

Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet Overview In this lab, students will learn about ethanol and its important role in our world s ever-increasing demand for

More information

IDENTIFYING UNKNOWN SUBSTANCES

IDENTIFYING UNKNOWN SUBSTANCES IDENTIFYING UNKNOWN SUBSTANCES LAB 15 EXPERIMENT STUDENT BOOK Chapter 1, page 25 TOOLBOX Page 4 and 36 Goal Identify unknown substances with the help of different tests. 1. What is the independent variable

More information

Analysis of Calcium Carbonate Tablets

Analysis of Calcium Carbonate Tablets Experiment 9 Analysis of Calcium Carbonate Tablets Prepared by Ross S. Nord, Eastern Michigan University PURPOSE To perform a gravimetric exercise to determine weight percent of active ingredient in a

More information

Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet

Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet Kansas Corn: Ethanol - Corn Mash and Distillation High School Student Lab Packet Overview In this lab, students will learn about ethanol and its important role in our world s everincreasing demand for

More information

Archer G11 Partner: Judy Aug Gravimetric Analysis of a Metal Carbonate

Archer G11 Partner: Judy Aug Gravimetric Analysis of a Metal Carbonate Gravimetric Analysis of a Metal Carbonate Purpose The purpose of this lab is to identify the unknown carbonate. This can be done by finding the mass of the product carbonate and using stoichiometry on

More information

EXPERIMENT 5 Chemistry 110 COMPOSITION OF A MIXTURE

EXPERIMENT 5 Chemistry 110 COMPOSITION OF A MIXTURE EXPERIMENT 5 Chemistry 110 PURPOSE: The purpose of this experiment is to determine the percent composition of a mixture. COMPOSITION OF A MIXTURE Most matter is a mixture of many substances. For example,

More information

CE 240 Soil Mechanics & Foundations Lecture 1.3. Soil Particles (Das, Ch. 2)

CE 240 Soil Mechanics & Foundations Lecture 1.3. Soil Particles (Das, Ch. 2) CE 240 Soil Mechanics & Foundations Lecture 1.3 Soil Particles (Das, Ch. 2) Outline of this Lecture 1.Engineering consideration of soil particles 2.Sieve test 3.Hydrometer test 4.Particle distribution

More information

GENERAL EQUIPMENT. 3 Electronic analytical balance (320gr capacity - 0,001gr readability)

GENERAL EQUIPMENT. 3 Electronic analytical balance (320gr capacity - 0,001gr readability) 1. Laboratory Equipment Every laboratory equipment has its own calibration certificate and is operatedmaintained according to its manual guide. The equipment of the laboratory is listed below. The laboratory

More information

Beyond Engineering & Testing, LLC.

Beyond Engineering & Testing, LLC. in Round Rock, Texas, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information

Using LST Heavy Liquid at High Density

Using LST Heavy Liquid at High Density PO Box 2546, Malaga Western Australia 6944 Phone: +61 8 9248 2739 Fax: +61 8 9248 2749 central@chem.com.au ABN 21 009 431 494 Using LST Heavy Liquid at High Density 1. Increasing the density of LST Heavy

More information

PAVETEX Engineering, LLC

PAVETEX Engineering, LLC in El Paso, Texas, USA has demonstrated proficiency for the testing of construction materials and has conformed to the requirements established in AASHTO R 18 and the AASHTO Accreditation policies established

More information