Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime

Size: px
Start display at page:

Download "Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime"

Transcription

1 AABC Europe Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime Mainz Prof. Dr.-Ing. Andreas Jossen, Bernhard Rieger Institute for Electrical Energy Storage Technology (EES) Karlstrasse 45, Munich, Technical University of Munich Tel.: Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 1

2 Overview Motivation Courses of micro-mechanic issues From crystal level to cell level Strain within electrodes Coupled model approach Influence on cell design Validation and lifetime influence Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 2

3 In cylindrical cells, swelling can shorten lifetime The core is more stressed than the outer area One reason why upscaling of cylindrical cells is limited Source: Presentation Prof. T. Takamura Carbon Material in Power Sources. June 2005, ZSW Ulm Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 3

4 Investigation of the non linear aging effect Inhomogeneous plating: Higher compression results un faster li-plating (a) Outer part of the negative electrode exposed to 6 fast cycles. (b) Inner part of the same electrode showing a stripe pattern. Plating is marked by an ellipsis and arrows. (a) Computed tomographic crosscut of a pristine cell. The positive (1) and negative (2) current collector tabs are visible. The positive current collector is marked by an ellipsis, resulting deformations to the jelly rolls are marked by arrows. The positive current collector deforms the jelly roll. T. C. Bach, S. F. Schuster, E. Fleder, J. Müller, M. J. Brand, H. Lorrmann, A. Jossen, G. Sextl, Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression, Journal of Energy Storage, Vol. 5 (2015) Pages Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 4

5 Investigation of the non linear aging effect Forced heterogeneous compression by a hose clamp Heterogeneous compression results in li- plating in the areas with higher pressure. Possible reason is the compression of the separator and its local change in diffusion path. A hose clamp is placed on a cell. (b) Plating is visible on the overlap of the current collector imprints and the clamp which are visualized by black and red rectangles respectively. Conclusion: Better understanding of volume change and pressure within cells, electrodes and particles is necessary. T. C. Bach, S. F. Schuster, E. Fleder, J. Müller, M. J. Brand, H. Lorrmann, A. Jossen, G. Sextl, Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression, Journal of Energy Storage, Vol. 5 (2015) Pages Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 5

6 First volume change measurements Our initial investigations: Dilatometry of anode and cathode, displacement and single side laser scanning. A commercial pouch cell was selected Dilatometry with EL-CELL device Two side displacement measurement was set up A single side laser scanner was installed. B. Rieger, S. Schlueter, S.V. Erhard, J. Schmalz, G. Reinhart, A. Jossen, Multi-scale investigation of thickness changes in a commercial pouch type lithium-ion battery, Journal of Energy Storage (2016) Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 6

7 Measurement of volume change on crystal level of LCO Left figure: Unit cell parameters during charging for the O3 I and O3 II phases. Right figure: Comparison of the lattice unit cell volume change and the height change of the electrode during charging B. Rieger, S. Schlueter, S. V. Erhard and A. Jossen, Journal of The Electrochemical Society, 163 (8) A1595-A1606 (2016) Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 7

8 First volume change measurement Results of graphite-anode Non linear volume change - 1/3 approx. linear - next 1/3 reduced slope - last 1/3 increasing - at the end fast increase fits to stages in graphite Total volume change approx. 7% (reversible) Volume increases with lithiation Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 8

9 First volume change measurement Anode and cathode contribution to the battery thickness change during discharge Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 9

10 Influence of electrode structure Are structures based on spherical particles representative for real structures? Real structure reconstructed structure B. Rieger, S. Schlueter, S. V. Erhard and A. Jossen, Strain Propagation in Lithium-Ion Batteries from the Crystal Structure to the Electrode Level, Journal of The Electrochemical Society, 163 (8) A1595-A1606 (2016) Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 10

11 Measurement of volume change Modeling setup used in this study. a) Representative spherical particle model (RSPM). b) Realistic microstructure model (adapted from SEM cross-sectional images of the electrode) Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 11

12 Simulation results with representative spherical particle model Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 12

13 Relationship between volume change and thickness change Thickness change as a function of volume change and active material fraction: Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 13

14 Taking the thermal expansion into account Total expansion: Determined thermal expansion coefficients α cell at various SoC. Thermal expansion α cell = 1.1 μm K for a 6.5 mm thick cell B. Rieger, S.V. Erhard, K. Rumpf, A. Jossen, A new method to model the thickness change of a commercial pouch cell during discharge, J. Electrochem. Soc. 163 (2016) A1566-A Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 14

15 Simulation results Overall expansion Thermal expansion Intercalation expansion Simulated and measured displacement curves for different discharge rates. a) Overall pouch cell displacement t cell. b) Thermal displacement t th. c) Intercalation displacement t int B. Rieger, S.V. Erhard, K. Rumpf, A. Jossen, A new method to model the thickness change of a commercial pouch cell during discharge, J. Electrochem. Soc. 163 (2016) A1566-A Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 15

16 Coupled 3D Cell Model B. Rieger, S.V. Erhard, S. Kosch, M. Venator, A. Rheinfeldpf, A. Jossen, Multi-Dimensional Modeling of the Influence of Cell Design on Temperature, Displacement and Stress Inhomogeneity in Large-Format Lithium-Ion Cells, J. Electrochem. Soc. 163 (2016) A3099-A Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 16

17 Comparing of 2 cell designs Temperature at the end cc of discharge B. Rieger, S.V. Erhard, S. Kosch, M. Venator, A. Rheinfeldpf, A. Jossen, Multi-Dimensional Modeling of the Influence of Cell Design on Temperature, Displacement and Stress Inhomogeneity in Large-Format Lithium-Ion Cells, J. Electrochem. Soc. 163 (2016) A3099-A Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 17

18 Measurement (2d) of volume change Two 2d laser scanner system: Two 1d laser plus movement of scanner Two laser scanners scan the cell from both sides (frontside and backside) Inside a temperature controlled chamber Post-processing method for highly reproducible local thickness measurement (repeatability of approx. 10 μm between 100 cycles and 2 μm for consecutive measurements) Rieger, B., Schuster, S. F., Erhard, S. V., Osswald, P. J., Rheinfeld, A., Willmann, C., & Jossen, A. (2016). Multi-directional laser scanning as innovative method to detect local cell damage during fast charging of lithium-ion cells. Journal of Energy Storage, 8, Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 18

19 Measurement (2d) of volume change Charging of a cell with 1C rate At different temperatures At 40 C volume change is homogeneous and it is as expected (about 160 um) At 25 C there is an additional volume increase in the area of the terminals At 17 C the effect is increased. The volume change increases with decreasing distance to the terminals The volume change reaches a peak about cc charge phase is switched to cv charge phase. The thickness is decreasing to the expected value within about 30 minutes. Temperature effects have ben calculated and are not the reason for the effect. We assume increased Li-plating caused by the current density inhomogeneities Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 19

20 1C charging at different temperature 40 C 25 C 17 C Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 20

21 Reversible and irreversible volume change Laser-Checkup is conducted every 100 cycles inside the laser test benchto detect reversible and irreversible thickness changes Displacement overshoot results in faster capacity fade at 1C 25 C Linear aging for homogeneous load cases during charging Bernhard Rieger, Simon V. Erhard, Peter Keil, Andreas Jossen, Multi-Directional 3D Laser Scanning of Lithium-Ion Cells to Detect Inhomogeneity during Cycling and Aging, International Meeting on Lithium Batteries (IMLB) Chicago, June 19-24, Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 21

22 Reversible and irreversible volume change during lifetime Reversible thickness change (top) and irreversible thickness change (bottom) for aging at 0.5C charging rate Irreversible thickness increase is highest in the first 100 cycles and is evenly distributed Bernhard Rieger, Simon V. Erhard, Peter Keil, Andreas Jossen, Multi-Directional 3D Laser Scanning of Lithium-Ion Cells to Detect Inhomogeneity during Cycling and Aging, International Meeting on Lithium Batteries (IMLB) Chicago, June 19-24, Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 22

23 Reversible and irreversible volume change during lifetime Reversible thickness change (top) and irreversible thickness change (bottom) for aging at 1C charging rate Large irreversible thickness increase when lithium plating takes place Bernhard Rieger, Simon V. Erhard, Peter Keil, Andreas Jossen, Multi-Directional 3D Laser Scanning of Lithium-Ion Cells to Detect Inhomogeneity during Cycling and Aging, International Meeting on Lithium Batteries (IMLB) Chicago, June 19-24, Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 23

24 Conclusions Volume change by intercalation on crystal level has an significant impact on: Forces in electrode and between electrode and current collector Thickness change of electrodes and cells, even inhomogeneous Volume is also increased by temperature and by Li-plating Inhomogeneous compression, as seen in cylindrical cells, result in inhomogeneous Li-plating inside the cell. Li-plating starts first in areas with higher compression Volume change can be represented by simplified Electrode models Inhomogeneous current distribution results in inhomogeneous SoC, followed by inhomogeneous volume change and mechanical stress. During charging, inhomogeneous charge currents result in inhomogeneous li-plating, including overshooting in thickness. First 3D coupled mechanical-chemical-thermal model shows good results Further model improvement necessary, taking Li-plating into account Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 24

Application Note. 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy

Application Note. 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy Authors: Dr. Claus

More information

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover Supplementary Information Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover Wangda Li, a Un-Hyuck Kim, b Andrei Dolocan, a Yang-Kook Sun, b,*

More information

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation JRC Exploratory Research Workshop Safer Li-Ion Batteries by Preventing Thermal

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201704947 Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION Size effect in concrete under tensile splitting - experiments and DEM analyses for different failure modes V International Conference on Particle-based Methods Fundamentals and Applications PARTICLES 2017

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science From Surface To Cell: Understanding the Lithium Ion Battery 1 The world leader in serving science Content Discharge Detail the Li-ion Battery industry drivers & trends Our position in industry and our

More information

Andrew Lamb Magefekt. Batteries

Andrew Lamb Magefekt. Batteries Andrew Lamb Magefekt Batteries Batteries Notes Where the fuel goes Energy density batteries What is a battery A Battery is a reversible chemical process that requires the movement of Electrons to reduce

More information

Cycle life performance of lithium-ion pouch cells

Cycle life performance of lithium-ion pouch cells Journal of Power Sources 158 (2006) 679 688 Cycle life performance of lithium-ion pouch cells Karthikeyan Kumaresan, Qingzhi Guo, Premanand Ramadass, Ralph E. White Department of Chemical Engineering,

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Advanced Lithium-ion Battery Manufacturing R&D

Advanced Lithium-ion Battery Manufacturing R&D EVS28 KINTEX, Korea, May 3-6, 2015 Advanced Lithium-ion Battery Manufacturing R&D James F. Miller Argonne National Laboratory, Argonne, Illinois, USA 60439 Introduction I. The cost of lithium-ion batteries

More information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information Lithium Batteries with Nearly Maximum Metal Storage Supporting Information Abdul-Rahman O. Raji,, Rodrigo Villegas Salvatierra,, Nam Dong Kim, Xiujun Fan, Yilun Li, Gladys A. L. Silva, Junwei Sha and James

More information

Investigations on Fatigue of Li-ion batteries

Investigations on Fatigue of Li-ion batteries Investigations on Fatigue of Li-ion batteries HELMUT EHRENBERG INSTITUTE FOR APPLIED MATERIALS ENERGY STORAGE SYSTEMS (IAM-ESS) KIT University of the State of Baden-Wuerttemberg and National Research Center

More information

Supplementary Figure 1:

Supplementary Figure 1: b a c Supplementary Figure 1: Calibration of the Cs + sputtering rate on composite LiNi 0.7 Mn 0.15 Co 0.15 O 2 electrodes (500 ev ion energy, ~40 na measured sample current): (a) Optical profilometry

More information

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries The Quantitative Evaluation of node Thickness Change for Lithium-ion atteries Hiroko Takahashi* 1, Masanobu ragaki* 1, Toshiya Hikami* 2 The measurement technique of the electrode thickness to measure

More information

Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders

Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders Solvay s New Developments in Electrolyte Additives and Solef PVDF Binders Thomas Mathivet & Thierry Baert AABC Conference January 30 th February 2 nd 2017 Mainz, Germany Agenda 1. Solvay in brief 2. Solvay

More information

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery JFE TECHNICAL REPORT No. 22 (Mar. 2017) Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery SIMAUCHI Yutaka *1 OHMORI Shigekazu *2 IKEMOTO Sachi *3 Abstract: analyzed the microstructure

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrochemical stiffness in lithium-ion batteries Hadi Tavassol 1#, Elizabeth M. C. Jones 2,4#, Nancy R. Sottos 3,4*, and Andrew A. Gewirth 1* 1 Department of Chemistry, 2 Department of Mechanical Science

More information

AABC Europe 2017 SHOWA DENKO K.K. Advanced Battery Materials Division

AABC Europe 2017 SHOWA DENKO K.K. Advanced Battery Materials Division AABC Europe 2017 Highly Conducting Carbon-Coated Current Collector "SDX " for Large Li-Ion Batteries Advanced Battery Materials Division SHOWA DENKO K.K. Tuesday, 31 January 1 Agenda Introduction of SDX

More information

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells

Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells NAATBATT Conference March 2016 Value Proposition for MicroGrid Expanded Metal Current Conducting Foil in Li-ion Cells Presented By: John Hart Business Development Manager Power Technologies j.hart@dexmet.com

More information

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets Supplementary Information High Rate and Durable, Binder Free Anode Based on Silicon Loaded O 3 Nanoplatelets Alejandro Martinez-Garcia, Arjun Kumar Thapa,Ruvini Dharmadasa,, Tu Q. Nguyen, Jacek Jasinski,

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim Corrosion 대기환경에의한금속소재 (organic film coated steel) 의퇴화현상평가연구 Lab. of Energy Conversion & Storage Materials Produced by K. B. Kim Introduction AC Impedance Spectroscopy Application of AC Impedance to Corrosion

More information

3D Thermal Analysis of Li-Ion Battery Cells with Various Geometries and Cooling Conditions Using Abaqus

3D Thermal Analysis of Li-Ion Battery Cells with Various Geometries and Cooling Conditions Using Abaqus 3D Thermal Analysis of Li-Ion Battery Cells with Various Geometries and Cooling Conditions Using Abaqus Kim Yeow, Ho Teng, Marina Thelliez and Eugene Tan AVL Powertrain Engineering, Inc Contents Objectives

More information

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning 2016 International Conference on Intelligent Manufacturing and Materials (ICIMM 2016) ISBN: 978-1-60595-363-2 The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning Yiqiang

More information

On the Role of Mechanics in the Design and Performance of Electrode Materials for Energy Storage

On the Role of Mechanics in the Design and Performance of Electrode Materials for Energy Storage On the Role of Mechanics in the Design and Performance of Electrode Materials for Energy Storage Pradeep R. Guduru School of Engineering, Brown University V. Sethuraman, M. Chon, S. Nadimpalli Collaborators:

More information

3D Structured collector foils Decrease the filling time and improve the cell capacity

3D Structured collector foils Decrease the filling time and improve the cell capacity EUROPEAN LI-ION BATTERY ADVANCED MANUFACTURING FOR ELECTRIC VEHICLES 3D Structured collector foils Decrease the filling time and improve the cell capacity 3D Structured collector foils Decrease the filling

More information

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Capacity fade in high energy silicon-graphite electrodes for lithium-ion

More information

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013 Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries Heribert Walter, Battery+Storage 2013 Agenda SGL Group at a Glance Anode Materials Overview Material Synthesis and Modification

More information

Application of Dreamweaver Separators to Lithium Ion Batteries: Quick Start Guide

Application of Dreamweaver Separators to Lithium Ion Batteries: Quick Start Guide Application of Dreamweaver Separators to Lithium Ion Batteries: Quick Start Guide Drying: Preparing the separators for use Cell winding and stacking, Hipot testing Electrolyte: wetting and amount Formation:

More information

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material Int. J. Electrochem. Sci., 10 (2015) 2564-2579 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the

More information

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral LiMO 2 (M = Ni, Co, Mn) with the space group R3m. b, The

More information

Energy Science and Technology III Lecture Winter Term 2015/16. Battery Safety 28 January 2016

Energy Science and Technology III Lecture Winter Term 2015/16. Battery Safety 28 January 2016 Energy Science and Technology III Lecture Winter Term 2015/16 Battery Safety 28 January 2016 Harry Döring, Harald Brazel, Mario Wachtler Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg

More information

Thermal Management of Lithium-ion Batteries

Thermal Management of Lithium-ion Batteries Thermal Management of Lithium-ion Batteries APEC 2018 Greg Albright 1 What Are We Talking About? Maximize Vehicle Range (battery kwh; regen; charge time) Maximize Performance (power) Minimize Cost ($/mile)

More information

Artificial Graphite for Lithium Ion Batteries

Artificial Graphite for Lithium Ion Batteries Artificial Graphite for Lithium Ion Batteries Dr. Roland Müller London, 6. Dec 2011 Agenda Group at a Glance Graphite Properties Production of Artificial Graphite Anode Materials in Lithium Ion Batteries

More information

Supplementary Information

Supplementary Information Supplementary Information CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries Akihiro Nomura, Kimihiko Ito, and Yoshimi Kubo* GREEN, National Institute for

More information

Kuang-Che Hsiao. Supervisor: Prof. Tony West

Kuang-Che Hsiao. Supervisor: Prof. Tony West New Potential Cathode Materials for Lithium-ion ion Battery - Synthesis and characterization of Li 1+x FePO 4-x N x cathode - Kuang-Che Hsiao Supervisor: Prof. Tony West 08/06/2010 E-mail: dtp09kh@sheffield.ac.uk

More information

Advanced Battery Materials

Advanced Battery Materials Advanced Battery Artificial Graphite Negative Electrode Separators High-heat processing Casting/ molding Mixing/ dispersion Carbon Coated Foil Carbon structure control SDX Membran/ crystal growth Laminate/

More information

Overview of research

Overview of research MICDE-TARDEC Faculty Workshop Overview of research Wei Lu Mechanical Engineering University of Michigan, Ann Arbor weilu@umich.edu September 15, 2017 1 Overall of Research Areas Joining of dissimilar materials,

More information

Electrochemical performance of lithium-rich layered oxides for

Electrochemical performance of lithium-rich layered oxides for IBA 2013 Electrochemical performance of lithium-rich layered oxides for electric vehicle applications Jay Hyok Song, Andrei Kapylou, Chang Wook Kim, Yong Chan You, and Sun Ho Kang* SAMSUNG SDI Contents

More information

Experiences in prototyping of Li-Ion cells for automotive applications

Experiences in prototyping of Li-Ion cells for automotive applications Experiences in prototyping of Li-Ion cells for automotive applications Dr. Andreas Huth VW-VM Forschungsgesellschaft Mainz, Agenda Introduction VW-VM facts Success factors Learnings and experiences Conclusion

More information

COMPUTATIONAL EVALUATION OF BENDING FATIGUE TEST ON ELECTRODE OF LITHIUM-ION BATTERY

COMPUTATIONAL EVALUATION OF BENDING FATIGUE TEST ON ELECTRODE OF LITHIUM-ION BATTERY 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 11 15 June 218, Glasgow, UK COMPUTATIONAL EVALUATION OF BENDING FATIGUE TEST

More information

Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale

Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale Michael G. Verde 1*, Loïc Baggetto 2, Nina Balke 3, Gabriel M. Veith 2, Joon Kyo Seo 4, Ziying Wang 1, Ying Shirley Meng 1*

More information

Methods for Successful Cycling of Alloy

Methods for Successful Cycling of Alloy Methods for Successful Cycling of Alloy Negative Electrodes in Li-ion ion Cells Mark Obrovac, Leif Christensen, Larry Krause, Dinh Ba Le, Jagat Singh, Kevin Eberman, Lowell Jensen, Li Liu, Jehwon Choi,

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points

Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Modeling of Local Cell Degradation in Solid Oxide Fuel Cells: Cumulative Effect of Critical Operating Points Zacharie Wuillemin, Antonin Faes, Stefan Diethelm, Arata Nakajo, Nordahl Autissier, Jan Van

More information

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal introduction Jeff Norris CEO +1.803.528.0941 JNorris@ParacleteEnergy.com Michigan

More information

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2008 Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation

More information

Micro-mechanics on Nuclear Graphite

Micro-mechanics on Nuclear Graphite Micro-mechanics on Nuclear Graphite Dr. Dong Liu EPSRC Postdoctoral Research Fellow 1851 Exhibition Brunel Research Fellow Junior Research Fellow, Mansfield College Department of Materials, University

More information

All-solid-state Batteries with Thick Electrode Configurations

All-solid-state Batteries with Thick Electrode Configurations All-solid-state Batteries with Thick Electrode Configurations Yuki Kato, * Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem,

More information

DIRECT LASER SINTERING OF BOROSILICATE GLASS

DIRECT LASER SINTERING OF BOROSILICATE GLASS DIRECT LASER SINTERING OF BOROSILICATE GLASS F. Klocke, A. McClung and C. Ader Fraunhofer Institute for Production Technology IPT, Aachen, Germany Reviewed, accepted August 4, 2004 Abstract Despite the

More information

Shipping Container R&D Test Plan

Shipping Container R&D Test Plan Shipping Container R&D Test Plan R&D Test Plan Proposed Pyrophobic Shipping Container July 9, 2013 Prepared By: Galen McDermed 1 REVISION HISTORY REV PREPARED BY DATE APPROVED DESCRIPTION OF CHANGES A

More information

Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images

Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images Description of concrete fracture at meso-level using Finite Element Method based on X-ray micro-ct images Ł. Skarżyński 1, J. Tejchman 1 1 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk,

More information

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle Supporting Information Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability Dahee Jin, Jeonghun Oh, Alex Friesen, Kyuman Kim,

More information

Q-Air unique selling propositions in detail

Q-Air unique selling propositions in detail Q-Air unique selling propositions in detail Afraid of sitting at the window in winter? Q-Air offers a U value so low that there can be no perceptible cold air movement at the panoramic window even in coldest

More information

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells

Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Lithium Potassium Manganese Mixed Metal Oxide Material for Rechargeable Electrochemical Cells Terrill B. Atwater 1,2 and Alvin J. Salkind 2,3 1 US Army RDECOM, CERDEC, Ft. Monmouth NJ 2 Rutgers University,

More information

ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency

ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency Elmira Memarzadeh Lotfabad a, Peter Kalisvaart a,*, Kai Cui b, Alireza Kohandehghan

More information

CELL FOR IN-SITU X-RAY CHARACTERIZATION. Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty

CELL FOR IN-SITU X-RAY CHARACTERIZATION. Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty 267 267 AN ELECTROCHEMICAL CELL FOR IN-SITU X-RAY CHARACTERIZATION Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty Sandia National Laboratories, Albuquerque, NM 871851405 ABSTRACT An electrochemical

More information

A nonlocal cohesive zone model for finite thickness interfaces: mathematical formulation, numerical implementation and materials science applications

A nonlocal cohesive zone model for finite thickness interfaces: mathematical formulation, numerical implementation and materials science applications A nonlocal cohesive zone model for finite thickness interfaces: mathematical formulation, numerical implementation and materials science applications Dr. Ing. Marco Paggi Politecnico di Torino, Dept. Structural

More information

Urchin-like V 2 O 3 /C Hollow Nanospheres Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage

Urchin-like V 2 O 3 /C Hollow Nanospheres Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage Supporting Information Urchin-like V 2 O 3 /C Hollow Nanospheres Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage Peng Yu, Xu Liu, Lei Wang,* Chungui Tian, Haitao Yu, and Honggang Fu* Key Laboratory

More information

Amorphous and Nanocrystalline Mg 2 Si Thin Film Electrodes

Amorphous and Nanocrystalline Mg 2 Si Thin Film Electrodes Manuscript# IMLB-070, LBNL-52142 Revised to Journal of Power Sources (Dec 13, 2002) Amorphous and Nanocrystalline Mg 2 Si Thin Film Electrodes Seung-Wan Song, a Kathryn A. Striebel, a,z Xiangyun Song a

More information

SUPPLEMENTARY INFORMATION. A Foldable Lithium-Sulfur Battery

SUPPLEMENTARY INFORMATION. A Foldable Lithium-Sulfur Battery SUPPLEMENTARY INFORMATION A Foldable Lithium-Sulfur Battery Lu Li 1, Ziping Wu 2, Hao Sun 3, Deming Chen 2, Jian Gao 4, Shravan Suresh 1, Philippe Chow 4, Chandra Veer Singh 3,5, and Nikhil Koratkar 1,4*

More information

Generation of small batch high quality metal powder

Generation of small batch high quality metal powder Generation of small batch high quality metal powder Daniel Nils Ellendt 2 Lutz Mädler 2 Jörg Fischer- Peter Hofmann 3 Volker Schwenck Bühner 3 Uhlenwinkel schwenck@iwt.unibremen.de Ellendt@iwt.unibremen.de

More information

Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels

Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels J MARROW, D ENGELBERG, A JIVKOV, P WOOD, L. BABOUT, N STEVENS Materials Performance

More information

The Multiphysics Approach: The Electrochemical Machining Process

The Multiphysics Approach: The Electrochemical Machining Process Presented at the COMSOL Conference 2008 Hannover The Multiphysics Approach: The Electrochemical Machining Process R. van Tijum, T. Pajak Advanced Technology Center November, 2008 Outline Introduction ECM

More information

Na-MCl 2 CELL MULTIPHYSICS MODELING: STATUS AND CHALLENGES

Na-MCl 2 CELL MULTIPHYSICS MODELING: STATUS AND CHALLENGES Rémy Christin*, Mikael Cugnet**, Nicola Zanon***, Giorgio Crugnola***, Pascal Mailley**** Na-MCl 2 CELL MULTIPHYSICS MODELING: STATUS AND CHALLENGES *R&D Batteries- Sodium-Nickel and new tech, FIAMM (Aubergenville,

More information

Electrochemical Property of Cobalt Vanadium Oxide CoV 3 O 8 for Lithium-Ion Battery

Electrochemical Property of Cobalt Vanadium Oxide CoV 3 O 8 for Lithium-Ion Battery Asian J. Energy Environ., Vol. 8, Issue 1 and 2, (2007), pp. 33-47 Electrochemical Property of Cobalt Vanadium Oxide CoV 3 O 8 for Lithium-Ion Battery S. Ichikawa *, M. Hibino and T. Yao Department of

More information

Supporting Information. Carbon Welding by Ultrafast Joule Heating

Supporting Information. Carbon Welding by Ultrafast Joule Heating Supporting Information Carbon Welding by Ultrafast Joule Heating Yonggang Yao, 1,(a) Kun Fu, 1,(a) Shuze Zhu, 2 Jiaqi Dai, 1 Yanbin Wang, 1 Glenn Pastel, 1 Yanan Chen, 1 Tian Li, 1 Chengwei Wang, 1 Teng

More information

INCLUSION OF POLYVINYLEDENE FLUORIDE POLYMER AS BINDING AGENT FOR GRAPHITE AND LICOO 2 GRANULES

INCLUSION OF POLYVINYLEDENE FLUORIDE POLYMER AS BINDING AGENT FOR GRAPHITE AND LICOO 2 GRANULES MATERIALS SCIENCE and TECHNOLOGY Edited by Evvy Kartini et.al. INCLUSION OF POLYVINYLEDENE FLUORIDE POLYMER AS BINDING AGENT FOR GRAPHITE AND LICOO 2 GRANULES T. Nugraha, E. Panjaitan, E. Kartini Center

More information

INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES

INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES Munich, Germany, 26-30 th June 2016 1 INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES Fang Liu 1, Masoud Rashidi 2 and Leif E. Asp 3

More information

Research And Application of Fiber Bragg Grating Temperature Sensor For Energy Storage Battery In-situ Detection

Research And Application of Fiber Bragg Grating Temperature Sensor For Energy Storage Battery In-situ Detection Research And Application of Fiber Bragg Grating Temperature Sensor For Energy Storage Battery In-situ Detection Chong Xu China Electric Power Research Institute 05.2017 Outline Introduce of our Department

More information

Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs

Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs Numerical Evaluation of Effective Gas Diffusivity Saturation Dependence of Uncompressed and Compressed Gas Diffusion Media in PEFCs V. P. Schulz a, P. P. Mukherjee b, J. Becker a, A. Wiegmann a, and C.-Y.

More information

Oxides for High Performance Lithium-Ion Battery Anodes

Oxides for High Performance Lithium-Ion Battery Anodes Bacteria Absorption-Based Mn 2 P 2 O 7 -Carbon @ Reduced Graphene Oxides for High Performance Lithium-Ion Battery Anodes Yuhua Yang, 1 Bin Wang, 1,2 Jingyi Zhu, 3 Jun Zhou, 1 Zhi Xu, 1,4 Ling Fan, 1 Jian

More information

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University IBM Almaden June 27, 2017 Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University (ktlee@snu.ac.kr) 1) Introduction 2) Failure mechanism of a redox mediator

More information

In-situ Study of Solid Electrolyte Interphase on Silicon Electrodes using PeakForce Tapping Mode AFM in Glove-box

In-situ Study of Solid Electrolyte Interphase on Silicon Electrodes using PeakForce Tapping Mode AFM in Glove-box General Motors R&D BROWN UNIVERSITY In-situ Study of Solid Electrolyte Interphase on Silicon Electrodes using PeakForce Tapping Mode AFM in Glove-box A. Tokranov 1, X. Xiao 2, C. Li 3, S. Minne 3 and B.

More information

Dramatically enhanced reversibility of Li 2 O in SnO 2 -based electrodes: the effect of nanostructure on high initial reversible capacity

Dramatically enhanced reversibility of Li 2 O in SnO 2 -based electrodes: the effect of nanostructure on high initial reversible capacity Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information for Dramatically enhanced reversibility

More information

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017)

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Modelling the influence of friction coefficient on materials process by Equal Channel Angular Press technique

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS ON AN INTERNALLY COOLED LI-ION BATTERY CELL

THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS ON AN INTERNALLY COOLED LI-ION BATTERY CELL Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 November 11-17, 2016, Phoenix, Arizona, USA IMECE2016-65729 THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS

More information

Reliability of Li-ion Batteries

Reliability of Li-ion Batteries IEEE Boston Reliability Seminar 9/11/13 Reliability of Li-ion Batteries Martin Z. Bazant Chemical Engineering & Mathematics MIT Matthew Pinson Peng Bai Dan Cogswell Todd Ferguson Alan Millner Prior funding

More information

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Supporting Information A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Yujie Hao, a Sheng Wang, a Feng Xu, a Yijie Liu, a Ningning Feng, a Ping He, *a Haoshen

More information

Lithium Ion Batteries Lecture WS 2016/2017

Lithium Ion Batteries Lecture WS 2016/2017 Ulm, 12.12.2016 Lithium Ion Batteries Lecture WS 2016/2017 Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg - 1 - Major types of reaction: Insertion

More information

Laser-based process for polymeric coatings on temperaturesensitive

Laser-based process for polymeric coatings on temperaturesensitive Lasers in Manufacturing Conference 2017 Laser-based process for polymeric coatings on temperaturesensitive metallic components Hendrik Sändker a,*, Jochen Stollenwerk a,b, Peter Loosen a,b a Fraunhofer

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Title: Identification and Characterisation of High

More information

Laboratory of Applied Mechanics and Reliability: Research Activities

Laboratory of Applied Mechanics and Reliability: Research Activities Laboratory of Applied Mechanics and Reliability: Research Activities Experimental mechanics Static, cyclic & fatigue testing, uniaxial / biaxial test, climatic chamber (- 10 C to 250 C). Vibration testing

More information

Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts

Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts Deformation Criterion of Low Carbon Steel Subjected to High Speed Impacts W. Visser, G. Plume, C-E. Rousseau, H. Ghonem 92 Upper College Road, Kingston, RI 02881 Department of Mechanical Engineering, University

More information

Preparation and characterization of thin electrodes for lead acid batteries

Preparation and characterization of thin electrodes for lead acid batteries Journal of Power Sources 113 (2003) 376 381 Preparation and characterization of thin electrodes for lead acid batteries A. Caballero, M. Cruz, L. Hernán, J. Morales *,L.Sánchez Departamento de Química

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

NONDESTRUCTIVE EVALUATION OF CEMENT-BASED MATERIALS WITH COMPUTER VISION

NONDESTRUCTIVE EVALUATION OF CEMENT-BASED MATERIALS WITH COMPUTER VISION Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICATIO Publishers, D-79104 Freiburg, Germany NONDESTRUCTIVE EVALUATION OF CEMENT-BASED MATERIALS WITH COMPUTER VISION S. Choi, Harbor

More information

IBA Meeting, BARCELONA IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ.

IBA Meeting, BARCELONA IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ. 2013/03/11-1515 IBA Meeting, BARCELONA SAFETY ISSUE OF GRAPITE ANODE IN LIB FOR EV (HEV) Masaki YOSHIO ; Saga Univ. Yamagata Univ. Hideya YOSHITAKE : Yamagata Univ. yoshio@cc.saga-u.ac.jp Fire from PC

More information

A Robust Hybrid Zn-Battery with Ultralong Cycle Life

A Robust Hybrid Zn-Battery with Ultralong Cycle Life A Robust Hybrid Zn-Battery with Ultralong Cycle Life Bing Li, a Junye Quan, b Adeline Loh, #a Jianwei Chai, a Ye Chen, b Chaoliang Tan, b Xiaoming Ge, a T. S. Andy Hor, a,c Zhaolin Liu, *a Hua Zhang *b

More information

Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs

Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs Alejandro Oyarce, Nicklas Holmström, Andreas Bodén, Carina Lagergren and Göran Lindbergh Technoport 2012 Hydrogen

More information

Welding Simulation Technologies for Highly Efficient Production of High-quality Social Infrastructure Products

Welding Simulation Technologies for Highly Efficient Production of High-quality Social Infrastructure Products Hitachi Review Vol. 61 (212), No. 6 249 Welding Simulation Technologies for Highly Efficient Production of High-quality Social Infrastructure Products Xudong Zhang, Dr. Eng. Takeshi Tsukamoto, Dr. Eng.

More information

Development of Phase Change Material/ Cooling Plate Coupled Battery Thermal Management System Using CFD

Development of Phase Change Material/ Cooling Plate Coupled Battery Thermal Management System Using CFD Development of Phase Change Material/ Cooling Plate Coupled Battery Thermal Management System Using CFD 1 Mr.D.Omkar, 2 Dr.P.Vijaykumar 1,2 Department of Mechanical Engineering, 1,2 Lakireddy Balireddy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.27 Revealing the reaction mechanisms of Li-O 2 batteries using environmental transmission electron microscopy Langli Luo, Bin

More information

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD

CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD CHARACTARISTICS OF DAMAGE AND FRACTURE PROCESS OF SOLID OXIDE FUEL CELLS UNDER SIMULATED OPERATING CONDITIONS BY USING AE METHOD KAZUHISA SATO 1), TOSHIYUKI HASHIDA 2), HIROO YUGAMI 3), KEIJI YASHIRO 1),

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information