Kuang-Che Hsiao. Supervisor: Prof. Tony West

Size: px
Start display at page:

Download "Kuang-Che Hsiao. Supervisor: Prof. Tony West"

Transcription

1 New Potential Cathode Materials for Lithium-ion ion Battery - Synthesis and characterization of Li 1+x FePO 4-x N x cathode - Kuang-Che Hsiao Supervisor: Prof. Tony West 08/06/ dtp09kh@sheffield.ac.uk TEL: +44(0)

2 Presentation Outline Introduction to Li-ion battery Applications of Li-ion battery New cathode materials LiFePO 4 -based cathode material Experimental procedure Results and discussion Conclusions

3 Battery chemistry over the years Source: M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.

4 Energy Density of Various Batteries Lighter Weight Volumetric energy density (Wh/L) Smaller Size Source: SANYO battery comparison, 2006 brochure

5 Mechanism and Components of Li-ion Battery Both anode and cathode materials are intercalation compounds Anode reaction: xli + + 6C Li x C 6 Cathode reaction: LiCoO 2 Li 1-x CoO 2 + xli + Overall reaction: LiCoO 2 + 6C Li x C 6 + Li 1-x CoO 2 Components Common Materials Electrolyte Li 1-x CoO 2 Li x C 6 Solid Electrolyte Interface (SEI) is a surface film that generally forms between an electrode and electrolyte. It is an internal resistor that limits power output and generates heat build-up in a standard Li-ion battery. Cathode Anode Separator Electrolyte Active material: LiCoO 2, LiMnO 4, LiFePO 4 Conducting additives: Acetylene black Binder: PVDF, PTFE Current collector: Al foil Active material: graphite, MCMB Conducting additives: Acetylene black Binder: PVDF, PTFE Current collector: Cu foil porous polyolefin Solvent: EC, PC, DMC, DEC, DME Solute: LiClO 4, LiPF 6, LiBF 4 Source: Brian J. Landi, Potential Environmental Benefits of Nanotechnology: Fostering Safe Innovation-Led Growth, July 17th, 2009

6 Typical Configurations of Li-ion Battery a. Cylindrical Cell b. Coin Cell size 3.3 V 1.1 Ah 65 mm LiFePO 4 18 mm c. Prismatic Cell d. Thin and Flat Cell LTO 2.5 V 1.8 Ah Source: J.-M. Tarascon & M. Armand, Nature 2001, 414, ALB

7 Applications of Li-ion Battery 3C Portable Products LIB Driving Power Sources Energy Storage Systems

8 New Cathode Materials xli 2 MnO 3 /(1-x)LiMO 2 Cathode demands: high capacity high safety low cost long life cycle Source: Andreas Jossen, Margret Wohlfahrt-Mehrens, Second International Renewable Energy Storage Conference, Nov , 2007, Germany

9 LiFePO 4 Cathode Electrode Material LiFePO 4 Li forms one-dimensional chains along the [010] direction (b axis) Average working voltage (V) 3.4 Density (g/cm 3 ) 3.5 Structure (orthorhombic) Theoretic specific capacity (mah/g) Practical specific capacity (mah/g) 1-D, Olivine Energy Density (kwh/l) 1.9 Fe O P c b Fe 2+ Fe 3+ (stable) a LiCoO 2 : Co 3+ Co 4+ (untable!) Li (Li+ deintercalation upon charging) Conductivity (S/cm) ~10-9 Li ion diffusivity (cm 2 /s) ~ Cycle life Safety > 1000 cycle superior Literature Review: solid-state electrolyte (1992) Low ionic conductivity: S/cm Cross-Linked Structure Higher ionic conductivity: S/cm Li 3 PO 4 sputtering of Li 3 PO 4 with N 2 Li 3.3 PO 3.9 N 0.17 Cost 18 US/Kg Source: F. Zhou et al., Phys. Rev. B 2004, 69, J.B. Bates et al., Solid State Ionics 1992, 53-56, 647.

10 Synthesis of LiFePO 4 -based cathode materials Valence Mechanism (Solid State Chemistry): Li 1+x FePO 4-x N x where, Li: +1 Fe: +2 P: +5 O:-2 N: -3 if x=0 LiFePO 4 if x=0.2 Li 1.2 FePO 3.8 N 0.2 Li 2 CO 3 Grounding with mortar and reacted at 800 o C for 12 h under N 2 atmosphere FeC 2 O 4.2H 2 O NH 4 H 2 PO 4 LiFePO 4 XRD X Li 3 N (1-2X/2) Li 2 CO 3 Grounding with mortar and at reacted 800 o C for 12 h under N 2 atmosphere Li 1+X FePO 4-X N X FeC 2 O 4.2H 2 O NH 4 H 2 PO 4

11 XRD Results: Li 1+x FePO 4-x N x Li 3 PO 4 or Li 2.88 PO 3.73 N 0.14 X=0.2 Fe 2 O 3 Intensity (a.u.) X=0.1 X=0.05 X=0 Single phase LiFePO θ (deg)

12 Test temperature: 25 o C AC Impedance Results LiFePO 4 Li 1.05 FePO 3.95 N Z ''/10 5. Ω 2 -Z ''/10 7. Ω Z'/10 5. Ω Z'/10 7. Ω Results and Discussion: The impedance results at room temperature show the Li 1.05 FePO 3.95 N 0.05 is more resistive than that of pure LiFePO 4. More impedance studies at higher temperature for these two materials should be done to check the electronic and/or ionic effect contributed to their conductive differences. In addition, it is necessary to try to understand why the impure phase of Fe 2 O 3 in Li 1.05 FePO 3.95 N 0.05, using more experimental studies.

13 Conclusions Li-ion batteries show the highest specific energy (up to 200 Wh/kg) of available rechargeable battery systems, and they are market leader in portable power sources. The development of new cathode materials is a challenge for meeting current and future energy storage requirements aimed at high energy and power density, good cycle retention as well as low cost manufacture. The single phase LiFePO 4 cathode can be synthesized by solid state method, but more studies need to be done to check the Li 1.05 FePO 3.95 N 0.05 material. Coming Future Works - Scanning electron microscope (SEM)/Energy Dispersive Spectrometer (EDS): to check N composition because of the 3% limitation of XRD. - High temperature impedance testing: to understand the electronic and/or ionic effect for pure LiFePO 4 and Li 1.05 FePO 3.95 N 0.05.

14 Acknowledgements Inorganic Material Laboratory/Department of Engineering Materials: - Supervisor: Prof. Tony West (research discussion) - Jordi Jacas Biendicho (experimental discussion) - Andrew Mould (AC Impedance Training) Thank you for your kind attention!

Novel Materials for Lithium-Ion Batteries

Novel Materials for Lithium-Ion Batteries Novel Materials for Lithium-Ion Batteries John Bradley May 18th 2012 Project Supervisors: Prof. West & Chaou Tan Abstract The effect of carbon coating on two novel battery cathode materials LiMnP 2 O 7

More information

Carbon Nanotubes for Li + Batteries. U.S. Government

Carbon Nanotubes for Li + Batteries. U.S. Government Assistant Professor Chemical & Biomedical Engineering Group Leader of CNT and Advanced Batteries NanoPower Research Laboratories (NPRL) Golisano Institute for Sustainability (GIS) Rochester Institute of

More information

Lithium Ion Batteries Lecture WS 2016/2017

Lithium Ion Batteries Lecture WS 2016/2017 Ulm, 12.12.2016 Lithium Ion Batteries Lecture WS 2016/2017 Margret Wohlfahrt-Mehrens Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Württemberg - 1 - Major types of reaction: Insertion

More information

Batteries for Mobile Applications

Batteries for Mobile Applications Batteries for Mobile Applications Dr A.R. Armstrong and Dr A.D. Robertson, School of Chemistry, University of St. Andrews February 2002 Portable electronic devices are an increasingly vital element of

More information

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator

Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with 3DOM Separator 217 BLI X, Symposium on Energy Storage, June 27-29, 217, at IBM- Research Almaden in San Jose, CA, USA Fundamental Study on Li Metal Dissolution and Deposition on Cu Foil in Nonaqueous Electrolytes with

More information

Striving for energy density

Striving for energy density Striving for energy density HIGH VOLTAGE MATERIALS FOR LITHIUM ION BATTERIES Public C. Brünig / G. Nuspl BL Energy Storage 08.10.2014 2 Public, Striving for energy density Table of contents Corporate introduction

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes International Symposium on Electrical Fatigue in Functional Materials September 15, 2014 Sellin, Rügen, Germany Design and fabrication of all-solid-state rechargeable lithium batteries using ceramic electrolytes

More information

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplemental Information Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using

More information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH Nanocrystalline LiFePO as cathode material for lithium battery applications Abstract S.C SIAH Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 LiFePO was prepared

More information

2.4 Secondary Lithium Batteries Lithium-Metal Batteries Lithium-Ion Batteries Lithium Polymer Batteries...

2.4 Secondary Lithium Batteries Lithium-Metal Batteries Lithium-Ion Batteries Lithium Polymer Batteries... 1 Basic Elements for Energy Storage and Conversion... 1 1.1 Energy Storage Ability... 1 1.2 The Sustained Energy.... 3 1.3 Energy Storage for Nano-electronics................... 4 1.4 Energy Storage...................................

More information

Factors Governing Life of High-Energy Lithium-Ion Cells

Factors Governing Life of High-Energy Lithium-Ion Cells Factors Governing Life of High-Energy Lithium-Ion Cells D.P. Abraham IBA 2013 March 11, 2013 Barcelona, Spain Research sponsors are both Government and Private Sector 2 Diagnostics Overview Use of characterization

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009

Final Report for AOARD Grant FA Lithium-air Battery Research. December 2009 Final Report for AOARD Grant FA 4869-7-1-49 Lithium-air Battery Research December 29 Name of Principal Investigators: Prof. N. Munichandraiah - e-mail address : muni@ipc.iisc.ernet.in - Institution : Indian

More information

Main presentation title

Main presentation title Main presentation title Presentation sub-title Developments in battery chemistries Dr. Marcel Meeus (Umicore): Agenda 1. Umicore materials supplier to the battery industry 2. Generic insight battery technologies,

More information

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013

Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries. Heribert Walter, Battery+Storage 2013 Tailor Made Carbon and Graphite Based Anode Materials for Lithium Ion Batteries Heribert Walter, Battery+Storage 2013 Agenda SGL Group at a Glance Anode Materials Overview Material Synthesis and Modification

More information

Batteries for Vehicular Applications

Batteries for Vehicular Applications Batteries for Vehicular Applications Venkat Srinivasan * Staff Scientist Lawrence Berkeley National Laboratory March 2, 2008 *vsrinivasan@lbl.gov Range Specific c Energy (W Wh/kg) 1000 100 10 Relative

More information

SOLIK Li-hochleitende Keramiken für all-solid-state Batterien

SOLIK Li-hochleitende Keramiken für all-solid-state Batterien SOLIK Li-hochleitende Keramiken für all-solid-state Batterien Dr. Ningxin ZHANG Electric Drive Technologies Center for Low-Emission Transport Austrian Institute of Technology GmbH Outline Basic Data Project

More information

Cycle life performance of lithium-ion pouch cells

Cycle life performance of lithium-ion pouch cells Journal of Power Sources 158 (2006) 679 688 Cycle life performance of lithium-ion pouch cells Karthikeyan Kumaresan, Qingzhi Guo, Premanand Ramadass, Ralph E. White Department of Chemical Engineering,

More information

All-solid-state Li battery using a light-weight solid electrolyte

All-solid-state Li battery using a light-weight solid electrolyte All-solid-state Li battery using a light-weight solid electrolyte Hitoshi Takamura Department of Materials Science, Graduate School of Engineering, Tohoku University Europe-Japan Symposium, Electrical

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201704947 Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Supporting Information: In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Yi Zhao, Jiaxin Li, Ning Wang, Chuxin Wu, Yunhai Ding, Lunhui Guan*

More information

Electrode and Molecular Architectures for Iron based Multivalent Systems

Electrode and Molecular Architectures for Iron based Multivalent Systems Electrode and Molecular Architectures for Iron based Multivalent Systems Jagjit Nanda Materials Science and Technology Division 2 nd MRES, North Eastern University August 20 th 2014 Collaborators S. K.

More information

Reliability of Li-ion Batteries

Reliability of Li-ion Batteries IEEE Boston Reliability Seminar 9/11/13 Reliability of Li-ion Batteries Martin Z. Bazant Chemical Engineering & Mathematics MIT Matthew Pinson Peng Bai Dan Cogswell Todd Ferguson Alan Millner Prior funding

More information

Supporting Information for

Supporting Information for Supporting Information for Self-stabilized solid electrolyte interface on host-free Li metal anode towards high areal capacity and rate utilization Zhenglin Hu 1,3, Shu Zhang 1, Shanmu Dong*,1, Quan Li

More information

A Quantum Leap Forward for Li-Ion Battery Cathodes

A Quantum Leap Forward for Li-Ion Battery Cathodes A Quantum Leap Forward for Li-Ion Battery Cathodes Josh Thomas Ångström Advanced Battery Centre, Uppsala University, Sweden. josh.thomas@mkem.uu.se GCEP Research Symposium: Energy Research Five Years and

More information

Submitted By Maksim V. Tyufekchiev Somyi Hur. Submitted on April 23, 2013

Submitted By Maksim V. Tyufekchiev Somyi Hur. Submitted on April 23, 2013 PROJECT NUMBER: MQP YW1-YW11 Developing a Low-Cost Methodology for Fabricating All-Solid-State Lithium-Ion Battery A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE

More information

Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium

Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium Portugaliae Electrochimica Acta 2013, 31(6), 331-336 DOI: 10.4152/pea.201306331 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Comparison of Material Properties of LiCoO 2 Doped with Sodium and Potassium

More information

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes Supporting information Carbon-Coated Na 3 V 2 (PO 4 ) 3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li-Cathodes By Changbao Zhu, Kepeng Song, Peter

More information

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED

FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED FABRICATION AND ELECTROCHEMICAL CHARECTARIZATION OF THE CR2032 COIN CELLS USING THE DEVELOPED PURE AND CARBON COATED LiMPO 4 (M= Mn, Co & Ni) NANOPARTICLES CHAPTER VI 181 CHAPTER - VI FABRICATION AND ELECTROCHEMICAL

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries

Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Furnace Temperature and Atmosphere Influences on Producing Lithium Iron Phosphate (LiFePO 4 ) Powders for Lithium Ion Batteries Abstract: New technologies for creating efficient low cost lithium ion batteries

More information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information Lithium Batteries with Nearly Maximum Metal Storage Supporting Information Abdul-Rahman O. Raji,, Rodrigo Villegas Salvatierra,, Nam Dong Kim, Xiujun Fan, Yilun Li, Gladys A. L. Silva, Junwei Sha and James

More information

ABSTRACT QUESTIONNAIRE

ABSTRACT QUESTIONNAIRE ABSTRACT QUESTIONNAIRE Please, fill out all fields of this questionnaire (except that corresponding to the Organizing Committee) and send by e-mail to the Symposium Secretariat as the front page of your

More information

EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY

EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY EFFECT OF THE PITCH-BASED CARBON ANODE ON THE IRREVERSIBLE CAPACITY OF LITHIUM-ION SECONDARY BATTERY Weiming Lu and D.D.L. Chung Composite Materials Research Laboratory University at Buffalo The State

More information

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries

The Quantitative Evaluation of Anode Thickness Change for Lithium-ion Batteries The Quantitative Evaluation of node Thickness Change for Lithium-ion atteries Hiroko Takahashi* 1, Masanobu ragaki* 1, Toshiya Hikami* 2 The measurement technique of the electrode thickness to measure

More information

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels A1196 Journal of The Electrochemical Society, 151 8 A1196-A1201 2004 0013-4651/2004/151 8 /A1196/6/$7.00 The Electrochemical Society, Inc. In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li

More information

THE UNIVERSITY OF QUEENSLAND

THE UNIVERSITY OF QUEENSLAND THE UNIVERSITY OF QUEENSLAND Improving the Electrochemical Performance of Lithium-Sulfur Batteries via Separator Coating Student Name: Jun Ma Course Code: ENGG7281 Supervisor: Dr. Ruth Knibbe Submission

More information

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials

Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Crystal structure, electronic structure, chemical bonding and defects in metal-ion battery materials Artem Abakumov Center for Electrochemical Energy Storage, Skoltech Li-ion batteries Li x C 6 graphite

More information

Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques

Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques Thermal Behavior of Charged Cathode Materials Studied by Synchrotron-Based X-ray Techniques Won-Sub Yoon 1, *, Kyung-Wan Nam 2, Kyung Yoon Chung 3, Mahalingam Balasubramanian 4, Dong-Hyuk Jang 1, Joengbae

More information

Power the future CIC March 21st 2012

Power the future CIC March 21st 2012 Power the future CIC March 21st 2012 Batteries, Past, Present and Future Michel Armand 2010 CIC energigune. 2010 All rights reserved 1 Billion Cars in 2010 and and 1.3 Millions fatalities on the roads!

More information

Supplementary Figure 1:

Supplementary Figure 1: b a c Supplementary Figure 1: Calibration of the Cs + sputtering rate on composite LiNi 0.7 Mn 0.15 Co 0.15 O 2 electrodes (500 ev ion energy, ~40 na measured sample current): (a) Optical profilometry

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage.

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage. Supporting Information Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity Weihan Li, Zhenzhong Yang, Minsi Li, Yu Jiang, Xiang Wei,

More information

Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes

Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes JOUL, Volume 2 Supplemental Information Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes Xabier Judez, Gebrekidan Gebresilassie Eshetu, Chunmei Li, Lide M. Rodriguez-

More information

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS

BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BATTERY SOLUTIONS WITH KYNAR PVDF LITHIUM-ION FOCUS BY 2025, THE WORLD WILL MANUFACTURE 8 BILLION LI-ION CELLS Continued market growth requires rapid advances in higher energy density, higher performance

More information

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Supporting Information Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Bin Liu, Jun Zhang, Xianfu Wang, Gui Chen, Di

More information

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning 2016 International Conference on Intelligent Manufacturing and Materials (ICIMM 2016) ISBN: 978-1-60595-363-2 The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning Yiqiang

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300139 15 December 2017 The below identified

More information

ABSTRACT. Since carbon dioxide from petroleum-derived fuels has become an environmental

ABSTRACT. Since carbon dioxide from petroleum-derived fuels has become an environmental ABSTRACT KIM, SANGWOOK. Stresses at Electrode-Electrolyte Interface in Lithium-ion Batteries via Multiphysics Modeling (Under the direction of Dr. Hsiao-Ying Shadow Huang.) Since carbon dioxide from petroleum-derived

More information

How initial nucleation influences discharge capacities of Li-O 2 cells

How initial nucleation influences discharge capacities of Li-O 2 cells How initial nucleation influences discharge capacities of Li-O 2 cells Ali Rinaldi 1, Olivia Wijaya 1, Denis Yu 2, Harry.E. Hoster 1 1TUM CREATE Centre for Electromobility #10-02 CREATE Tower, Singapore

More information

On the Dynamic Frontier of R&D of novel power sources

On the Dynamic Frontier of R&D of novel power sources On the Dynamic Frontier of R&D of novel power sources In collaboration with BASF,GM,Pellion Doron Aurbach Bar Ilan university, Israel Dr. Ran Elazari Ariel Rosenman Prof. Gregory Salitra Daniel Sharon

More information

Summer School June 2-4 th 2015

Summer School June 2-4 th 2015 MAT4BAT Advanced materials for batteries Summer School June 2-4 th 2015 «Electrode formulation and processing» Dane Sotta (CEA-Liten, France) Mat4Bat Summer School Dane Sotta (CEA) June 3 rd 2015 1 Outline

More information

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Zhong-li Wang, Dan Xu, Yun Huang, Zhong Wu, Li-min Wang and Xin-bo

More information

MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES

MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES MATERIAL DEVELOPMENT AND PROCESSING ASPECTS OF CO-SINTERED CERAMIC ELECTRODES FOR ALL SOLID- STATE BATTERIES Katja Waetzig, Jochen Schilm, B. Matthey, St. Barth, K. Nikolowski, M. Wolter Dresden, 20 th

More information

A Brief History of Non-aqueous Metal-Air Batteries

A Brief History of Non-aqueous Metal-Air Batteries 67 ECS Transactions, 3 (42) 67-71 (2008) 10.1149/1.2838193, copyright The Electrochemical Society A Brief History of Non-aqueous Metal-Air Batteries K. M. Abraham E-KEM Sciences Needham, MA 02492, USA

More information

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Supporting Information LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Xiaolong Zhang, Fangyi Cheng, Jingang Yang, Jun Chen* Key Laboratory of Advanced Energy

More information

Carbon Nanofiber Modified Graphite Electrode. Performance for Lithium Ion Secondary Battery

Carbon Nanofiber Modified Graphite Electrode. Performance for Lithium Ion Secondary Battery Carbon Nanofiber Modified Graphite Electrode Performance for Lithium Ion Secondary Battery Seung-Hwan Moon, Myung-Soo Kim Department of Chemical Engineering, Myoungji University, Korea Corresponding author

More information

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation

Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation Factors Influencing the Thermal Stability of Lithium Ion Batteries - From Active Materials to State-of-Charge and Degradation JRC Exploratory Research Workshop Safer Li-Ion Batteries by Preventing Thermal

More information

AABC Europe 2017 SHOWA DENKO K.K. Advanced Battery Materials Division

AABC Europe 2017 SHOWA DENKO K.K. Advanced Battery Materials Division AABC Europe 2017 Highly Conducting Carbon-Coated Current Collector "SDX " for Large Li-Ion Batteries Advanced Battery Materials Division SHOWA DENKO K.K. Tuesday, 31 January 1 Agenda Introduction of SDX

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

Application in High-Performance Lithium-

Application in High-Performance Lithium- Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong,Mingyuan

More information

ELECTRODE ARCHITECTURES FOR EFFICIENT ELECTRONIC AND IONIC TRANSPORT PATHWAYS IN HIGH POWER LITHIUM ION BATTERIES. A Dissertation Presented

ELECTRODE ARCHITECTURES FOR EFFICIENT ELECTRONIC AND IONIC TRANSPORT PATHWAYS IN HIGH POWER LITHIUM ION BATTERIES. A Dissertation Presented ELECTRODE ARCHITECTURES FOR EFFICIENT ELECTRONIC AND IONIC TRANSPORT PATHWAYS IN HIGH POWER LITHIUM ION BATTERIES A Dissertation Presented by ANKITA SHAH FAULKNER to The Department of ELECTRICAL AND COMPUTER

More information

Artificial Graphite for Lithium Ion Batteries

Artificial Graphite for Lithium Ion Batteries Artificial Graphite for Lithium Ion Batteries Dr. Roland Müller London, 6. Dec 2011 Agenda Group at a Glance Graphite Properties Production of Artificial Graphite Anode Materials in Lithium Ion Batteries

More information

Phase Composition and Dynamical Studies of Lithium Iron Phosphate

Phase Composition and Dynamical Studies of Lithium Iron Phosphate Phase Composition and Dynamical Studies of Lithium Iron Phosphate Thesis by Joanna L. Dodd In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology

More information

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science

From Surface To Cell: Understanding the Lithium Ion Battery. The world leader in serving science From Surface To Cell: Understanding the Lithium Ion Battery 1 The world leader in serving science Content Discharge Detail the Li-ion Battery industry drivers & trends Our position in industry and our

More information

The Pennsylvania State University. The Graduate School. Department or Mechanical and Nuclear Engineering MODELING OF LARGE-FORMAT LI-ION CELL

The Pennsylvania State University. The Graduate School. Department or Mechanical and Nuclear Engineering MODELING OF LARGE-FORMAT LI-ION CELL The Pennsylvania State University The Graduate School Department or Mechanical and Nuclear Engineering MODELING OF LARGE-FORMAT LI-ION CELL PERFORMANCE AND SAFETY A Dissertation in Mechanical Engineering

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Deterioration mechanism of LiNi 0.8 Co 0.15 Al 0.05

More information

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of Electronic Supporting Information Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode

More information

Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea

Department of Energy Engineering, Hanyang University, Seoul 04763, South Korea Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supplementary Information Development of P3-K 0.69 CrO 2 as an ultra-high-performance

More information

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY.

Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY. Paper ID: 373 Topic: Electrochemical Application of Carbon Materials MILD-EXFOLIATED GRAPHITE AS AN ANODE MATERIAL FOR LITHIUM ION BATTERY Lin Zou, Yong-Ping Zheng, Feiyu Kang, Wanci Shen, Can Xu Laboratory

More information

Printable lithium batteries

Printable lithium batteries University of New Mexico UNM Digital Repository Chemical and Biological Engineering ETDs Engineering ETDs 2-8-2011 Printable lithium batteries Kyle Fenton Follow this and additional works at: http://digitalrepository.unm.edu/cbe_etds

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

The Coating Effects of Al 2 O 3 on a Li[Li 0.2 Mn 0.54 Co 0.13 Ni 0.13 ]O 2 Surface Modified with (NH 4 ) 2 SO 4

The Coating Effects of Al 2 O 3 on a Li[Li 0.2 Mn 0.54 Co 0.13 Ni 0.13 ]O 2 Surface Modified with (NH 4 ) 2 SO 4 1516 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 5 Ji-Woo Oh et al. http://dx.doi.org/10.5012/bkcs.2014.35.5.1516 The Coating Effects of Al 2 O 3 on a Li[Li 0.2 Mn 0.54 Co 0.13 Ni 0.13 ]O 2 Surface Modified

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

Uudergraduate Honors Thesis. Ge Zhu 4/13/2018

Uudergraduate Honors Thesis. Ge Zhu 4/13/2018 Development of LiNi0.5Mn.1.5-xTixO4 as an Advanced Cathode for Lithium-Ion Batteries Uudergraduate Honors Thesis Ge Zhu 4/13/2018 Department of Mechanical and Aerospace Engineering Advisor: Dr. Jung Hyun

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 60 2015 Issue 2 DOI: 10.1515/amm-2015-0086 S.M. SHIN, G.J. JUNG, WOO-JIN LEE, C.Y. KANG, J.P. WANG, RECOVERY OF ELECTRODIC POWDER

More information

NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales

NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales NANOSTRUCTURED MATERIALS: APPLICATION IN ELECTROCHEMICAL SYSTEMS FOR ENERGY CONVERSION AND STORAGE Julián Morales Departamento de Química Inorganica e Ingeniería Química Universidad de Córdoba 1 Great

More information

Supporting Information

Supporting Information Supporting Information Mg 2 B 2 O 5 Nanowires Enabled Multifunctional Solid-State Electrolyte with High Ionic Conductivity, Excellent Mechanical Properties and Flame-retardant Performance Ouwei Sheng,

More information

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Supporting Information Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Yu Lei,, Lei Qin,, Ruliang Liu,, Kah Chun Lau, Yiying Wu, Dengyun Zhai, *, Baohua Li, and Feiyu Kang *,

More information

Making a Good Li-ion Cell on Bench Scale Equipment

Making a Good Li-ion Cell on Bench Scale Equipment Making a Good Li-ion Cell on Bench Scale Equipment Vince Battaglia LBNL German American Chamber of Commerce Hotel Shattuck Plaza, 2086 Allston Way, Berkley, CA January 23, 2013 The BATT Program Focus on

More information

EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY

EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY EFFECT OF CARBON COATING ON CATHODE ACTIVE MATERIAL OF LiFe0.9Ni0.1PO4 FOR LITHIUM BATTERY Bambang Prihandoko 1, R. Ibrahim Purawiardi 1 and Sri Rakhmawati 2 1 Research Centre for Physics, Indonesian Institute

More information

Electrochemical performance of lithium-rich layered oxides for

Electrochemical performance of lithium-rich layered oxides for IBA 2013 Electrochemical performance of lithium-rich layered oxides for electric vehicle applications Jay Hyok Song, Andrei Kapylou, Chang Wook Kim, Yong Chan You, and Sun Ho Kang* SAMSUNG SDI Contents

More information

Review Thermal Runaway Reactions mechanisms Issue date : January 2011

Review Thermal Runaway Reactions mechanisms Issue date : January 2011 Project HELIOS - High Energy Lithium-Ion Storage Solutions (www.helios-eu.org) Project number: FP7 2333765 (A 3 year project, supported by the European Commission, to study and test the comparative performances

More information

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode SUPPORTING INFORMATION A Rechargeable Aluminum-Ion Battery Based on MoS 2 Microsphere Cathode Zhanyu Li a, Bangbang Niu a, Jian Liu a, Jianling Li a* Feiyu Kang b a School of Metallurgical and Ecological

More information

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode. Supplementary Figure 1.The lithium polysulfide distribution on the patterned electrode. SEM image of the ITO-carbon electrode after dipping into Li 2 S 8 solution and drying, which shows the random distribution

More information

Advanced Energy Storage and the Importance of Graphite Anode Materials

Advanced Energy Storage and the Importance of Graphite Anode Materials Advanced Energy Storage and the Importance of Graphite Anode Materials Dr. John C. Burns CEO Novonix, Canada Dr. Edward R. Buiel CEO PUREgraphite, USA July 19, 2017 1 Overview LIB Raw Materials + How much

More information

Feasibility of Using Active Batteries for Munitions Applications

Feasibility of Using Active Batteries for Munitions Applications Feasibility of Using Active Batteries for Munitions Applications Dr. Jeffrey Read 7-Dec-2016 Outline Background Electrochemistry @ ARL Active battery systems Long term storage data Li/CF x batteries Li/SOCl

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal introduction Jeff Norris CEO +1.803.528.0941 JNorris@ParacleteEnergy.com Michigan

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Electrochimica Acta 55 (2010) Contents lists available at ScienceDirect. Electrochimica Acta

Electrochimica Acta 55 (2010) Contents lists available at ScienceDirect. Electrochimica Acta Electrochimica Acta 55 (2010) 8595 8599 Contents lists available at ScienceDirect Electrochimica Acta journal homepage: www.elsevier.com/locate/electacta High performance Li 3 V 2 (PO 4 ) 3 /C composite

More information

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Capacity fade in high energy silicon-graphite electrodes for lithium-ion

More information

New battery technologies demand new electrolyte concepts?!

New battery technologies demand new electrolyte concepts?! New battery technologies demand new electrolyte concepts?! Prof. Department of Physics Chalmers University of Technology Göteborg, SWEDEN & ALISTORE European Research Institute CNRS FR 3104, Amiens, FRANCE

More information

Structural and electrochemical study of cobalt doped LiMn 2 O 4 spinels

Structural and electrochemical study of cobalt doped LiMn 2 O 4 spinels Solid State Ionics 157 (2003) 95 100 www.elsevier.com/locate/ssi Structural and electrochemical study of cobalt doped LiMn 2 O 4 spinels R.S. Liu *, C.H. Shen Department of Chemistry, National Taiwan University,

More information

All-solid-state Batteries with Thick Electrode Configurations

All-solid-state Batteries with Thick Electrode Configurations All-solid-state Batteries with Thick Electrode Configurations Yuki Kato, * Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem,

More information

T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N. Product Information Primary and Rechargeable Batteries

T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N. Product Information Primary and Rechargeable Batteries T H E E U R O P E A N P O R T A B L E B A T T E R Y A S S O C I A T I O N Product Information Primary and Rechargeable Batteries Introduction The following document provides product information on portable

More information

Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries

Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries Journal of Power Sources 1 (003) 1 1 Synthesis, characterization and cycling performance of novel chromium oxide cathode materials for lithium batteries Ramaraja P. Ramasamy, P. Ramadass, Bala S. Haran,

More information