Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel

Size: px
Start display at page:

Download "Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel"

Transcription

1 Applied Surface Science 247 (2005) Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel J. Dutta Majumdar c, *, A. Pinkerton a, Z. Liu b, I. Manna c,l.li a a Department of Mechanical, Aeronautical and Manufacturing Engineering, UMIST, P.O. BOX 88, Manchester M60 1QD, UK b Corrosion and Protection Centre, UMIST, P.O. BOX 88, Manchester M60 1QD, UK c Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur , India Available online 25 February 2005 Abstract In the present study, laser assisted fabrication of 316L stainless steel has been attempted using a high power (1.5 kw) continuous wave diode laser. The main process variables for the present study were applied power density, scan speed and powder feed rate. A detailed microstructural study of the surface and cross-section of the fabricated layer were carried out using optical and scanning electron microscopy to understand the influence of laser parameters on microstructure of the surface and interface between the successive layers. The microstructure of the top layer was equiaxed, the near substrate region was fine dendritic, however, at the interface between two successive layers, it was coarsened. The morphology and degree of fineness of the microstructure was found to vary with laser parameters. The range of grain size (maximum grain size minimum grain size) was taken as a measure of homogeneity. It was found that with increasing the scan speed, the range of grain size was minimized. Micro-porosities were present in the microstructure that reduced with increasing scan speed and found to be minimum at a medium powder feed rate. The optimum processing conditions have been established by correlating the characteristics of the fabricated layer with process parameters. # 2005 Elsevier B.V. All rights reserved. Keywords: Laser; Fabrication; Microstructure; Stainless steel 1. Introduction Laser assisted fabrication is a technique where, fabrication of solid component is achieved by laser melting of the materials in the form of particles/wire, deposition of molten materials on a substrate in a * Corresponding author. Tel.: ; fax: address: jyotsna@metal.iitkgp.ernet.in (J.D. Majumdar). layer-by-layer fashion and thereby, building-up of the full component from the computer aided design (CAD) [1]. This technique has several advantages over conventional fabrication techniques. These advantages include faster processing speed, no requirement of tooling, ability to fabricate complex shapes and retention of metastable microstructure/composition [2,3]. The process has been referred by different names, such as laser engineered net shaping (LENS) [4], direct laser fabrication (DLF) [5] and laser metal /$ see front matter # 2005 Elsevier B.V. All rights reserved. doi: /j.apsusc

2 J.D. Majumdar et al. / Applied Surface Science 247 (2005) forming (LMF) [6]. Atwood et al. [7] developed LENS to fabricate components from steel, Ni based superalloys and titanium. Though the properties were satisfactory, the fabrication speed was slow due to a slow rate of powder accumulation. Arcella and Froes [8] reported on the laser forming of titanium. Srivastava et al. [9] reported on the direct laser fabrication of Ti48Al2Mn2Nb alloy and established the role of process parameters on the microstructure of the fabricated product. A homogeneous and refined microstructure was achieved, and thermal stability of the microstructure was established. 316L stainless steel is an important class of stainless steel having a wide range of applications in oil and gas industry, refineries, chemical and petrochemical plants and as biomaterials because of its excellent corrosion properties [10]. Attempts on laser assisted fabrication of AISI 316L stainless steel has already been made by Pinkerton and Li [11] who studied the influence of pulse frequency and duration on the microstructure, surface roughness and hardness of fabricated 316L stainless steel using pulsed wave CO 2 laser. As an extension of previous effort, an attempt has been made to fabricate solid-built made of 316L stainless steel by direct laser deposition technique using a continuous wave diode laser as a source of heat. A detailed study of the influence of laser parameters on the microstructure of the fabricated layers was carried out to optimise the process parameters. 2. Experimental procedure In the present study, gas atomized 316L stainless steel (C < 0.03%, Si 0.7%, Mn 1.7%, Mo 3%, Ni 11%, Cr 18%, balance Fe) powders of particle size mm was used as feedstock material. A laser-line diode laser of wavelengths 940 nm (maximum power of 1.5 kw) with a square beam of spot size of 3 mm was used for processing. Fabrication was done by melting the feedstock powder (delivered by an external powder feeder) using the laser and deposition of the melt on the substrate (mild steel) in a layer-bylayer fashion. The whole process was carried out using Ar as shrouding environment (at a flow rate of 6 l/min) to avoid oxidation during lasing. The substrate was mounted on a CNC controlled X Y sweeping stage and a relative speed between the laser beam and substrate was maintained to ensure the area coverage and a finite time of interaction between the laser beam and powder. The main process variables for the present study were applied power density, P ( kw/mm 2 ), scan speed, v ( mm/s) and powder feed rate, F P ( mg/s). Detailed process variables used in the present study are summarized in Table 1. Microstructural characterization of the top surface and cross-section of the fabricated component was carried out by optical and scanning electron microscopy. Grain or interdendritic spacing was measured by linear intercept technique [12]. Microdefects associated with rapid quenching and its distribution was measured by linear intercept technique [12]. Finally, the optimum processing zone for the fabrication of 316L stainless steel has been derived correlating the characteristics of the formed layer with that of the laser parameters. 3. Results and discussions 3.1. Microstructure Microstructure plays a very crucial role in determining the property of a component. In the present study, a detailed observation of the optical and scanning electron micrographs of the top surface and Table 1 Summary of the applied and optimized process parameters for laser assisted rapid prototyping of AISI 316L stainless steel Applied process parameters Optimum process parameters Power density (kw/mm 2 ) Range of scan speed (mm/s) Range of powder feed rate (mg/s) Power density (kw/mm 2 ) Range of scan speed (mm/s) Range of powder feed rate (mg/s) ,

3 322 J.D. Majumdar et al. / Applied Surface Science 247 (2005) cross-section of laser assisted fabricated layer were undertaken to study the morphology, grain size, defect density of the fabricated components and the effect of laser parameters on it. Fig. 1 shows the scanning electron micrograph of the cross-section of (a) built layer and higher magnification view of (b) zone 1, (c) zone 2, (d) zone 3 of Fig. 1a of the 316L stainless steel layer lased with a power density of kw/mm 2, Fig. 1. Scanning electron micrograph of the (a) full layer and higher magnification view of (b) zone 1, (c) zone 2, and (d) zone 3 of (a) for laser assisted fabricated 316L stainless steel lased with a power density of kw/mm 2, scan speed of 2.5 mm/s and powder feed rate of 203 mg/s. The arrowheads represent micro-porosities.

4 J.D. Majumdar et al. / Applied Surface Science 247 (2005) Fig. 1. (Continued). scan speed of 2.5 mm/s and powder feed rate of 203 mg/s. From Fig. 1(a) it is relevant that the built layer is continuous and homogeneous without presence of any macrocracks. However, the observation of the microstructure of the cross-section at a higher magnification shows that the morphology and degree of fineness depends on the thermal history and hence, varies with the position and laser parameters. The microstructure of the top surface is predominantly equiaxed, due to a uniform heat flow in all the directions (cf. Fig. 1(b)). On the other hand, coarsening of grains with a larger aspect ratio (ratio of diameter along horizontal to vertical directions) is observed at the interface between two successive layers. The grain coarsening is attributed to heating effect by the conducted heat of the solidified pool of the next layer (cf. Fig. 1(c)). In the subsequent layer, the interface was coarsened in the same fashion as in

5 324 J.D. Majumdar et al. / Applied Surface Science 247 (2005) Fig. 2. Area fraction of porosities (%) as a function of (a) scan speed, v (at a powder feed rate of 203 mg/s) and (b) powder feed rate, F p (at v = 5 mm/s) for applied power density of (1) kw/mm 2 and (2) kw/mm 2. Fig. 1(c). On the other hand, the microstructure near the substrate region is predominantly columnar and highly refined (as evident from Fig. 1(d)). The detailed variation of morphology and grain size of the microstructures with laser parameters is under investigation. Fig. 1(b) (d) reveals the presence of a large number of micro-porosities (as shown by arrowheads). Presence of micro-porosities is detrimental to mechanical and electrochemical properties and hence, should be minimized. Hence, a detailed study on the variation of area fraction of microporosities with laser parameters was undertaken and correlated with laser parameters. Fig. 2(a) and (b) shows the area fraction of porosities (%) present in the microstructure at different (a) scan speed (at a powder feed rate, F p = 203 mg/s) and (b) powder feed rate (at a scan speed, v = 5 mm/s) for an applied power density of (1) kw/mm 2 and (2) kw/mm 2, respectively. It shows that increasing scan speed reduces the area fraction of porosities in the microstructure (cf. Fig. 2(a)). On the other hand, at an intermediate value of powder feed rate the area Fig. 3. Range of grain size as a function of applied power density for laser assisted fabricated 316L stainless steed lased with (a) scan speed, v of 5 mm/s, powder feed rate, F p of 203 mg/s; (b) v = 5 mm/ s, F p = 68 mg/s; (c) v = 2.5 mm/s, F p = 203 mg/s, respectively. fraction of porosities is minimized (cf. Fig. 2(b)). Area fraction of porosity was however, independent of applied laser power density. It may be concluded that porosities was originated partially by entrapment of gas from atmosphere or shrouding environment. As a result of which increase in scan speed (reduced interaction time) reduces the area fraction of porosities. Hence, choice of increased scan speed is beneficial to reduce the porosity content in the microstructure.

6 J.D. Majumdar et al. / Applied Surface Science 247 (2005) A microstructural homogeneity plays an important role to produce a uniform mechanical and electrochemical properties. In laser assisted fabricated part, variation in grain size at different position of the fabricated layer is a commonly encountered problem, especially coarsening of grains at the interface between two successive layers (as shown in Fig. 1). However, the degree of coarsening and the homogeneity were found to vary with laser parameters. Hence, the range of grain size (maximum minimum) was chosen as a measure of the degree of homogeneity and the lower the grain size range, the more homogeneous the microstructure is. It was found that the range of grain size was dependent on the combination of applied power density and scan speed. Application of low scan speed and high power Fig. 4. Scanning electron micrographs of the top surface of laser fabricated AISI 316L stainless steel with a power density of (a) kw/mm 2, and (b) W/mm 2 and at a scan speed of 2.5 mm/s, powder feed rate of 136 mg/s.

7 326 J.D. Majumdar et al. / Applied Surface Science 247 (2005) (0.091 kw/mm 2 ) was found to cause a very large range of grain sizes and hence, detrimental to properties (cf. Fig. 3(a)). However, under the similar combination of scan speed and powder feed rate, the grain size range may be minimized by the application of a lower power density (0.031 kw/mm 2 ). On the other hand, it was found that by increasing scan speed (reducing interaction time), range of grain size can be minimized at any level of applied power density (cf. Fig. 3(c)), attributed to a faster rate of heat conduction and less accumulation of heat at the interface between two successive layers. The range of grain size was however, found to be independent of powder feed rate (cf. Fig. 3(c) vis-à-vis Fig. 3(b)). Hence, a proper combination of applied power density and scan speed is essential to minimize the range of grain size and so, homogenize the microstructure Parametric optimization From the above-mentioned discussions, it may be concluded that laser processing at an increased scan speed is beneficial to reduce area fraction of porosities. On the other hand, a proper combination of applied power density and scan speed should be chosen to minimize the range of grain size, i.e. develop a homogeneous microstructure. Taking into consideration of all the independent effects of applied laser power density, scan speed and powder flow rate on the micro-porosities and microstructural homogeneities, the optimum processing conditions have been established and are summarized in Table 1. The optimum processing zone mentioned in Table 1 ensures uniform microstructure and hence, properties throughout the component, however, it does not ensure improved properties of the fabricated layer. Fig. 4 shows the microstructures of the laser fabricated AISI 316L stainless steel with a power density of (a) kw/mm 2, and (b) kw/mm 2 and at a scan speed of 5 mm/s, and a powder feed rate of 136 mg/s (optimum processing conditions). A comparison of Fig. 4(a) with Fig. 4(b) reveals a significant grain coarsening with application of a higher power density, predominantly because of a slow rate of cooling at a higher applied power density [13]. The morphology was also found to vary with laser parameters. At a lower power density, the morphology is a mixture of cellular and dendritic. On the other hand, increasing power forms mainly cellular morphology with a larger grain size. In this regard, it may be concluded that the morphology of the microstructure is dependent on the ratio of the thermal gradient of the liquid at the solid liquid interface to solidification velocity which varies with applied energy density and position [14]. 4. Conclusions In the present study, the detailed microstructural characterization of laser assisted fabrication of 316 stainless steel was carried out with a power density of kw/mm 2, scan speed of mm/s and powder feed rate of mg/s. From the results, the following conclusions may be drawn: 1. The microstructure of the fabricated component was found to be equiaxed near the surface region, very course and columnar at the interface between two layers and fine columnar near the substrate region. 2. The grain size was coarsened with increase in applied power density and decrease in scan speed. The range of grain size (maximum minimum) was reduced with increasing scan speed. 3. A large area fraction of micro-porosities were present in the microstructure which was found to be reduced with increase in scan speed. It was also found that at an intermediate powder flow rate the porosity content was minimized. 4. The optimum processing conditions for laser assisted fabrication of AISI 316L stainless steel are as follows: for an applied power density of kw/mm 2, scan speed of mm/s and powder feed rate of mg/s; for an applied power density of kw/mm 2, scan speed of mm/s, powder feed rate of 136 mg/ s; for an applied power density of kw/mm 2, scan speed of 7.5 mm/s and powder feed rate of 203 mg/s. Acknowledgements The financial support from Department of Science and Technology, India (BOYSCAST SCHEME) and

8 J.D. Majumdar et al. / Applied Surface Science 247 (2005) Board of Research in Nuclear Science (BRNS), Bombay to JDM for the present study is gratefully acknowledged. References [1] W.M. Steen (Ed.), Laser Material Processing, Springer-Verlag, New York, [2] J. Laeng, J.G. Stewart, F.W. Liou, Int. J. Prod. Res. 38 (2000) [3] J. Dutta Majumdar, I. Manna, Sadhana (2003) [4] W.M. Steen, M.A. McLean, G.J. Shannon, in: M. Glenna, M. Vollertsen (Eds.), Laser Assisted Net Shape Engineering (LANE97), Meisenbach, Bamberg, 1997, p [5] G.K. Lewis, R.B. Nemec, J.O. Milewski, D.L. Thoma, M.R. Berbe, D.A. Cremers, Directed light fabrication, in: Proceedings of the ICALEO 94, Laser Institute of America, Orlando, FL, 1994, p. 17. [6] M. Gaumann, S. Henry, F. Cleton, J.-D. Wagniere, W. Kurz, Mater. Sci. Eng. A 271 (1999) 232. [7] C.L. Atwood, M.L. Griffith, L.D. Harwell, et al., Sandia Report, [8] F.G. Arcella, F.H. Froes, J. Met. 52 (5) (2000) 28. [9] D. Srivastava, I.T.H. Chang, M.H. Loretto, Intermetallics 9 (2001) [10] C.J. Novak, in: D. Peckner, I.M. Bernstein (Eds.), Handbook of Stainless Steels, McGraw-Hill, New York, 1977, p. 1. [11] A.J. Pinkerton, L. Li, Appl. Surf. Sci. 208 (2003) 405. [12] J. Hilliard, in: R.T. Dehoff, F.N. Rhines (Eds.), Quantitative Microscopy, McGraw-Hill Book Company, London, 1968, p. 45. [13] J. Dutta Majumdar, I. Manna, Lasers Eng. 12 (2002) 171. [14] M.C. Flemmings (Ed.), Solidification Processing, McGraw- Hill, New York, 1974, p. 60.

GRAIN GROWTH MODELING FOR ADDITIVE MANUFACTURING OF NICKEL BASED SUPERALLOYS

GRAIN GROWTH MODELING FOR ADDITIVE MANUFACTURING OF NICKEL BASED SUPERALLOYS Proceedings of the 6th International Conference on Recrystallization and Grain Growth (ReX&GG 016) Edited by: Elizabeth A. Holm, Susan Farjami, Priyadarshan Manohar, Gregory S. Rohrer, Anthony D. Rollett,

More information

Estimation of Dilution and Carbon Content of Laser Cladding on Stellite 6 Coatings Deposited on an AISI 316L Stainless Steel Substrate

Estimation of Dilution and Carbon Content of Laser Cladding on Stellite 6 Coatings Deposited on an AISI 316L Stainless Steel Substrate IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 8, Issue 1 Ver. III (Jan. - Feb. 2016), PP 36-41 www.iosrjournals Estimation of Dilution and Carbon Content of Laser Cladding on Stellite

More information

Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application Tian Fu 1, Todd E. Sparks 1, Frank Liou 1, Joseph Newkirk 2, Zhiqiang Fan 1,

More information

Practical considerations and capabilities for laser assisted direct metal deposition

Practical considerations and capabilities for laser assisted direct metal deposition Ž. Materials and Design 21 2000 417 423 Practical considerations and capabilities for laser assisted direct metal deposition Gary K. Lewis a,, Eric Schlienger b a Los Alamos National Laboratory, Los Alamos,

More information

EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES

EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES B. AlMangour *, D. Grzesiak, J. M.Yang Department of Materials Science and Engineering, University of California Los

More information

Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating Pei, Yutao T.; Zuo, T.C.

Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating Pei, Yutao T.; Zuo, T.C. University of Groningen Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating Pei, Yutao T.; Zuo, T.C. Published in: Materials Science and Engineering A DOI: 10.1016/S0921-5093(97)00501-7

More information

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires Materials Transactions, Vol. 45, No. 4 (24) pp. 17 to 176 Special Issue on Frontiers of Smart Biomaterials #24 The Japan Institute of Metals Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted

More information

ANALYSIS OF STRAY GRAIN FORMATION IN SINGLE-CRYSTAL NICKEL-BASED SUPERALLOY WELDS

ANALYSIS OF STRAY GRAIN FORMATION IN SINGLE-CRYSTAL NICKEL-BASED SUPERALLOY WELDS Superalloys 2004 Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston TMS (The Minerals, Metals & Materials Society), 2004 ANALYSIS OF STRAY GRAIN FORMATION

More information

Plasma spheroidization of nickel powders in a plasma reactor

Plasma spheroidization of nickel powders in a plasma reactor Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 453 457. Indian Academy of Sciences. Plasma spheroidization of nickel powders in a plasma reactor G SHANMUGAVELAYUTHAM and V SELVARAJAN* Department

More information

Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes S.N.Aqida 1,2, S.Naher 1, and D.Brabazon 1 1 School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin

More information

Determination of absorption length of CO 2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting

Determination of absorption length of CO 2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting Determination of absorption length of CO 2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting J. Lawrence, and L. Li Manufacturing Division, Department

More information

COMPUTER SIMULATION AND EXPERIMENTAL RESEARCH OF CAST PISTON POROSITY

COMPUTER SIMULATION AND EXPERIMENTAL RESEARCH OF CAST PISTON POROSITY Tome V (year 2007), Fascicole 2, (ISSN 1584 2665) COMPUTER SIMULATION AND EXPERIMENTAL RESEARCH OF CAST PISTON POROSITY D. KAKAS, L. KOVACEVIC, P. TEREK UNIVERSITY OF NOVI SAD, FACULTY OF TECHNICAL SCIENCES,

More information

Effect of heat input on Stellite 6 coatings on a medium carbon steel substrate by laser cladding

Effect of heat input on Stellite 6 coatings on a medium carbon steel substrate by laser cladding University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Effect of heat input on Stellite 6 coatings

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi

Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi Investigation on the scan strategy and property of 316L stainless steel-inconel 718 functionally graded materials fabricated by selective laser melting Y. Zhou, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi State

More information

LASER SURFACE MELTING OF 17-4 PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 1203

LASER SURFACE MELTING OF 17-4 PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 1203 LASER SURFACE MELTING OF 7- PH PRECIPITATION-HARDENABLE STAINLESS STEEL Paper 0 Zhichao Cheng, Chi Tat Kwok, Kin Ho Lo, Department of Electromechanical Engineering, University of Macau, Taipa, Macau Abstract

More information

Solidification and Crystallisation 5. Formation of and control of granular structure

Solidification and Crystallisation 5. Formation of and control of granular structure MME 345 Lecture 08 Solidification and Crystallisation 5. Formation of and control of granular structure Ref: [1] A. Ohno, The Solidification of Metals, Chijin Shokan Co. Ltd., 1976 [2] P. Beeley, Foundry

More information

THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING

THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING Materials Engineering, Vol. 17, 2010, No. 1 11 THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING Zita Iždinská 1, Ahmed Nasher 1, Karol Iždinský 2 Received 29

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate

Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate P Proceedings of the World Congress on Engineering 2009 Vol I Microstructural Investigation of Direct Metal Deposition of H13 Steel on High Strength Copper Substrate M. Khalid Imran, S.H. Masood and Milan

More information

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS Jayanth N PG Student PSG College of Technology jayanthnagaraj@gmail.com Ravi K R Associate Professor PSG College of Technology Krravi.psgias@gmail.com

More information

Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation

Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No. 1, February 2006, p, 230-234 Structural changes of austenitic steel obtained by 532 nm and 1064 nm Nd:YAG laser radiation M. I. RUSU *, R.

More information

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING Bo Cheng and Kevin Chou Mechanical Engineering Department The University of Alabama Tuscaloosa, AL 35487 Accepted August

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää*

Available online at  ScienceDirect. Physics Procedia 56 (2014 ) Veli Kujanpää* Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 630 636 8 th International Conference on Photonic Technologies LANE 2014 Thick-section laser and hybrid welding of austenitic

More information

Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate

Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate , June 30 - July 2, 2010, London, U.K. Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate M. Khalid Imran, S. H. Masood* and Milan Brandt Abstract

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Characterization and Simulation of High Temperature Process

Characterization and Simulation of High Temperature Process Characterization and Simulation of High Temperature Process Session Chairs: Baojun Zhao Tarasankar DebRoy 469 7th International Symposium on High-Temperature Metallurgical Processing Edited by: Jiann-Yang

More information

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu

More information

POSSIBILITIES OF STAINLESS STEEL LASER MARKING. Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ

POSSIBILITIES OF STAINLESS STEEL LASER MARKING. Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ POSSIBILITIES OF STAINLESS STEEL LASER MARKING Michal ŠVANTNER, Martin KUČERA, Šárka HOUDKOVÁ University of West Bohemia, Univerzitní 8, 30614 Plzeň, msvantne@ntc.zcu.cz Abstract Laser techniques are one

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS. Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ

COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS. Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ University of West Bohemia, New Technology Research Centre, Univerzitní 8,

More information

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder M. Y. Anwar 1, M. Ajmal 1, M. T. Z. Butt 2 and M. Zubair 1 1. Department of Met. & Materials Engineering, UET Lahore. 2. Faculty of Engineering

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

Solidification Morphology Analysis of SLM of Cu Powder

Solidification Morphology Analysis of SLM of Cu Powder Solidification Morphology Analysis of SLM of Cu Powder Jorge A. Ramos Grez Pontificia Universidad Católica de Chile Mechanical and Metallurgical Engineering Department David L. Bourell The University of

More information

Computational and Analytical Methods in AM: Linking Process to Microstructure

Computational and Analytical Methods in AM: Linking Process to Microstructure Computational and Analytical Methods in AM: Linking Process to Microstructure Greg Wagner Associate Professor, Mechanical Engineering Northwestern University Workshop on Predictive Theoretical and Computational

More information

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com The effect of ER4043 and

More information

Scanning space analysis in Selective Laser Melting for CoCrMo powder

Scanning space analysis in Selective Laser Melting for CoCrMo powder Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 63 ( 213 ) 37 378 The Manufacturing Engineering Society International Conference, MESIC 213 Scanning space analysis in Selective

More information

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION T.W. Skszek and M. T. J. Lowney Abstract POM Company, Inc., located in Plymouth, Mich., has successfully commercialized the laser-based,

More information

voestalpine Additive Manufacturing Center Singapore Pte Ltd

voestalpine Additive Manufacturing Center Singapore Pte Ltd voestalpine Additive Manufacturing Center Singapore Direct Metal Deposition, DMD. 30 th November 2017 www.voestalpine.com voestalpine Additive Manufacturing Center. Singapore Direct Metal Deposition» Company

More information

Laser Surface processing -The features and the applications -

Laser Surface processing -The features and the applications - Laser Surface processing -The features and the applications - 1)Introduction 2) Heating process 3) Melting process 4) Laser vaporizing process 5) Laser CVD & PVD 6)laser marking and engraving By Munehary

More information

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys A R C H I V E S o f F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 14 Issue 1/2014 85 90 20/1 Characterization

More information

Surface Coating of Tungsten Carbide by Electric Exploding of Contact

Surface Coating of Tungsten Carbide by Electric Exploding of Contact Surface Coating of Tungsten Carbide by Electric Exploding of Contact Evgeny G. Grigoryev General Physics Department, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia Abstract.

More information

INCREASING LASER COUPLING USING PROACTIVE LAYER HEIGHT CONTROL IN DIRECT LASER DEPOSITION

INCREASING LASER COUPLING USING PROACTIVE LAYER HEIGHT CONTROL IN DIRECT LASER DEPOSITION Proceedings of the LANE 2004 Edited by: M. Geiger, A. Otto Rapid Manufacturing INCREASING LASER COUPLING USING PROACTIVE LAYER HEIGHT CONTROL IN DIRECT LASER DEPOSITION E. Fearon 1, K. G. Watkins 1, M.

More information

Solidification and phase transformations in welding

Solidification and phase transformations in welding Solidification and phase transformations in welding Subjects of Interest Part I: Solidification and phase transformations in carbon steel and stainless steel welds Solidification in stainless steel welds

More information

Microstructural Characteristics of Laser-Clad AISI P20 Tool Steel

Microstructural Characteristics of Laser-Clad AISI P20 Tool Steel Microstructural Characteristics of Laser-Clad AISI P20 Tool Steel J.-Y. Chen and L. Xue Integrated Manufacturing Technologies Institute National Research Council Canada 800 Collip Circle, London, Ontario

More information

Characterisation of the laser-clad stellite layers for protective coatings

Characterisation of the laser-clad stellite layers for protective coatings Ž. Materials and Design 23 2002 83 88 Characterisation of the laser-clad stellite layers for protective coatings R. Jendrzejewski a, A. Conde b, J. de Damborenea b,, G. Sliwinski a a Polish Academy of

More information

Mohammad Anwar Karim Id :

Mohammad Anwar Karim Id : Department of Mechanical and Industrial Engineering ME 8109 Casting and Solidification of Materials EFFECTS OF RAPID SOLIDIFICATION ON MICROSTRUCTURE AND PROPERTIES OF AL, MG & TI ALLOYS Winter 2012 Presented

More information

Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017

Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017 Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017 Evolution into Metal Powders for AM Coating Service Since 1950s Metal Powders for AM A derivative of thermal

More information

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser

In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser In-process Monitoring and Adaptive Control during Micro Welding with CW Fiber Laser Yousuke KAWAHITO*, Masaharu KAWASAKI* and Seiji KATAYAMA* * Osaka University, Joining and Welding Research Institute

More information

Concurrent Inconel 625 wire and WC powder laser cladding: process stability and microstructural characterisation

Concurrent Inconel 625 wire and WC powder laser cladding: process stability and microstructural characterisation Concurrent Inconel 625 wire and WC powder laser cladding: process stability and microstructural characterisation T. E. Abioye 1, J. Folkes 1, A. T. Clare* 1 and D. G. McCartney 2 The microstructure and

More information

Surface Characterization of Laser Polished Indirect-SLS Parts

Surface Characterization of Laser Polished Indirect-SLS Parts Surface Characterization of Laser Polished Indirect-SLS Parts Jorge A. Ramos, David L. Bourell, Joseph J. Beaman Laboratory for Freeform Fabrication The University of Texas at Austin, Austin, Texas 78712

More information

PULSED LASER WELDING

PULSED LASER WELDING PULSED LASER WELDING Girish P. Kelkar, Ph.D. Girish Kelkar, Ph.D, WJM Technologies, Cerritos, CA 90703, USA Laser welding is finding growing acceptance in field of manufacturing as price of lasers have

More information

THE PHYSICAL METALLURGY OF CAST AND WROUGHT ALLOY 718. Abstract. Introduction

THE PHYSICAL METALLURGY OF CAST AND WROUGHT ALLOY 718. Abstract. Introduction THE PHYSICAL METALLURGY OF CAST AND WROUGHT ALLOY 718 John F. Radavich School of Materials Engineering Purdue University Abstract The physical metallurgy of cast and wrought alloy 718 is discussed in terms

More information

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite.

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite. Please cite this paper as M. N. Mazlee & J. B. Shamsul. (2012). The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite, Advanced

More information

Development and Microstructural Characterization of High Speed Tool Steel through Microwave Energy

Development and Microstructural Characterization of High Speed Tool Steel through Microwave Energy Available online at www.ijacskros.com Indian Journal of Advances in Chemical Science S1 (2016) 127-131 Development and Microstructural Characterization of High Speed Tool Steel through Microwave Energy

More information

CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING

CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING Denis Cormier, Harvey West, Ola Harrysson, and Kyle Knowlson North Carolina State University Department of Industrial

More information

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL

RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL RAPID PATTERN BASED POWDER SINTERING TECHNIQUE AND RELATED SHRINKAGE CONTROL Jack G. Zhou and Zongyan He ABSTRACT Department of Mechanical Engineering and Mechanics Drexel University 3141 Chestnut Street

More information

Available online at Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application

Available online at  Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 2 (2010) 00 (2009) 1617 1623 000 000 Procedia Engineering www.elsevier.com/locate/procedia Fatigue 2010 Fatigue in AISI

More information

SINTERABILITY OF HIGH-SPEED STEELS M2, M3/2 AND T15

SINTERABILITY OF HIGH-SPEED STEELS M2, M3/2 AND T15 SINTERABILITY OF HIGH-SPEED STEELS, M3/2 AND Romário Mauricio Urbanetto Nogueira CEFET/PR UNED/MD romarioun@ig.com.br César Edil da Costa DEM-CCT/UDESC edil@joinville.udesc.br Keywords high speed steels,

More information

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering

EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti Kanaujiya, Yugesh Mani Tiwari Department of Mechanical Engineering ISSN 2320-9135 1 International Journal of Advance Research, IJOAR.org Volume 3, Issue 9, September 2015, Online: ISSN 2320-9135 EXPERIMENTAL INVESTIGATION ON COOLING RATE FOR CENTRIFUGAL CASTING Kirti

More information

Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures

Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures Rhys Morgan, Adam Papworth, Chris Sutcliffe, Pete Fox, Bill O Neill Research in Advanced Technologies

More information

CHAPTER 2 - OBJECTIVES

CHAPTER 2 - OBJECTIVES CHAPTER 2 - OBJECTIVES LIQUID PHASE DIFFUSION BONDING OF NICKEL-BASE SUPERALLOY COMPONENTS USING NOVEL BRAZE FILLER METALS 2.1) Background Turbine vanes or nozzles operating in power generation engines

More information

Application of Fly-ash Composite in Plasma Surface Engineering

Application of Fly-ash Composite in Plasma Surface Engineering Indian Institute of Technology Kharagpur From the SelectedWorks of Ajit Behera Winter December 14, 2012 Application of Flyash Composite in Plasma Surface Engineering Ajit Behera, Indian Institute of Technology

More information

Defect Morphology in Ti-6Al-4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting

Defect Morphology in Ti-6Al-4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting Defect Morphology in Ti-6Al-4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting Haijun Gong*, Khalid Rafi*, N.V. Karthik *, Thomas Starr, Brent Stucker* *Department of Industrial Engineering,

More information

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding This chapter presents the influence of process parameters of pulse TIG welding process on the development of sound weld joint. Further, the

More information

Real-time measurement of temperature for control of laser surface modification process

Real-time measurement of temperature for control of laser surface modification process Real-time measurement of temperature for control of laser surface modification process S. Ahn, J. Murphy, J. A. Ramos, K. Wood, J. J. Beaman Laboratory for Freeform Fabrication Department of Mechanical

More information

Available online at ScienceDirect. Physics Procedia 56 (2014 )

Available online at  ScienceDirect. Physics Procedia 56 (2014 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 56 (2014 ) 284 293 8 th International Conference on Photonic Technologies LANE 2014 Laser cladding of TiAl intermetallic alloy on

More information

Transactions on Engineering Sciences vol 8, 1995 WIT Press, ISSN

Transactions on Engineering Sciences vol 8, 1995 WIT Press,  ISSN Laser surface treatment of A1203 coatings plasma sprayed E. Fernandez, J.M. Cuetos, M. Cadenas, R. Vijande, HJ. Monies Oviedo University, Mechanical Engineering Area, ETS Ingenieros Industrials, Ctra.

More information

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T.

Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel, L. Lagrange,& T. Characterization of laser-material interaction during laser cladding process P.-A. Vetter,* J. Fontaine,* T. Engel," L. Lagrange,& T. Marchione^ f^, BID de /a rzcfozre ^7000 France ABSTRACT The interaction

More information

Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions

Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions To cite this article: I A Polyakov et al 2016 IOP Conf.

More information

Grain Refinement of Aluminum Alloys

Grain Refinement of Aluminum Alloys Grain Refinement of Aluminum Alloys Presented By SUBRATA SAHA Objectives Whats and Whys? Grain Refinement is a process used for grain boundary strengthening of casting material. Aluminum alloys with ultra

More information

ROLE OF SOLUTE AND TRANSITION METALS IN GRAIN REFINEMENT OF ALUMINUM ALLOYS UNDER ULTRASONIC MELT TREATMENT

ROLE OF SOLUTE AND TRANSITION METALS IN GRAIN REFINEMENT OF ALUMINUM ALLOYS UNDER ULTRASONIC MELT TREATMENT 13 th International Conference on Aluminum Alloys (ICAA13) Edited by: Hasso Weiland, Anthony D. Rollett, William A. Cassada TMS (The Minerals, Metals & Materials Society), 2012 ROLE OF SOLUTE AND TRANSITION

More information

The use of elemental powder mixes in laser-based additive manufacturing

The use of elemental powder mixes in laser-based additive manufacturing Scholars' Mine Masters Theses Student Research & Creative Works Fall 2013 The use of elemental powder mixes in laser-based additive manufacturing Rodney Michael Clayton Follow this and additional works

More information

Introduction. 1. Sputtering process, target materials and their applications

Introduction. 1. Sputtering process, target materials and their applications Sputtering is widely used in the production of electronic devices such as liquid crystal displays (LCDs), optical media, magnetic media and semiconductors. The Kobelco Research Institute, Inc. has been

More information

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL S. Missori*, G.Costanza*, E. Tata*, A. Sili** *University of Roma-Tor Vergata, ** University of Messina ABSTRACT Quenched and tempered

More information

LASER ENGINEERED NET SHAPING OF METAL POWDERS: A STUDY ON ENERGY CONSUMPTION. Abstract

LASER ENGINEERED NET SHAPING OF METAL POWDERS: A STUDY ON ENERGY CONSUMPTION. Abstract Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper LASER ENGINEERED NET SHAPING

More information

Predicting the Rheological Behavior of AISI D2 Semi- Solid Steel by Plastic Instability Approach

Predicting the Rheological Behavior of AISI D2 Semi- Solid Steel by Plastic Instability Approach American Journal of Materials Engineering and Technology, 2013, Vol. 1, No. 3, 41-45 Available online at http://pubs.sciepub.com/materials/1/3/3 Science and Education Publishing DOI:10.12691/materials-1-3-3

More information

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY

A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY ME8109: Casting And Solidification of Material A STUDY OF CASTING CHARACTERISTICS FOR DIE-CAST ALUMINUM ALLOY Department of Mechanical & Industrial Engineering Graduate Program in Mechanical Engineering

More information

Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part 1: Concept Development and Effect on Binary Alloys. Part 2: Application to Commercial

Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part 1: Concept Development and Effect on Binary Alloys. Part 2: Application to Commercial Grain Refinement of Al-Si Alloys by Nb-B Inoculation. Part 1: Concept Development and Effect on Binary Alloys. Part 2: Application to Commercial Alloys 1 Grain refinement of Al-Si alloys by Nb-B inoculation

More information

WELDING CHARACTERISTICS OF CORROSION RESISTANT NI-BASED ALLOYS MONEL 400 AND HASTELLOY C-276 THIN FOIL WELDED BY PULSED ND:YAG LASER 1

WELDING CHARACTERISTICS OF CORROSION RESISTANT NI-BASED ALLOYS MONEL 400 AND HASTELLOY C-276 THIN FOIL WELDED BY PULSED ND:YAG LASER 1 WELDING CHARACTERISTICS OF CORROSION RESISTANT NI-BASED ALLOYS MONEL 400 AND HASTELLOY C-276 THIN FOIL WELDED BY PULSED ND:YAG LASER 1 Vicente A. Ventrella 2 José Roberto Berretta 3 Wagner de Rossi 3 Abstract

More information

Results are presented in Table 1. The tube was fabricated from a Type 347 and no unusual conditions were noted.

Results are presented in Table 1. The tube was fabricated from a Type 347 and no unusual conditions were noted. 1. Introduction Hydroprocessing units such as isomax in oil refineries upgrade hydrocarbon feedstocks by converting heavier feeds into more valuable lighter products. The reactions occur under a hydrogen-rich

More information

FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION

FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION Proceedings of the 5th Annual ISC Research Symposium ISCRS 2011 April 7, 2011, Rolla, Missouri FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION Sriram Prabhu Department Of Manufacturing

More information

Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing

Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing Localized Preheating Approaches for Reducing Residual Stress in Additive Manufacturing Pruk Aggarangsi and Jack L. Beuth Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, PA Abstract

More information

Surface formation in direct chill (DC) casting of 6082 aluminium alloys

Surface formation in direct chill (DC) casting of 6082 aluminium alloys IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Surface formation in direct chill (DC) casting of 682 aluminium alloys To cite this article: N Bayat and T Carlberg 216 IOP Conf.

More information

AGING BEHAVIOR IN CO-CR-MO-C ALLOYS

AGING BEHAVIOR IN CO-CR-MO-C ALLOYS AGING BEHAVIOR IN CO-CR-MO-C ALLOYS Alfirano, Anistasia Milandia and Suryana Metallurgical Engineering Department, Sultan Ageng Tirtayasa University, Cilegon, Indonesia E-Mail: alfirano@ft-untirta.ac.id

More information

3d Heat Transfer Analysis and Numerical Modeling of LENSTM Process for One End Stepped Cylindrical Wall by Using Stainless Steel 304

3d Heat Transfer Analysis and Numerical Modeling of LENSTM Process for One End Stepped Cylindrical Wall by Using Stainless Steel 304 3d Heat Transfer Analysis and Numerical Modeling of LENSTM Process for One End Stepped Cylindrical Wall by Using Stainless Steel 304 Chirag P. Patel 1, Prof. R. I. Patel 2 1,2 ( Department Of Mechanical

More information

ScienceDirect. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

ScienceDirect. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition Available online at www.sciencedirect.com ScienceDirect Physics Procedia 50 (2013 ) 48 54 International Federation for Heat Treatment and Surface Engineering 20th Congress Beijing, China, 23-25 October

More information

MICROSTRUCTURAL STABILITY AND WEAR PERFORMANCE OF A Ni BASED ALLOY PTA COATING

MICROSTRUCTURAL STABILITY AND WEAR PERFORMANCE OF A Ni BASED ALLOY PTA COATING MICROSTRUCTURAL STABILITY AND WEAR PERFORMANCE OF A Ni BASED ALLOY PTA COATING Karin Graf Universidade Federal do Paraná - R: Francisco H. dos Santos, s/no., Centro Politécnico,CEP 81531-990 - Caixa Postal

More information

EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW

EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW Gyanendra Singh 1, Vivek Mishra 2,Vijay Shankar Yadav 3 1 Assistant Professor Mechanical Engineeering, Invertis University, Bareilly

More information

CLAD STAINLESS STEELS AND HIGH-NI-ALLOYS FOR WELDED TUBE APPLICATION

CLAD STAINLESS STEELS AND HIGH-NI-ALLOYS FOR WELDED TUBE APPLICATION CLAD STAINLESS STEELS AND HIGHNIALLOYS FOR WELDED TUBE APPLICATION Wolfgang Bretz Wickeder Westfalenstahl GmbH Hauptstrasse 6 D58739 Wickede, Germany Keywords: Cladding, Laser/TIG Welding, Combined SolderingWelding

More information

OF ALLOY 718 DURING VACUUM ARC REMELTING WITH HELIUM GAS COOLING BETWEEN INGOT AND CRUCIBLE. L. G. Hosamani, W. E. Wood* and J. H.

OF ALLOY 718 DURING VACUUM ARC REMELTING WITH HELIUM GAS COOLING BETWEEN INGOT AND CRUCIBLE. L. G. Hosamani, W. E. Wood* and J. H. SOLIDIFICATION OF ALLOY 718 DURING VACUUM ARC REMELTING WITH HELIUM GAS COOLING BETWEEN INGOT AND CRUCIBLE L. G. Hosamani, W. E. Wood* and J. H. Devletian* Precision Castparts Corp., Portland, Oregon *

More information

Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process

Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process Surface & Coatings Technology 190 (2005) 388 393 www.elsevier.com/locate/surfcoat Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process

More information

Hypereutectic aluminium alloy tubes with graded distribution of Mg Si particles prepared by centrifugal casting

Hypereutectic aluminium alloy tubes with graded distribution of Mg Si particles prepared by centrifugal casting Ž. Materials and Design 1 000 149 153 Hypereutectic aluminium alloy tubes with graded distribution of Mg Si particles prepared by centrifugal casting Jian Zhang a,b,, Zhongyun Fan a, Yuqing Wang b, Benlian

More information

Comparison of Two-Dimensional and Three-Dimensional Thermal Models of the LENS Process

Comparison of Two-Dimensional and Three-Dimensional Thermal Models of the LENS Process H. Yin Mechanical Engineering Department, Mississippi State University, Mississippi State, MS 39762 L. Wang Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762

More information

A new quaternary phase observed in a laser treated Zn-Al-Mg-Si coating

A new quaternary phase observed in a laser treated Zn-Al-Mg-Si coating University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2014 A new quaternary phase observed in a laser

More information

Splat formation in plasma-spray coating process*

Splat formation in plasma-spray coating process* Pure Appl. Chem., Vol. 74, No. 3, pp. 441 445, 2002. 2002 IUPAC Splat formation in plasma-spray coating process* Javad Mostaghimi and Sanjeev Chandra Centre for Advanced Coating Technologies, University

More information

Coatings enrichment by carbide dissolution

Coatings enrichment by carbide dissolution Available online at www.sciencedirect.com Surface & Coatings Technology 202 (2008) 4660 4665 www.elsevier.com/locate/surfcoat Coatings enrichment by carbide dissolution A.S.C.M. D'Oliveira a,, J.J. Tigrinho

More information

Diode laser beam absorption in laser transformation hardening of low alloy steel

Diode laser beam absorption in laser transformation hardening of low alloy steel Diode laser beam absorption in laser transformation hardening of low alloy steel Henrikki Pantsar and Veli Kujanpää Citation: Journal of Laser Applications 16, 147 (2004); doi: 10.2351/1.1710879 View online:

More information

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY L. M. Pike Haynes International 12 West Park Ave.; Kokomo, IN, 4694-913 USA Keywords: 282, thermal stability, R-41, Waspaloy, 263 Abstract HAYNES 282 was

More information