CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING

Size: px
Start display at page:

Download "CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING"

Transcription

1 CHARACTERIZATION OF THIN WALLED Ti-6Al-4V COMPONENTS PRODUCED VIA ELECTRON BEAM MELTING Denis Cormier, Harvey West, Ola Harrysson, and Kyle Knowlson North Carolina State University Department of Industrial Engineering Raleigh, NC Reviewed, accepted August 4, 2004 Abstract Direct-metal energy beam SFF processes typically produce layers by scanning the contours and then filling in the area within the contour. Process parameters used to solidify contours are often different from those for fill areas. It is to be expected, therefore, that the contour and fill area regions will have different microstructures. This can have important ramifications for thin walled components such as biomedical implants whose slices have very little fill area. This paper characterizes the metallurgical differences in contour and fill areas in titanium components produced via Electron Beam Melting. The implications of these properties for thin walled components are described. Introduction Arcam's Electron Beam Melting (EBM) process ( is a direct-metal freeform fabrication process that uses a 4.8 kw electron beam to selectively scan and melt layers of metal powder one on top of the next. Details of the process can be found in reference [1]. Titanium (Ti-6Al-4V) is an alloy that is receiving considerable interest for use with this process from industry. The EBM process was originally developed with the tool and die making industry in mind. Whereas the H13 tool steel components originally targeted with this process are typically large bulky parts, the titanium components built with the process tend to be thin walled in nature. For purposes of this paper, a thin walled part is a part with a thickness of approximately 14 mm. Representative thin-walled Ti-6Al-4V components built with this process include the turbocharger compressor wheel shown in Figure 1(a), the knee implant shown in Figure 1(b), and the bone plate shown in Figure 1(c). The vanes on the turbocharger wheel are approximately 1.2 mm thick, and the knee implant and bone plate each has an average thickness between 3-4 mm. Most beam-based freeform fabrication processes melt or otherwise solidify a raw material by scanning the contour of a given slice and then scanning the fill area inside of the contours. In the case of direct-metal freeform fabrication processes, it is not uncommon for different process settings to be used when solidifying contours versus fill area. This is done primarily for reasons of improving surface finish and appearance. As the solidification rate of the metal powder can be influenced by differences in process settings (e.g. beam power and scan speed), it is possible for the contours and fill area to have substantially different microstructure and mechanical properties. 440

2 (a) (b) Figure 1 (a) Ti-6Al-4V Turbocharger Wheel; (b) Knee Implant; (c) Bone Plate (c) Figure 2 shows the slice data for a relatively bulky part on the left and a thin walled part on the right. A typical melting cycle for the layer illustrated in Figure 2(a) would start by melting the inner and outer contours. For purposes of improving surface finish, it is not uncommon to melt two contours, with the second contour being offset inward from the first contour by a userspecified amount. After the contour is melted, the area shown by dashed lines is melted. Although the system control software varies the beam current and scan speed to achieve the necessary heat input, the contours are often melted at approximately mm/sec with a beam power of W. In contrast to the relatively low melting speed for contours, the fill region is typically melted with a scan speed in the mm/sec range and a beam power in the 1,200-1,800W range. Although different melting speeds are used, the beam power is adjusted 441

3 so that the overall power density during melting is approximately the same for both contours and fill area. Figure 2(b) shows the slice data for a thin-walled part. Note that the entire melting cycle consists solely of melting a single contour since it is not possible to offset a second contour. Likewise, there is no fill area to be melted. Since contours are melted more slowly in order to improve the surface finish and appearance of the part, lower melting speeds could potentially result in lower solidification rates. On the other hand, the speed with which a part looses heat following processing is largely determined by conduction between the part and the surrounding powder bed. The higher surface area-to volume ratio of thin-walled parts versus bulky parts would logically imply that thin-walled parts cool down more quickly than bulky parts. As Arcam's EBM process was originally targeted towards the fabrication of relatively bulky parts, there are no "build styles" specifically developed for the fabrication of thin-walled titanium parts whose slices consist primarily of contours. The aim of this paper, therefore, is to examine and characterize the metallurgical differences between thin-walled and bulky components built via the EBM process using Arcam's default settings. (a) (b) Figure 2 - Bulk Versus Thin-Walled Melt Geometry Experimental Procedure Two Ti-6Al-4V components were fabricated using an Arcam EBM machine one "bulky" part and one "thin-walled" part as shown in Figure 3. For microstructural examination, each part was sectioned perpendicular to the build direction using a water-cooled silicon carbide cut-off saw. Each specimen was then mounted in a room-temperature curing resin. After grinding with successively finer grits of emery paper, the samples were polished using 6 µm diamond paste, 1 µm alumina, and 0.3 µm alumina. Prior to metallographic examination, the polished surfaces were etched with Kroll s reagent. 442

4 Figure 3 - Bulky (L) and Thin Walled (R) Parts Results and Discussion When heated, titanium undergoes an allotropic phase transformation at 882 C, changing from close packed hexagonal α-ti to body centered cubic β-ti. Therefore, the as-cast microstructure of Ti-6Al-4V primarily consists of acicular α-ti that has transformed from the grains of β-ti that solidified initially. In addition, α-ti is also present at the prior grain boundaries of the β-ti [2]. This same microstructure is observed in the parts produced via the EBM process, as shown in Figures 4 and 5. Of particular significance from these micrographs is the fact that the α-ti needles produced in the thin wall specimen are approximately one third the size of those produced in the bulk part. Microhardness measurements taken on both samples were within the range of HV (HRC 28-30). 200 µm Figure 4 - Thin-Walled Microstructure at 100X Magnification 443

5 200 µm Figure 5 - Bulk Part Microstructure at 100X Magnification Examination of the prior β-ti grain boundaries revealed that epitaxial growth occurred between layers. In Figures 4-6, the build direction is from the bottom to the top of the micrograph. Given that each build layer is nominally 150 µm thick, each micrograph spans multiple horizontal layers, with Figure 6 displaying horizontal layers. Note that there is no observable delineation between successive layers in either the bulk or thin-walled parts and that the prior β-ti grain boundaries are continuous through the layers. The growth of β-ti grains is particularly evident in Figure 6. This implies that the part temperature is maintained above the β transus, and that solidification of the melted powder occurs by growth of β-ti directly onto the seed grains of the previous layer. Control and characterization of this mode of solidification will be the subject of further investigations. During processing, the EBM process control algorithm is designed to keep the part being fabricated at an elevated temperature in order to reduce thermal stresses. While thermal imaging techniques may be used to measure surface temperatures at the top of a part during the build [3], it is quite difficult to measure temperature within the body of a part during a build due to the nature of the process. However, each part with this process is built up from a steel base plate, and a thermocouple is attached to the underside of the base plate. A base plate temperature of 850 C was maintained during the builds that produced all parts shown in this paper. There is obviously an increasing temperature gradient from the underside of the start plate to the very top surface of 444

6 the part that extends above the melting temperature of the alloy. With a start plate temperature of 850 C, the bulk of the part is above the β transus for the duration of the build. The α-ti needles therefore do not form until the entire part is cooled below the β transus following the completion of electron beam melting. The process parameters (e.g. beam current and scan speed) had relatively little influence on the size of the α-ti needles. Instead, the cooling rate and resulting microstructure was largely dominated by the part geometry in these cases. In a vacuum environment, heat loss through conduction with the surrounding powder bed is the primary cooling mechanism, and thin walled parts will cool down more rapidly than bulky parts for a given input power density. The thin walled part represented in Figure 4 was melted at a much slower speed than the bulky part shown in Figure 5, yet it has a much more refined microstructure. Within the range of values recommended by the process control algorithm, it was clear that part geometry had more to do with microstructure than processing parameters. 400 µm Figure 6 - Micrograph of Bulk Part at 50X Magnification 445

7 Conclusions and Future Directions Each layer that is melted in the EBM process involves both contours and fill area. Contours are melted at roughly 25% of the speed of fill area in order to improve surface finish. Because each layer of a thin wall part consists primarily of contours rather than fill area, thin walled parts are built primarily using the slower scan speeds associated with contours. Conversely, bulky parts whose layers are primarily fill area are built using much higher scanning speeds. For the thin wall components such as those shown in Figure 1, all surfaces will be subject to light finish machining. Any improvement in surface finish resulting from slower scan speeds of the contours is largely for cosmetic purposes and will not affect the final form of the part following finish machining. It is therefore worth investigating whether or not a special build style can be used to optimize the microstructure and properties of thin wall parts. Using the generic recommended processing parameters, experiments determined that the refined microstructure of the thin wall part was due primarily to the effect of geometry on cooling rate. While there was no significant difference in microhardness, the finer microstructure of the thin wall part is preferred in fatigue applications where fracture toughness is important [4] [5]. The turbocharger and bone implant applications shown in Figure 1 certainly fall into this category. The growth of columnar grains demonstrated in these experiments could give rise to EBM parts with tailored anisotropic microstructures. Titanium Aluminide (TiAl) is an alloy of particular interest as a lighter weight substitution for nickel-based superalloys in elevated temperature applications. If the same columnar growth behavior can be induced with TiAl, then the result would be similar to directional solidification. In that case, components could be oriented within the build chamber to maximize benefits of the columnar grain structure. The presence of columnar grain growth spanning multiple layers suggests that the temperature of the parts were held above the β transus throughout the build. During processing, the control algorithm uses the electron beam to deliver extra heat to both the part and the surrounding powder bed in order to reduce thermal stresses. It is not strictly necessary to maintain the elevated temperature above the β transus. Future experiments will therefore investigate the effects of maintaining a body temperature that is below the β transus to see if a more rapid transition from β-ti to α-ti will take place during processing. Since the size of the β- Ti grains impose an upper limit on the size of the α-ti needles, it is conceivable that increasing the scanning speed and beam current to those levels currently used for fill melting will produce a even finer α-ti grain structure. For components such as those shown in Figure 1 that undergo cyclic stresses, this further refinement of microstructure could prove to be quite beneficial in terms of fatigue performance. It is recognized that by lowering the target body temperature, the potential for increased residual stresses and warping exists. The tradeoffs between microstructural refinement and residual stresses will be considered as part of the studies. 446

8 References [1] Cormier, D., Harrysson, O., and West, H. (2004) "Characterization of H13 steel produced via electron beam melting" Rapid Prototyping Journal, V10N1, pp [2] Metals Handbook 9 th Edition, Volume 9: Metallography and Microstructures, American Society for Metals, [3] Hofmeister, W., Wert, M., Smugeresky, J., Philliber, J., Griffith, M., and Ensz, M. (1999) "Investigating Solidification with the Laser-Engineering Net Shaping (LENS) Process," JOM, Vol. 51, No. 7, available from JOM-e online at: [4] Broek, D. (1983) Elementary Engineering Fracture Mechanics, Martinus Jijhoff Publishers, The Hague. [5] Smith, M. (1956) Principles of Physical Metallurgy, Harper & Brothers Publishers, NY. 447

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM

COST STSM REPORT. Investigation of anisotropic properties of Rapid Prototyped metallic implants AIM OF THE COST STSM COST STSM REPORT Investigation of anisotropic properties of Rapid Prototyped metallic implants COST STSM Reference Number: COST-STSM-MP1301-26743 Period: 2015-10-19 00:00:00 to 2015-11-30 00:00:00 COST

More information

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes P. Vora a, F. Derguti b, K. Mumtaz a, I. Todd b, N. Hopkinson a a Department of Mechanical Engineering,

More information

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V

DEPENDENCE of MICROSTRUCTURE and MECHANICAL PROPERTIES on HEAT TREAT CYCLES of ELECTRON BEAM MELTED Ti-6Al-4V Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference DEPENDENCE of MICROSTRUCTURE and MECHANICAL

More information

copyright in the United States.

copyright in the United States. Effects of Processing on Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated using Electron Beam Melting (EBM): Orientation and Location * Nikolas Hrabe a, Ryan Kircher b, Timothy Quinn a

More information

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden

Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM. Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Improved Surface Quality and Productivity in Ti Additive Manufacturing using EBM MultiBeam TM Ulf Ackelid and Mattias Svensson, Arcam AB, Sweden Introduction to Electron Beam Melting Arcam AB EBM process

More information

Whitepaper MATERIALS FOR DIRECT METAL LASER-SINTERING. Mike Shellabear 1, Olli Nyrhilä 2. 1 EOS GmbH, 2 EOS Finland

Whitepaper MATERIALS FOR DIRECT METAL LASER-SINTERING. Mike Shellabear 1, Olli Nyrhilä 2. 1 EOS GmbH, 2 EOS Finland Whitepaper MATERIALS FOR DIRECT METAL Mike Shellabear 1, Olli Nyrhilä 2 1 EOS GmbH, 2 EOS Finland 1. e-manufacturing and Laser-Sintering e-manufacturing means fast, flexible, and cost effective production

More information

EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES

EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES EFFECT OF SCANNING METHODS IN THE SELECTIVE LASER MELTING OF 316L/TiC NANOCOMPOSITIES B. AlMangour *, D. Grzesiak, J. M.Yang Department of Materials Science and Engineering, University of California Los

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

Thermal Modeling and Experimental Validation in the LENS TM Process

Thermal Modeling and Experimental Validation in the LENS TM Process Thermal Modeling and Experimental Validation in the LENS TM Process Abstract Liang Wang 1, Sergio D. Felicelli 2, James E. Craig 3 1. Center for Advanced Vehicular Systems, Mississippi State University,

More information

VARIATION IN MECHANICAL BEHAVIOR DUE TO DIFFERENT BUILD. DIRECTIONS OF Ti6Al4V FABRICATED BY ELECTRON BEAM ADDITIVE MANUFACTURING TECHNOLOGY LALIT ROY

VARIATION IN MECHANICAL BEHAVIOR DUE TO DIFFERENT BUILD. DIRECTIONS OF Ti6Al4V FABRICATED BY ELECTRON BEAM ADDITIVE MANUFACTURING TECHNOLOGY LALIT ROY VARIATION IN MECHANICAL BEHAVIOR DUE TO DIFFERENT BUILD DIRECTIONS OF Ti6Al4V FABRICATED BY ELECTRON BEAM ADDITIVE MANUFACTURING TECHNOLOGY by LALIT ROY LEILA LADANI, COMMITTEE CHAIR Y. KEVIN CHOU MOHAMMAD

More information

The University of Texas at El Paso, El Paso, TX USA 2 W. M. Keck Center for 3-D Innovation

The University of Texas at El Paso, El Paso, TX USA 2 W. M. Keck Center for 3-D Innovation EFFECT OF BUILD PARAMETERS AND BUILD GEOMETRIES ON RESIDUAL MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Ti-6Al-4V COMPONENTS BUILT BY ELECTRON BEAM MELTING (EBM) L. E. Murr, 1,2 S. M. Gaytan, 1,2 F. Medina

More information

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication Materials Science Forum Online: 26-7- ISSN: 1662-9752, Vols. 519-521, pp 1291-1296 doi:1.428/www.scientific.net/msf.519-521.1291 26 Trans Tech Publications, Switzerland Metallurgical Mechanisms Controlling

More information

Analyzing the Mechanical Behavior of Additive Manufactured Ti-6Al-4V Using Digital Image Correlation

Analyzing the Mechanical Behavior of Additive Manufactured Ti-6Al-4V Using Digital Image Correlation Analyzing the Mechanical Behavior of Additive Manufactured Ti-6Al-4V Using Digital Image Correlation Diploma work in the Master programme Materials Engineering ALEXANDER LEICHT ELON OSKAR WENNBERG Diploma

More information

The Effect of Location on the Structure and Mechanical Properties of Selective Laser Melted 316L Stainless Steel

The Effect of Location on the Structure and Mechanical Properties of Selective Laser Melted 316L Stainless Steel Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper The Effect of Location on the

More information

MICROSTRUCTURE AND MECHANICAL PROPERTIES COMPARISON OF 316L PARTS PRODUCED BY DIFFERENT ADDITIVE MANUFACTURING PROCESSES

MICROSTRUCTURE AND MECHANICAL PROPERTIES COMPARISON OF 316L PARTS PRODUCED BY DIFFERENT ADDITIVE MANUFACTURING PROCESSES Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference MICROSTRUCTURE AND MECHANICAL PROPERTIES COMPARISON

More information

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS

ADDITIVE MANUFACTURING OF TITANIUM ALLOYS ADDITIVE MANUFACTURING OF TITANIUM ALLOYS F.H. (Sam) Froes Consultant to the Titanium Industry Based on a paper by B. Dutta and F.H. (Sam) Froes which appeared in AM&P Feb. 2014 pp. 18-23 OUTLINE Cost

More information

Hot Isostatic Pressing for AM parts

Hot Isostatic Pressing for AM parts Document no SE037406 Revision 1 Page 1(3) Hot Isostatic Pressing for AM parts Dr. Johan Hjärne and Magnus Ahlfors, Applications Engineer AMD, Quintus Technologies. Västerås, Sweden, May 2016 The QIH9 Hot

More information

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL

LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL LASER BEAM WELDING OF QUENCHED AND TEMPERED ASTM A 517 GR.B STEEL S. Missori*, G.Costanza*, E. Tata*, A. Sili** *University of Roma-Tor Vergata, ** University of Messina ABSTRACT Quenched and tempered

More information

Solidification Morphology Analysis of SLM of Cu Powder

Solidification Morphology Analysis of SLM of Cu Powder Solidification Morphology Analysis of SLM of Cu Powder Jorge A. Ramos Grez Pontificia Universidad Católica de Chile Mechanical and Metallurgical Engineering Department David L. Bourell The University of

More information

MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS

MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS MECHANICAL PROPERTIES AND MICROSTRUCTURE OF IN713LC NICKEL SUPERALLOY CASTINGS Jiří ZÝKA 1, Irena ANDRŠOVÁ 1, Božena PODHORNÁ 1, Karel HRBÁČEK 2 1 UJP PRAHA a.s., Nad Kamínkou 1345, Prague, Czech republic,

More information

ADDITIVE MANUFACTURING A METALLURGICAL PERSPECTIVE. Julius Bonini

ADDITIVE MANUFACTURING A METALLURGICAL PERSPECTIVE. Julius Bonini ADDITIVE MANUFACTURING A METALLURGICAL PERSPECTIVE Julius Bonini V2 Dec 2016 INTRODUCTION Additive manufacturing (AM), also known as additive layer manufacturing (ALM) or 3D printing (3DP), is a manufacturing

More information

Mechanical property evaluation of Ti-6Al-4V parts made using Electron Beam Melting

Mechanical property evaluation of Ti-6Al-4V parts made using Electron Beam Melting Mechanical property evaluation of Ti-6Al-4V parts made using Electron Beam Melting Khalid Rafi. H, Karthik N.V, Thomas L. Starr*, Brent E. Stucker Department of Industrial Engineering, *Department of Chemical

More information

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process The Seventeenth Solid Freeform Fabrication Symposium Aug 14-16, 2006, Austin, Texas Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process L. Wang 1, S. Felicelli

More information

MICROSTUCTURE OF CAST TITANIUM ALLOYS

MICROSTUCTURE OF CAST TITANIUM ALLOYS MATERIALS FORUM VOLUME 31-2007 Edited by J.M. Cairney and S.P. Ringer Institute of Materials Engineering Australasia MICROSTUCTURE OF CAST TITANIUM ALLOYS M.J. Bermingham, S.D. McDonald, M.S. Dargusch,

More information

Laser Forming of Ti-6Al-4V: Research Overview. P.A. Kobryn and S.L. Semiatin

Laser Forming of Ti-6Al-4V: Research Overview. P.A. Kobryn and S.L. Semiatin Laser Forming of Ti-6Al-4V: Research Overview P.A. Kobryn and S.L. Semiatin Air Force Research Laboratory, AFRL/MLLM, Building 655, Suite 1 Wright-Patterson Air Force Base, OH 45433-7817 Abstract Laser

More information

Material Characterization Analysis and Effects of Temperature on Microstructure with Respect to Their Mechanical Properties

Material Characterization Analysis and Effects of Temperature on Microstructure with Respect to Their Mechanical Properties Material Characterization Analysis and Effects of Temperature on Microstructure with Respect to Their Mechanical Properties Muhammad Bilal 1 * and Mohsin Ali Memon 2 1 Department Materials Engineering,

More information

ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS

ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS ELECTRON BEAM FREEFORM FABRICATION: A RAPID METAL DEPOSITION PROCESS Karen M. B. Taminger and Robert A. Hafley NASA Langley Research Center, Hampton, VA Abstract Manufacturing of structural metal parts

More information

On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components

On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components D. D. Gill, J. E. Smugeresky, M. F. Harris, C. V. Robino, M. L. Griffith Sandia National Laboratories*

More information

Fabrication of Titanium Aluminide Matrix Composites by Laser Engineered Net Shaping. Weiping Liu and John DuPont. Abstract

Fabrication of Titanium Aluminide Matrix Composites by Laser Engineered Net Shaping. Weiping Liu and John DuPont. Abstract Fabrication of Titanium luminide Matrix Composites by Laser Engineered Net Shaping Weiping Liu and John DuPont Department of Materials Science and Engineering, Lehigh University, Bethlehem, P 1815 bstract

More information

DEVELOPMENT OF A MARAGING STEEL POWDER FOR ADDITIVE MANUFACTURING. Simon Hoeges GKN Sinter Metals Engineering GmbH Radevormwald, Germany

DEVELOPMENT OF A MARAGING STEEL POWDER FOR ADDITIVE MANUFACTURING. Simon Hoeges GKN Sinter Metals Engineering GmbH Radevormwald, Germany DEVELOPMENT OF A MARAGING STEEL POWDER FOR ADDITIVE MANUFACTURING Simon Hoeges GKN Sinter Metals Engineering GmbH Radevormwald, Germany Christopher T. Schade and Robert Causton Hoeganaes Corporation, Cinnaminson,

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

PRIMARY GRADES TURNING TURNING / INSERTS / INTRODUCTION TO CARBIDE INSERTS

PRIMARY GRADES TURNING TURNING / INSERTS / INTRODUCTION TO CARBIDE INSERTS / ISERTS / ITRODUCTIO TO CARBIDE ISERTS PRIMARY GRADES group PVD Coated grades Carbide CVD Ceramics CB PCD Uncoated grades Carbide Cermet P M K S H P01 P05 P10 P15 P20 P25 P30 P35 P40 P45 P50 M01 M05 M15

More information

Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel. Lima, R. M.; Jesus, E. R. B.; Rossi, J. L.

Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel. Lima, R. M.; Jesus, E. R. B.; Rossi, J. L. Effect of Heat Treatment on the Microstructure of Spray Formed AISI M2 High-speed Steel Lima, R. M.; Jesus, E. R. B.; Rossi, J. L. Instituto de Pesquisas Energéticas e Nucleares - IPEN Powder Processing

More information

Failure Analysis for the Economizer Tube of the Waste Heat Boiler

Failure Analysis for the Economizer Tube of the Waste Heat Boiler China Steel Technical Report, No. 22, pp. 53 58, (2009) Tsung-Feng Wu 53 Failure Analysis for the Economizer Tube of the Waste Heat Boiler TSUNG-FENG WU New Materials Research and Development Department

More information

Manufacturing UNBOUND

Manufacturing UNBOUND Welcome to Manufacturing UNBOUND Arcam EBM Disrupting the status quo in production by providing leading-edge metal additive manufacturing solutions. 2 www.arcamebm.com Arcam EBM Your innovative partner

More information

Mechanical properties of lattice truss structures made of a selective laser melted superalloy

Mechanical properties of lattice truss structures made of a selective laser melted superalloy Mechanical properties of lattice truss structures made of a selective laser melted superalloy Håkan Brodin 1,2 * and Jonas Saarimäki 2 1 Siemens Industrial Turbomachinery AB, 612 31 Finspång, Sweden 2

More information

Development of Novel EBSM System for High-Tech Material. Additive Manufacturing Research

Development of Novel EBSM System for High-Tech Material. Additive Manufacturing Research Development of Novel EBSM System for High-Tech Material Additive Manufacturing Research C. Guo 1, 2, 3, F. Lin 1, 2, 3, W. J. Ge 1, 2, 3 1, 2, 3 and J. Zhang 1. Department of Mechanical Engineering, Tsinghua

More information

Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4 ABSTRACT Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research Centre P.O. Box 80 04 65 81663 Munich johannes.vlcek@eads.net Laser or electron beam based

More information

Effects of Processing Parameters on the Mechanical Properties of CMSX-4 Additively Fabricated through Scanning Laser Epitaxy (SLE)

Effects of Processing Parameters on the Mechanical Properties of CMSX-4 Additively Fabricated through Scanning Laser Epitaxy (SLE) Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Effects of Processing Parameters on the Mechanical

More information

Recent Progress on Scanning Laser Epitaxy: A New Technique for Growing Single Crystal Superalloys Abstract Introduction Experimental

Recent Progress on Scanning Laser Epitaxy: A New Technique for Growing Single Crystal Superalloys Abstract Introduction Experimental Recent Progress on Scanning Laser Epitaxy: A New Technique for Growing Single Crystal Superalloys Michael Kirka, Rohan Bansal, and Suman Das Woodruff School of Mechanical Engineering, Georgia Institute

More information

Experiment E: Martensitic Transformations

Experiment E: Martensitic Transformations Experiment E: Martensitic Transformations Introduction: The purpose of this experiment is to introduce students to a family of phase transformations which occur by shear rather than diffusion. In metals,

More information

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract Journal of Metals, Materials and Minerals. Vol.16 No.2 pp.25-31, 2006 The Effect of Long-Term Thermal Exposure at Elevated Temperatures on Microstructures and Mechanical Properties in Centrifugally Casted

More information

EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS. Jong Il Park a Chang Kyu Kim b Sunghak Lee b

EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS. Jong Il Park a Chang Kyu Kim b Sunghak Lee b EVALUATION OF THERMAL FATIGUE PROPERTIES OF HSS ROLL MATERIALS Jong Il Park a Chang Kyu Kim b Sunghak Lee b a Hot Rolling Department, Pohang Iron and Steel Co., Ltd., Pohang 79-75 b Center for Advanced

More information

Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al Si alloys

Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al Si alloys Journal of Alloys and Compounds 450 (2008) 255 259 Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al Si alloys Muzaffer Zeren, Erdem Karakulak The Department of

More information

UNDERSTANDING THE MICROSTRUCTURE AND PROPERTIES OF COMPONENTS FABRICATED BY LASER ENGINEERED NET SHAPING (LENS)

UNDERSTANDING THE MICROSTRUCTURE AND PROPERTIES OF COMPONENTS FABRICATED BY LASER ENGINEERED NET SHAPING (LENS) UNDERSTANDING THE MICROSTRUCTURE AND PROPERTIES OF COMPONENTS FABRICATED BY LASER ENGINEERED NET SHAPING (LENS) M. L. Griffith*, M. T. Ensz*, J. D. Puskar*, C. V. Robino*, J. A. Brooks**, J. A. Philliber**,

More information

THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS. Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH

THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS. Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH THERMAL STABILITY OF RAPIDLY SOLIDIFIED Al-Fe-X ALLOYS Milena VODĚROVÁ, Pavel NOVÁK, Alena MICHALCOVÁ, Dalibor VOJTĚCH Department of Metals and Corrosion Engineering, Institute of Chemical Technology,

More information

CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS. P.H. Chong*, Z. Liu, P. Skeldon and G. E.

CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS. P.H. Chong*, Z. Liu, P. Skeldon and G. E. CORROSION BEHAVIOR OF LASER SURFACE MELTED 2014 ALUMINIUM ALLOY IN T6 AND T451 TEMPERS P.H. Chong*, Z. Liu, P. Skeldon and G. E. Thompson Corrosion and Protection Centre, University of Manchester Institute

More information

STRUCTURAL CHANGES IN Cr-V LEDEBURITIC STEEL DURING AUSTENITIZING AND QUENCHING

STRUCTURAL CHANGES IN Cr-V LEDEBURITIC STEEL DURING AUSTENITIZING AND QUENCHING 1 STRUCTURAL CHANGES IN Cr-V LEDEBURITIC STEEL DURING AUSTENITIZING AND QUENCHING Peter Jurči Received 28 th January 2010; accepted in revised form 16 th February 2010 Abstract The Vanadis 6 PM Cr-V ledeburitic

More information

OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY

OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY Waleed Al-Ashtari and Zahraa Abdulsattar Department of Mechanical Engineering, College of Engineering, University of Baghdad, Iraq E-Mail:

More information

Microstructural characterization of diode laser deposited Ti-6Al-4V

Microstructural characterization of diode laser deposited Ti-6Al-4V Microstructural characterization of diode laser deposited Ti-6Al-4V Tian Fu 1, Zhiqiang Fan 1, Pulugurtha, Syamala R. 2 Todd E. Sparks 1, Jianzhong Ruan 1, Frank Liou 1 and Joseph W. Newkirk 2 1Department

More information

Investigation of Enhancing Surface Hardness in Ti-6Al-4V Alloy by TIG Welding

Investigation of Enhancing Surface Hardness in Ti-6Al-4V Alloy by TIG Welding 2011 International Conference on Advanced Materials Engineering IPCSIT vol.15 (2011) (2011) IACSIT Press, Singapore Investigation of Enhancing Surface Hardness in Ti-6Al-4V Alloy by TIG Welding Gholamreza

More information

Deformation and fracture of an alpha/beta titanium alloy

Deformation and fracture of an alpha/beta titanium alloy ISSN 1517-7076 Revista Matéria, v. 15, n. 2, pp. 364-370, 2010. http://www.materia.coppe.ufrj.br/sarra/artigos/artigo11240 Deformation and fracture of an alpha/beta titanium alloy A. Andrade; A. Morcelli;

More information

Additive manufacturing of metallic alloys and its medical applications

Additive manufacturing of metallic alloys and its medical applications Additive manufacturing of metallic alloys and its medical applications A. Di Schino 1, M. Richetta 2 1 Dipartimento di Ingegneria Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy

More information

The Influence of Heat Treatment on the Microstructure and Hardness Properties of Ti6Al4V and MgAZ91D Alloys

The Influence of Heat Treatment on the Microstructure and Hardness Properties of Ti6Al4V and MgAZ91D Alloys Journal of Mechanical Engineering Vol SI 3 (2), 167-176, 2017 The Influence of Heat Treatment on the Microstructure and Hardness Properties of Ti6Al4V and MgAZ91D Alloys Yusliza Yusuf Abdul Rahim Jaafar

More information

University, 2-1 Yamadaoka, Suita, Osaka, , Japan. Technology, 7-1 Yagumo-cho Niihama, Ehime, , Japan

University, 2-1 Yamadaoka, Suita, Osaka, , Japan. Technology, 7-1 Yagumo-cho Niihama, Ehime, , Japan Materials Science Forum Online: 2018-12-26 ISSN: 1662-9752, Vol. 941, pp 1366-1371 doi:10.4028/www.scientific.net/msf.941.1366 2018 Trans Tech Publications, Switzerland Effects of Heat Treatment on Unique

More information

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu

More information

Best Practice Guide for Thermocycling and Reliability Assessment of Solder Joints

Best Practice Guide for Thermocycling and Reliability Assessment of Solder Joints Best Practice Guide for Thermocycling and Reliability Assessment of Solder Joints Miloš Dušek and Christopher Hunt July 2000 July 2000 Best Practice Guide for Thermocycling and Reliability Assessment of

More information

Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies Research 3D Printing Article Engineering 2015, 1(1): 124 130 DOI 10.15302/J-ENG-2015013 Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies Chao Guo 1, 2, 3#, Wenjun

More information

RUNNING HOT. Sub-topics. Fuel cells Casting Solidification

RUNNING HOT. Sub-topics. Fuel cells Casting Solidification RUNNING HOT Sub-topics 1 Fuel cells Casting Solidification CONCEPT OF FUEL CELLS International concerns regarding the emission of greenhouse gases and the trend toward distributed power generation are

More information

REPAIR WELDABILITY STUDIES OF ALLOY 718 USING VERSATILE VARESTRAINT TEST

REPAIR WELDABILITY STUDIES OF ALLOY 718 USING VERSATILE VARESTRAINT TEST REPAIR WELDABILITY STUDIES OF ALLOY 718 USING VERSATILE VARESTRAINT TEST C. P. Chou and C. H. Chao Department of Mechanical Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C. Abstract The

More information

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B22F 3/105 ( )

TEPZZ A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B22F 3/105 ( ) (19) TEPZZ 7 7965A_T (11) EP 2 737 965 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 04.06.2014 Bulletin 2014/23 (51) Int Cl.: B22F 3/105 (2006.01) (21) Application number: 12008074.2 (22)

More information

Deposition of Ti/TiC Composite Coatings on Implant Structures using Laser Engineered Net Shaping

Deposition of Ti/TiC Composite Coatings on Implant Structures using Laser Engineered Net Shaping Deposition of Ti/TiC Composite Coatings on Implant Structures using Laser Engineered Net Shaping G.D. Janaki Ram, Y. Yang, and B.E. Stucker Department of Mechanical and Aerospace Engineering, Utah State

More information

1 LENS is the registered trademark and service mark of Sandia National Laboratories and Sandia Corporation.

1 LENS is the registered trademark and service mark of Sandia National Laboratories and Sandia Corporation. An Investigation of LENS -Deposited Medical-Grade CoCrMo Alloys Brent Stucker*, Carson Esplin**, and Daniel Justin** * Mechanical & Aerospace Engineering, Utah State University, Logan, UT 84322-4130 **

More information

4.0 Alloying Elements and Microstructural Phases

4.0 Alloying Elements and Microstructural Phases 4.0 Alloying Elements and Microstructural Phases There is a direct link between microstructure and properties and if the microstructure is altered by heat treatment, fabrication or composition then the

More information

Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4 ABSTRACT Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research Centre P.O. Box 80 04 65 81663 Munich johannes.vlcek@eads.net Laser or electron beam based

More information

Additive Manufacturing Technology November

Additive Manufacturing Technology November Additive Manufacturing Technology November 2012 www.3trpd.co.uk Phil Kilburn DMLS Sales Manager Agenda About 3T RPD Ltd Overview of Additive Manufacturing Manufacturing directly in metals Arcam - Electron

More information

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-48Al-2Cr-2Nb MANUFACTURED VIA ELECTRON BEAM MELTING

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-48Al-2Cr-2Nb MANUFACTURED VIA ELECTRON BEAM MELTING Ti-2015- The 13th World Conference on Titanium Edited by: Adam Pilchak, et al. TMS (The Minerals, Metals & Materials Society), 2015 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-48Al-2Cr-2Nb MANUFACTURED

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP020500 TITLE: Effect of Surface Treatments on Electron Beam Freeform Fabricated Aluminum Structures DISTRIBUTION: Approved for

More information

Controlled Residual Surface Contamination of γtial, Induction Melted in Ceramic Crucibles

Controlled Residual Surface Contamination of γtial, Induction Melted in Ceramic Crucibles 1 Controlled Residual Surface Contamination of γtial, Induction Melted in Ceramic Crucibles J. Barbosa, A. Caetano Monteiro, Universidade do Minho, Guimarães, Portugal C. Silva Ribeiro, FEUP, Porto, Portugal

More information

Metals and alloys for biomedical applications

Metals and alloys for biomedical applications http://pioneer.netserv.chula.ac.th/~pchedtha/ Metals and alloys for biomedical applications Fundamental of Materials Engineering 2189202 Chedtha Puncreobutr Department of Metallurgical Engineering Chulalongkorn

More information

R. Bansal, R. Acharya, J. J. Gambone, and S. Das. Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA

R. Bansal, R. Acharya, J. J. Gambone, and S. Das. Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA EXPERIMENTAL AND THEORETICAL ANALYSIS OF SCANNING LASER EPITAXY APPLIED TO NICKEL-BASED SUPERALLOYS R. Bansal, R. Acharya, J. J. Gambone, and S. Das Woodruff School of Mechanical Engineering, Georgia Institute

More information

Full-Thickness Decarburization of the Steel Shell of an Annealing Furnace

Full-Thickness Decarburization of the Steel Shell of an Annealing Furnace Metallogr. Microstruct. Anal. (2012) 1:59 64 DOI 10.1007/s13632-012-0005-0 TECHNICAL NOTE Full-Thickness Decarburization of the Steel Shell of an Annealing Furnace A. M. Dalley Received: 18 December 2011

More information

HAYNES 244 alloy a new 760 C capable low thermal expansion alloy

HAYNES 244 alloy a new 760 C capable low thermal expansion alloy MATEC Web of Conferences 14, 17004 (2014) DOI: 10.1051/matecconf/20141417004 c Owned by the authors, published by EDP Sciences, 2014 HAYNES 244 alloy a new 760 C capable low thermal expansion alloy Michael

More information

19 th SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES

19 th SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES 19 th SYMPOSIUM ON INDUSTRIAL APPLICATIONS OF GAS TURBINES Training Session 8: Gas Turbine Repair Technology by Scott Hastie / Liburdi Turbine Services Presented at the 19th Symposium on Industrial Application

More information

Zr bearing γ-tial induction melted

Zr bearing γ-tial induction melted Zr bearing γ-tial induction melted Joaquim Barbosa 1, António Duarte 2, C. Silva Ribeiro 2, Filomena Viana 2, Caetano Monteiro 1 1 Universidade do Minho, Departamento de Engenharia Mecânica, Guimarães,

More information

Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017

Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017 Crack Prevention in NiCr-Alloys when Processed by AM (L-PB) William Jarosinski March 8, 2017 Evolution into Metal Powders for AM Coating Service Since 1950s Metal Powders for AM A derivative of thermal

More information

Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures

Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures Direct Metal Laser Re-Melting (DMLR) of 316L Stainless Steel Powder Part 1: Analysis of Thin Wall Structures Rhys Morgan, Adam Papworth, Chris Sutcliffe, Pete Fox, Bill O Neill Research in Advanced Technologies

More information

Appearance of a Hard Layer ( α-case ) on the Surface of Two Different Titanium-based Alloys

Appearance of a Hard Layer ( α-case ) on the Surface of Two Different Titanium-based Alloys Appearance of a Hard Layer ( α-case ) on the Surface of Two Different Titanium-based Alloys Biljana Dimčić 1, Ilija Bobić 1, Slavica Zec 1, Milan T. Jovanović 1 1 Institute of Nuclear Sciences Vinča, P.O.

More information

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING Bo Cheng and Kevin Chou Mechanical Engineering Department The University of Alabama Tuscaloosa, AL 35487 Accepted August

More information

Fatigue Behaviour of Medium Carbon Steel of Different Grain Structures

Fatigue Behaviour of Medium Carbon Steel of Different Grain Structures Fatigue Behaviour of Medium Carbon Steel of Different Grain Structures S. AbdulKareem 1* S. I. Talabi 2 J. A. Adebisi 2 T. Yahaya 2 O. H. Amuda 3 1.Department of Mechanical Engineering, University of Ilorin,

More information

Heat Treatment and Press Quenching of Steel Alloys

Heat Treatment and Press Quenching of Steel Alloys Heat Treatment and Press Quenching of Steel Alloys Gleason Corporation Arthur Reardon, PhD, PE 2017 Engineering Symposium in Rochester April 18, 2017 1 What is Steel? Steel, in its most basic form, is

More information

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting

Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting T. Scharowsky, A. Bauereiß, R.F. Singer, C. Körner *Department of Materials

More information

ANALYSIS OF MICROSTRUCTURE AND PHASE DEDUCTION IN SAW

ANALYSIS OF MICROSTRUCTURE AND PHASE DEDUCTION IN SAW Int. J. Mech. Eng. & Rob. Res. 2014 Uma Gautam and Vipin, 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 3, July 2014 2014 IJMERR. All Rights Reserved ANALYSIS OF MICROSTRUCTURE AND PHASE

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

1P1b: Introduction to Microscopy

1P1b: Introduction to Microscopy 1P1b: Introduction to Microscopy Central to the study and characterisation of metals and many other materials is the microscope, ranging from the magnification of, say, 1 to 35 in a simple stereo binocular

More information

A.S. Kiran 1, V. Desai 2, Narendranath 2 and P.G. Mukunda 1. R G g

A.S. Kiran 1, V. Desai 2, Narendranath 2 and P.G. Mukunda 1. R G g International Journal of Mechanical and Materials Engineering (IJMME), Vol.6 (2011), No.2, 275-279 EVOLUTION OF MICROSTRUCTURE AND HARDNESS OF AL-SI FUNCTIONALLY GRADED MATERIAL CAST THROUGH CENTRIFUGE

More information

INTERDEPENDENCE BETWEEN COOLING RATE, MICROSTRUCTURE AND POROSITY IN MG ALLOY AE42

INTERDEPENDENCE BETWEEN COOLING RATE, MICROSTRUCTURE AND POROSITY IN MG ALLOY AE42 INTERDEPENDENCE BETWEEN COOLING RATE, MICROSTRUCTURE AND POROSITY IN MG ALLOY AE42 Liang Wang 1, Hongjoo Rhee 1, Sergio D. Felicelli 2, Adrian S. Sabau 3, John T. Berry 2 1 Center for Advanced Vehicular

More information

"Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015

Advanced Manufacturing Technologies, UCL, Louvain-la-Neuve, 24/11/2015 "Advanced Manufacturing Technologies", UCL, Louvain-la-Neuve, 24/11/2015 1 2 Outline Introduction Additive manufacturing Laser Beam Melting vs Laser Cladding Specificities (1) ultra-fast thermal cycles

More information

EFFECT OF YTTRIUM ADDITION ON MICROSTRUCTURE OF ALLOY Ti-47Al, PREPARED BY PLASMA MELTING AND VACUUM INDUCTION MELTING

EFFECT OF YTTRIUM ADDITION ON MICROSTRUCTURE OF ALLOY Ti-47Al, PREPARED BY PLASMA MELTING AND VACUUM INDUCTION MELTING EFFECT OF YTTRIUM ADDITION ON MICROSTRUCTURE OF ALLOY Ti-47Al, PREPARED BY PLASMA MELTING AND VACUUM INDUCTION MELTING Tomáš ČEGAN, Miroslav KURSA VŠB-TU Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba,

More information

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering

The use of holographic optics in laser additive layer manufacture. Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering The use of holographic optics in laser additive layer manufacture Prof John R Tyrer Dept of Mechanical & Manufacturing Engineering Traditional Laser Beam Problems Shape Intensity Beam intensity distribution....

More information

Freefonn Fabrication of Functional Ceramic Components Using a Laminated Object Manufacturing Technique

Freefonn Fabrication of Functional Ceramic Components Using a Laminated Object Manufacturing Technique Freefonn Fabrication of Functional Ceramic Components Using a Laminated Object Manufacturing Technique Curtis Griffin, JoDee Daufenbach, and Scott McMillin Lone Peak Engineering, Inc. 12660 South Fort

More information

A STUDY OF THE SHIELDING GASES INFLUENCE ON THE LASER BEAM WELDING OF

A STUDY OF THE SHIELDING GASES INFLUENCE ON THE LASER BEAM WELDING OF A STUDY OF THE SHIELDING GASES INFLUENCE ON THE LASER BEAM WELDING OF 22Cr-5Ni-3Mo DUPLEX STAINLES STEEL Tatiana VRTOCHOVÁ a, Ladislav SCHWARZ a, Koloman ULRICH a, Petr KÁBRT b a Faculty of Materials Science

More information

square 1, Győr, Hungary Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

square 1, Győr, Hungary Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary Characterization of Internal Stresses in Hybrid Steel Structures Produced by Direct Metal Laser Sintering HATOS István 1,a, HARGITAI Hajnalka 1,b* and KOVÁCS József Gábor 2,c 1 Department of Materials

More information

Laser Consolidation A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components

Laser Consolidation A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components Lijue Xue and Mahmud Ul Islam Integrated Manufacturing Technologies Institute National Research Council Canada 800 Collip Circle, London, Ontario N6G 4X8 CANADA Tel: (519) 430-7059; Fax: (519) 430-7064

More information

Freeform Fabrication Method of Alloys and Intermetallic Compounds by 3D Micro Welding

Freeform Fabrication Method of Alloys and Intermetallic Compounds by 3D Micro Welding Transactions of JWRI, Vol.37 (2008), No. 2 Freeform Fabrication Method of Alloys and Intermetallic Compounds by 3D Micro Welding HORII Toshihide*, KIRIHARA Soshu** Abstract A novel rapid prototyping method

More information

Industrial Engineering Applications of Rapid Prototyping

Industrial Engineering Applications of Rapid Prototyping Industrial Engineering Applications of Rapid Prototyping Dr. Denis Cormier Rochester Institute of Technology Department of Industrial and Systems Engineering Introductions 1995-2009 North Carolina State

More information

CHAPTER 2 - OBJECTIVES

CHAPTER 2 - OBJECTIVES CHAPTER 2 - OBJECTIVES LIQUID PHASE DIFFUSION BONDING OF NICKEL-BASE SUPERALLOY COMPONENTS USING NOVEL BRAZE FILLER METALS 2.1) Background Turbine vanes or nozzles operating in power generation engines

More information

3. EXPERIMENTAL PROCEDURE

3. EXPERIMENTAL PROCEDURE 3. EXPERIMENTAL PROCEDURE This chapter describes the methods used in this study. It starts with the preparation of the samples, characterization of the material, the methods and conditions used to apply

More information

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts Takashi CHODA *1, Dr. Hideto OYAMA *2, Shogo MURAKAMI *3 *1 Titanium Research & Development Section, Titanium Div., Iron & Steel

More information