XRD ANISOTROPIC BROADENING OF NANO-CRYSTALLITES

Size: px
Start display at page:

Download "XRD ANISOTROPIC BROADENING OF NANO-CRYSTALLITES"

Transcription

1 91 92 XRD ANISOTROPIC BROADENING OF NANO-CRYSTALLITES Yu Wang 1, Sammy Lap Ip Chan 2, Rose Amal 3, Yan Rong Shen 2, Kunlanan Kiatkittipong 3 ABSTRACT A physical ellipsoid model has been established to address the influence of nano-crystallite size on XRD anisotropic peak broadening. The model shows that, for non-spherical nanocrystallite, its XRD peak broadening becomes anisotropic and orientation (hkl) dependent. In such a case, the crystallite size must be described by multi-dimensional lengths, possible with a polar orientation. Experiments on -Ni(OH) 2, -TiO 2 and anatase were carried. Results show that the model can explain the characteristics of nano-crystallies with different sizes and shapes. I I. INTRODUCTION Nano-crystallites have recently become the focus of attention in many applications due to their specific properties. This is particularly true for non-spherical crystallites, which possess high specific surface area. X-ray diffraction and Rietveld refinement are major methods used to characterise these crystallites. However, anisotropic peak broadening, which the peak width cannot be described as one polynomial function of 2tan(2 (Cagliotti formula), has been noticed in some occasions. Without proper rectification of the anisotropic peak broadening, Rietveld refinement and crystallite size analysis will not be able to accurately determine the actual size of the crystallites. In 1939 Patterson has calculated Scherrer constant (K) for all particle shapes along various directions with rigorous kinematical diffraction theory (Patterson, 1939). Recently there have been many attempts to dealing explicitly with nanoparticle diffraction (Scardi and Snyder et al., 2010; Ungar, 2003). Two Mark Wainwright Analytical Centre, University of New South Wales, Australia; School of Materials Science, University of New South Wales, Australia; School of Chemical Science and Engineering, University of New South Wales, Australia

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 Copyright JCPDS-International Centre for Diffraction Data 2011 ISSN phenomenological models are weell-known to treat anisotropic peak broadening iin Rietveld refinement. Stephens model (Stepphens, 1999) corrects metric parameters of recipprocal lattice, based on the fact that each crystaallite has its individual parameters, with multi-diimensional distribution. The spherical harmo onics model (Popa, 1992, 1998) is base on the voolumeaverage-column length, which is invariant to the Laue group operations, and thenn it can be expanded to a series of symmetriised spherical harmonics (h). Both models are comprehensive to handling the caase. However the physical interpretation can be varied, such as crystallite size or microstrain. II. ELLIPSOID MODEL OF NANO-CRYSTALLITE N The physical ellipsoid model illuustrates the influence of crystallite size on anisottropic peak broadening. It intends to interpreet the physical nature without complicated matheematic expression. Assuming there is on ne crystallite with ellipsoidal shape, where in sphherical coordinates this crystallite is exp pressed mathematically as: x a sin cos y b sin sin z c cos (1) Here is the azimuth angle, iss the inclination angle; a, b and c are dimensionaal radii in orthogonal directions. To simpliffy the discussion, the inclination angle () is set to zero and a b. Thus the ellipsoid can be draawn as Fig 1 (a). In Fig. 1 the bold black lines reprresent a and c lengths. Under diffraction plane, tthe ellipsoidal polar axis is aligned w with the normal of the plane. The thin lines paralllel to diffraction plane represent crystaal atomic planes with particular Miller index. Thhe correlation of a, b and c govern the shape off the ellipsoid, that:

4 93 94 when a b; when a b; when a b; c a c a c a needle sphere platelet (2) If a, b and c are completely diverse, it produces a large variety of the crystallite shapes. Once a dimensional radius is significantly larger or small than the others, the direction is defined as the polar orientation of the crystallite, and indicates that the crystallite possesses a high aspect shape ratio. The ellipsoid model represents polycrystalline status by rotating the ellipsoid in plane or out plane, asshowsinfig.1(b). When another (hkl) plane meets the Bragg condition, there will be another set of d-spacing and With the same operation, all (hkl) diffractions can be obtained. Rotating angles ( and ) are calculated from crystallographic data. Under this status, different dimensional radii represent their respective overall average. XRD diffraction peak broadening is well known from Scherrer formula: B size L size K cos. The peak width (B size ), the contribution from size broadening, is inversely proportional to crystallite size (L size ). The L size is physically the diameter of ellipsoidal crystallite along the normal of the diffraction plane; it is called dimensional length, as shown the bold blue line in Fig. 1 (a) & (b). In the ellipsoid model, this length is expressed as: L size / 2 x y z a sin cos b sin sin c cos 1/ 2 (3) Therefore the Scherrer formula can be rewritten as: B sizehkl 2 K a sin cos b sin sin c cos 1/ cos (4) Here the modified equation reveals that peak broadening is not only dependent on the incident angle but also on the dimensional radii (a, b and c) and orientation of crystallite ( and ), which are related to (hkl), as illustrated by the difference of the bold blue lines in Figs. 1 (a) &(b). From the ellipsoid model we can derive that: 1. Size analysis of nonspherical nano-crystallites must determinate three dimensional lengths (diameters of the ellipsoid) in orthogonal directions, which fully describe the size and shape of the crystallites;

5 Due to non-spherical shape, their XRD peak broadening appear to be anisotropic and (h kl) dependent; 3. Characterisation of non-spherical nano-crystallies requires a full XRD pattern analysis, measuring at least three FWHMs of the peaks from orthogonal directions of the crystal structure. In Rietveld refinement, a (hkl) dependent rule has to be employed, apart from the Cagliotti formula. III. EXPERIMENTS Three types of specimens were prepared with diverse synthetic process in order to obtain different microstructure characteristics: nickel hydroxide -Ni(OH) 2 and titanium dioxide (- TiO 2 and anatase). Nickel hydroxide was synthesized by direct precipitation from 1 M solution of NiSO 4 6H 2 Owith2MNaOHand25%NH 4 OH at 70, washed and dried out in oven. For synthetic TiO 2 samples, a commercial titanium dioxide P25 was mixed with 10 M NaOH. The slurry was transferred to a Teflon-lined autoclave, and then hydrothermally treated at 200 HCl. After centrifuging and drying, the samples were annealed at a temperature of 500 or 700 Heating and cooling have been well controlled to minimise stresses induced. XRD patterns were collected using Panalytical MPD with Cu K= ) radiation and Pixcel detector. Measurement conditions were 45 kv and 40 ma, step size (2) Instrument broadening was determined using standard silicon (NIST SRM 640c). Due to severe peak overlapping, Rietveld refinement, with program of Brukers Topas-4, was used for XRD pattern analysis. Topas-4 provides two refinement modes, GUI and Launch, the latter allows user to input his own programming codes for specific refinement purpose. Initial refinement was run in GUI mode to refine lattice parameters and preferred orientation and to correct instrument broadening. After this the result was output to a x.inp file. The jedit program was used to add extra codes for rectification of the anisotropic peak broadening and characterization of nano-crystallites, where codes from Stephenwere employed. The volume weighted column height (LVol-IB), which is predefined in Topas-4, was used as the dimensional length. Finally the new x.inp file was run in the Launch mode. To verify the Rietveld refinement results, Hitachi 4500II scanning electron microscopy (SEM) were used to observe the morphology of different specimens. Philips CM200 field emission gun

6 95 96 transmission electron microscope (TEM), operating at 200kV, was used to measure dimensional lengths of crystallites and determine their orientations (electron diffraction). VI. RESULTS AND DISCUSSION 4.1 Nickel Hydroxide Ni(OH) 2 Fig 2 shows the Rietveld refinement result for -Ni(OH) 2, where the blue dot line is XRD data and red line is Rietveld fit profile. Criteria of the fit, obtained from the refinement, are 80,000 Rexp 0.56, Rwp = 1.73; and GOF=3.09. Without Theophrastite % 70,000 anisotropic broadening rectification, the data are 60,000 Rexp 0.57, Rwp 7.98 and GOF According 50,000 to ellipsoid model, the dimensional lengths 40,000 30,000 (LVol-IB) in orthogonal directions, (h 00)(0k0) 20,000 and (0 0 l), were calculated. Results are listed in 10,000 Table 1, where the standard deviation ( 0 collected from 6 repeated calculations with different initial values of Stephen Fig. 2 Ni(OH) 2 Rietveld Result parameters and the influence of microstrain was not considered. Directions (h 00)(nm) (0k 0) (nm) (0 0 l)(nm) LVol-IB The length of the (0 0 l) direction is at least 90% shorter than the other directions and there is a limited difference between the other two dimensions. It indicates that the Ni(OH) 2 possesses platelet shape with (0 0 1) as the polar orientation (in ellipsoid model, 2c=12.4 nm). TEM image (Fig. 3) reveals Ni(OH) 2 crystals as hexagonal platelets, not round shape. Electron diffraction patterns of Ni(OH) 2 in Fig. 4 show (0 0 1) direction even if there is interference from polycrystalline Laue ring, which conform the findings in XRD Rietveld refinement. This study also agrees with previous work (Casas-Cabanas et al., 2006)

7 Copyright JCPDS-International Centre for Diffraction Data 2011 ISSN ! " # # $ %!!% $ 4.2 Beta-Titanium Dioxides (TiO2) Further study is on synthetic TiO2. When the annealing temperature was 500 the -TiO2 (PDF ) has been identified. The pattern shows only one sharp peak. The others are broadening and significantly overlapping (Fig. 5). The sharp peak is (0 2 0) diffraction. SEM reveals the crystallites are in nano range and appear to resemble rod shape, see Fig. 6. Beta-Tio % 20,000 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2, ,000-4, & '( ) %! * +, -! * + Again using the Rietveld refinement to characterise these nano-crystallites and the results are given in Table 2. The values of the dimensional length are completely different in the three directions. -. / % $ %! * + Directions LVol-IB! (h 0 0) (nm) 22 (0 k 0) (nm) 468 (0 0 l) (nm)

8 Copyright JCPDS-International Centre for Diffraction Data 2011 ISSN Table 2 indicates that -TiO2 is in form of a thin rectangular sheet (or nano-ribbon). At the bottom left corner of TEM image (Fig. 7), the sheets split from a rod can be found. The electron diffraction, collected from a point on the middle rod, shows (2 0 0), that is the orientation of the shortest dimensional length. It says the rod in Fig. 6 may be the result of a bunch of the sheets stacked together. Fig. 7 TEM Image of Beta-TiO2 Fig. 8 (2 0 0) Electron Diffraction Pattern 4.3 Anatase (TiO2) When the annealing temperature was increased to 700 Fig. 9 gives XRD pattern of pure hexagonal anatase (TiO2). Its FWHM values of the peaks appear to be gradually increased via 2, no anisotropic broadening. SEM shows morphologic feature is still rod type, but the rod appears barrelled and sort of sphere-like. Fig. 9 XRD Pattern of Anatase Annealed at 700C Fig. 10 SEM Image of the Anatase

9 98 99 Table 3 Size Characterisation Result for Anatase Annealed 700C Directions (h 00)(nm) (0k 0) (nm) (0 0 l)(nm) LVol-IB The result of dimensional lengths (Table 3) shows minor difference among the three. This indicates the anatase obtained from 700C annealing is spherical shape with no polar orientation. TEM image (Fig. 11) shows dark bands across the rod, which are the grain boundaries to break TiO 2 rods into spheres. This explains the inconsistence between Fig. 10 and characterisation result (Table 3). A comparison between crystallite sizes obtained from Fig. 11 TEM Image of the Anatase TEM and Table 3 has been carried out. With 232 TiO 2 particles measured from TEM images the average diameter of the TiO 2 was 110 nm. It was generally in fair agreement with those calculated in Table 3. Through three different samples, it is clear the ellipsoid model and program used are capable to characterise non-spherical nano-crystallites. It also shows that size/shape analysis on XRD peak broadening is very sensitive to crystallite in the nano-range size, even better than SEM observation alone. In principle it is not necessary to use Rietveld refinement for this analysis. With a full range XRD pattern, together with material crystallographic data, the formula (4) of the ellipsoid model can be used to calculate individual peak broadening and gives size and shape of the nano-crystallite. However, in most practice, Rietveld refinement was employed because of severe peak overlap and complex crystal structures. In case of the above three samples the dimensional lengths were calculated in (h 0 0), (0 k 0) and (0 0 l) directions. It does not mean orientation of the lengths is always aligned with the principle axis of the crystal unit cell. However, it is reasonable that they are normally with low order of Miller indexes. IV. CONCLUSION

10 The ellipsoid model shows that non-spherical nano-crystallite is a reason of XRD anisotropic peak broadening. It points out that size analysis of non-spherical nano-crystallite requires determination of at least three dimensional lengths in orthogonal directions. After rectification of anisotropic peak broadening, Rietveld refinement is valid to characterise size variety of non-spherical nano-crystallites. V. ACKNOWLEDGEMENT We are grateful to Prof. Stephens, P. W., Department of Physics and Astronomy, Stony Brook University, for providing some programming codes. We also thank Dr. Kong, C., Electron Microscopy Unit, University of New South Wales, for his assistance on SEM and TEM work. REFERENCES 1. Casas-Cabanas, M. et. al., (2006). characterisation of nickel hydroxides and correlation with electrochemical properties J. Mater. Chem, 16, Patterson, A. L. (1939). -rays by small crystalline particles Phys. Rev 56, Popa, N. C. (1992). Appl. Cryst 31, Popa, N. C. (1998). hkl) dependence of diffraction-line broadening caused by strain and size for all Laue group in Rietveld refinement, J.Appl.Cryst31, Scardi, P., Snyder, R. et. al., (2010). crystallites90, Stephens, P. W. (1999). model of anisotropic peak broadening in powder diffractionj. Appl. Cryst Ungar, T., (2003). -ray diffraction peaks

Rietveld refinement of ZrSiO 4 : application of a phenomenological model of anisotropic peak width

Rietveld refinement of ZrSiO 4 : application of a phenomenological model of anisotropic peak width Rietveld refinement of ZrSiO 4 : application of a phenomenological model of anisotropic peak width A. Sarkar, P. Mukherjee, P. Barat Variable Energy Cyclotron Centre 1/A Bidhan Nagar, Kolkata 700064, India

More information

Condensed Matter II: Particle Size Broadening

Condensed Matter II: Particle Size Broadening Condensed Matter II: Particle Size Broadening Benjamen P. Reed & Liam S. Howard IMAPS, Aberystwyth University March 19, 2014 Abstract Particles of 355µm silicon oxide(quartz)were subjected to a ball milling

More information

Microstructural parameters from Multiple Whole Profile (MWP) or Convolutional Multiple Whole Profile (CMWP) computer programs

Microstructural parameters from Multiple Whole Profile (MWP) or Convolutional Multiple Whole Profile (CMWP) computer programs Microstructural parameters from Multiple Whole Profile (MWP) or Convolutional Multiple Whole Profile (CMWP) computer programs Iuliana Dragomir-Cernatescu School of Materials Science and Engineering, Georgia

More information

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO

It is instructive however for you to do a simple structure by hand. Rocksalt Structure. Quite common in nature. KCl, NaCl, MgO Today the structure determinations etc are all computer -assisted It is instructive however for you to do a simple structure by hand Rocksalt Structure Quite common in nature KCl, NaCl, MgO 9-1 Typical

More information

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics, Electronic Supplementary Information Highly efficient core shell CuInS 2 /Mn doped CdS quantum dots sensitized solar cells Jianheng Luo, a Huiyun Wei, a Qingli Huang, a Xing Hu, a Haofei Zhao, b Richeng

More information

Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol

Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 407 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying

Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying Materials Transactions, Vol. 50, No. 1 (2009) pp. 117 to 122 #2009 The Japan Institute of Metals Microstructural Evolution of -Mo-Ni-C Powder by Mechanical Alloying Hiroyuki Hosokawa, Kiyotaka Kato, Koji

More information

MICROSTRUCTURE OF THE PLASTIC BONDED EXPLOSIVE KS32

MICROSTRUCTURE OF THE PLASTIC BONDED EXPLOSIVE KS32 Copyright JCPDS-International Centre for Diffraction Data 2012 ISSN 1097-0002 65 MICROSTRUCTURE OF THE PLASTIC BONDED EXPLOSIVE KS32 M. Herrmann 1, P. B. Kempa 1, U. Förter-Barth 1, W. Arnold 2 1 Fraunhofer

More information

Diffraction: Powder Method

Diffraction: Powder Method Diffraction: Powder Method Diffraction Methods Diffraction can occur whenever Bragg s law λ = d sin θ is satisfied. With monochromatic x-rays and arbitrary setting of a single crystal in a beam generally

More information

Diffraction Basics. The qualitative basics:

Diffraction Basics. The qualitative basics: The qualitative basics: Diffraction Basics Coherent scattering around atomic scattering centers occurs when x-rays interact with material In materials with a crystalline structure, x-rays scattered in

More information

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE

9/28/2013 9:26 PM. Chapter 3. The structure of crystalline solids. Dr. Mohammad Abuhaiba, PE Chapter 3 The structure of crystalline solids 1 2 Why study the structure of crystalline solids? Properties of some materials are directly related to their crystal structure. Significant property differences

More information

Synthesis of Y 2 O 3 Nanoparticles by Modified Transient Morphology Method

Synthesis of Y 2 O 3 Nanoparticles by Modified Transient Morphology Method 2011 International Conference on Chemistry and Chemical Process IPCBEE vol.10 (2011) (2011) IACSIT Press, Singapore Synthesis of Y 2 O 3 Nanoparticles by Modified Transient Morphology Method Zobadeh Momeni

More information

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE

9/16/ :30 PM. Chapter 3. The structure of crystalline solids. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 3 The structure of crystalline solids 1 Mohammad Suliman Abuhaiba, Ph.D., PE 2 Home Work Assignments HW 1 2, 7, 12, 17, 22, 29, 34, 39, 44, 48, 53, 58, 63 Due Sunday 17/9/2015 3 Why study the structure

More information

MICROSTRUCTURE OF CLAY-POLYMER COMPOSITES

MICROSTRUCTURE OF CLAY-POLYMER COMPOSITES Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 562 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

Characterization of Materials Using X-Ray Diffraction Powder Diffraction

Characterization of Materials Using X-Ray Diffraction Powder Diffraction Praktikum III, Fall Term 09 Experiment P1/P2; 23.10.2009 Characterization of Materials Using X-Ray Diffraction Powder Diffraction Authors: Michael Schwarzenberger (michschw@student.ethz.ch) Philippe Knüsel

More information

INVESTIGATION OF NANOCRYSTALS USING TEM MICROGRAPHS AND ELECTRON DIFFRACTION TECHNIQUE

INVESTIGATION OF NANOCRYSTALS USING TEM MICROGRAPHS AND ELECTRON DIFFRACTION TECHNIQUE INVESTIGATION OF NANOCRYSTALS USING TEM MICROGRAPHS AND ELECTRON DIFFRACTION TECHNIQUE CAMELIA OPREA, VICTOR CIUPINA, GABRIEL PRODAN Department of Physics, Ovidius University, Constanþa, 900527, Romania

More information

X-Ray Diffraction by Macromolecules

X-Ray Diffraction by Macromolecules N. Kasai M. Kakudo X-Ray Diffraction by Macromolecules With 351 Figures and 56 Tables Kodansha ~Springer ... Contents Preface v Part I Fundamental 1. Essential Properties of X-Rays................. 3 1.1

More information

A - Transformation of anatase into rutile

A - Transformation of anatase into rutile Exercise-Course-XRD.doc 1/12 04/06/2012 A - Transformation of anatase into rutile Anatase and rutile are two distinct phases of titanium dioxide TiO 2. The stable phase is rutile. 1. Structural study Anatase:

More information

X-Ray diffraction studies on asymmetrically broadened peaks of heavily. deformed Zirconium based alloys

X-Ray diffraction studies on asymmetrically broadened peaks of heavily. deformed Zirconium based alloys X-Ray diffraction studies on asymmetrically broadened peaks of heavily deformed Zirconium based alloys A. Sarkar, P. Mukherjee * and P. Barat Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata

More information

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte Supplementary Information for: Novel concept of rechargeable battery using iron oxide nanorods anode and nickel hydroxide cathode in aqueous electrolyte Zhaolin Liu *, Siok Wei Tay and Xu Li Institute

More information

11.3 The analysis of electron diffraction patterns

11.3 The analysis of electron diffraction patterns 11.3 The analysis of electron diffraction patterns 277 diameter) Ewald reflecting sphere, the extension of the reciprocal lattice nodes and the slight buckling of the thin foil specimens all of which serve

More information

RESIDUAL STRESS DISTRIBUTION IN GRAIN-ORIENTED SILICON STEEL

RESIDUAL STRESS DISTRIBUTION IN GRAIN-ORIENTED SILICON STEEL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 402 RESIDUAL STRESS DISTRIBUTION IN GRAIN-ORIENTED SILICON STEEL Muneyuki Imafuku, Tamaki Suzuki

More information

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties

Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf

More information

Practical X-Ray Diffraction

Practical X-Ray Diffraction Typical Example Practical X-Ray Diffraction White powder sample of NaCl,KCl,KNO 3 (trace of H 2 O) Département de chimie Université Laval Prof. Josée BRISSON Dr. Wenhua BI 2014-03-20 Powder X-Ray Diffraction

More information

High Resolution X-ray Diffraction

High Resolution X-ray Diffraction High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:

More information

ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION

ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 291 ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION S.

More information

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre

Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2015 Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre Study Cementitious Materials by X-ray diffraction

More information

Stress-Strain Relationship and XRD Line Broadening in [0001] Textured Hexagonal Polycrystalline Materials

Stress-Strain Relationship and XRD Line Broadening in [0001] Textured Hexagonal Polycrystalline Materials (Journal of the Society of Materials Science, Japan), Vol. 60, No. 7, pp. 642-647, July 2011 Original Papers Stress-Strain Relationship and XRD Line Broadening in [0001] Textured Hexagonal Polycrystalline

More information

Kinematical theory of contrast

Kinematical theory of contrast Kinematical theory of contrast Image interpretation in the EM the known distribution of the direct and/or diffracted beam on the lower surface of the crystal The image on the screen of an EM = the enlarged

More information

Crystal structure analysis of spherical silicon using X-ray pole figure

Crystal structure analysis of spherical silicon using X-ray pole figure Solid State Phenomena Vol. 9 (00) pp 9-56 (00) Trans Tech Publications, Switzerland doi:0.08/www.scientific.net/ssp.9.9 Tel.No.:+8-77-56-98 FaxNo.:+8-77-56-98 e-mail: ro00986@se.ritsumei.ac.jp Crystal

More information

An Analysis of Structural and Optical Properties Undoped ZnS and Doped (with Mn, Ni) ZnS Nano Particles

An Analysis of Structural and Optical Properties Undoped ZnS and Doped (with Mn, Ni) ZnS Nano Particles Journal of Modern Physics, 213, 4, 122-126 http://dx.doi.org/1.4236/jmp.213.47137 Published Online July 213 (http://www.scirp.org/journal/jmp) An Analysis of Structural and Optical Properties Undoped ZnS

More information

X-RAY DIFFRACTIO N B. E. WARREN

X-RAY DIFFRACTIO N B. E. WARREN X-RAY DIFFRACTIO N B. E. WARREN Chapter 1 X-Ray Scattering by Atom s 1.1 Classical scattering by a free electron 1 1.2 Polarization by scattering 4 1.3 Scattering from several centers, complex representation

More information

Diffraction: Real Samples Powder Method

Diffraction: Real Samples Powder Method Diffraction: Real Samples Powder Method Diffraction: Real Samples Up to this point we have been considering diffraction arising from infinitely large crystals that are strain free and behave like ideally

More information

A Brief History of XRD 1895: Röntgen discovers X-Rays received the first Nobel prize in physics in 1901

A Brief History of XRD 1895: Röntgen discovers X-Rays received the first Nobel prize in physics in 1901 X-ray Diffraction A Brief History of XRD 1895: Röntgen discovers X-Rays received the first Nobel prize in physics in 1901 1912: Laue diffracts X-Rays from single crystal 1914 Nobel prize in Physics 1912:

More information

E. Buffagni, C. Ferrari, L. Zanotti, A. Zappettini

E. Buffagni, C. Ferrari, L. Zanotti, A. Zappettini E. Buffagni, C. Ferrari, L. Zanotti, A. Zappettini IMEM-CNR Institute, Parma (Italy) 1. Laue lenses for hard x-ray astronomy 2. Mosaic crystals 3. GaAs crystals 4. X-ray diffraction characterization 5.

More information

Supplementary information. performance Li-ion battery

Supplementary information. performance Li-ion battery Supplementary information The investigation of Ni(OH) 2 /Ni as anode for high performance Li-ion battery Shibing Ni a, Xiaohu Lv a, Tao Li a, Xuelin Yang a,and Lulu Zhang a College of Mechanical and Material

More information

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE Gayathri.S 1, Kalainathan.S 2 1,2 Center for Crystal Growth, VIT University, Vellore - 14, Tamil

More information

MINIMIZATION OF ERRORS DUE TO MICROABSORPTION OR ABSORPTION CONTRAST

MINIMIZATION OF ERRORS DUE TO MICROABSORPTION OR ABSORPTION CONTRAST Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 200 MINIMIZATION OF ERRORS DUE TO MICROABSORPTION OR ABSORPTION CONTRAST Bradley M. Pederson, Krista

More information

Rietveld analysis of policrystalline materials using precession of electron diffraction

Rietveld analysis of policrystalline materials using precession of electron diffraction Romanian Biotechnological Letters Copyright 2010 University of Bucharest Vol. 15, No.3, 2010, Supplement Printed in Romania. All rights reserved ORIGINAL PAPER Rietveld analysis of policrystalline materials

More information

A SOFTWARE FOR DIFFRACTION STRESS FACTOR CALCULATIONS FOR TEXTURED MATERIALS

A SOFTWARE FOR DIFFRACTION STRESS FACTOR CALCULATIONS FOR TEXTURED MATERIALS 123 A SOFTWARE FOR DIFFRACTION STRESS FACTOR CALCULATIONS FOR TEXTURED MATERIALS Thomas Gnäupel-Herold Materials Science and Engineering, University of Maryland, Bldg. 090, Rm 2135, College Park, MD, 20742,

More information

Keywords: MnZnFeTiO, XRD, SEM, EDX, Instrumental Broadening, Williamson-Hall Plot method.

Keywords: MnZnFeTiO, XRD, SEM, EDX, Instrumental Broadening, Williamson-Hall Plot method. International Frontier Science Letters Online: 2014-10-01 ISSN: 2349-4484, Vol. 2, pp 40-51 doi:10.18052/www.scipress.com/ifsl.2.40 2014 SciPress Ltd., Switzerland XRD Studies on Titanium Substituted Manganese

More information

INVESTIGATION OF LOCAL TEXTURES IN EXTRUDED MAGNESIUM BY SYNCHROTRON RADIATION

INVESTIGATION OF LOCAL TEXTURES IN EXTRUDED MAGNESIUM BY SYNCHROTRON RADIATION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 151 INVESTIGATION OF LOCAL TEXTURES IN EXTRUDED MAGNESIUM BY SYNCHROTRON RADIATION Heinz-Günter

More information

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN

Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN Thin Film Characterizations Using XRD The Cases of VO2 and NbTiN A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Arts / Science in Physics from The College of

More information

What if your diffractometer aligned itself?

What if your diffractometer aligned itself? Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director,

More information

Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD

Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD World Journal of Nano Science and Engineering, 2012, 2, 154-160 http://dx.doi.org/10.4236/wjnse.2012.23020 Published Online September 2012 (http://www.scirp.org/journal/wjnse) Modified Scherrer Equation

More information

X-ray Powder Diffraction in Catalysis

X-ray Powder Diffraction in Catalysis X-ray Powder Diffraction in Catalysis 0/63 Introduction Introduction: scope of this lecture This lecture is designed as a practically oriented guide to powder XRD in catalysis, not as an introduction into

More information

X-RAY DIFFRACTION STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS

X-RAY DIFFRACTION STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS CHAPTER 5 X-RAY DIFFRACTION STUDIES ON LEAD PHTHALOCYANINE, ZINC PHTHALOCYANINE AND MAGNESIUM PHTHALOCYANINE THIN FILMS 5.1 Introduction The properties of phthalocyanine thin films are greatly influenced

More information

Practical 2P8 Transmission Electron Microscopy

Practical 2P8 Transmission Electron Microscopy Practical 2P8 Transmission Electron Microscopy Originators: Dr. N.P. Young and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course on

More information

Basic Solid State Chemistry, 2 nd ed. West, A. R.

Basic Solid State Chemistry, 2 nd ed. West, A. R. Basic Solid State Chemistry, 2 nd ed. West, A. R. Chapter 1 Crystal Structures Many of the properties and applications of crystalline inorganic materials revolve around a small number of structure types

More information

X ray diffraction in materials science

X ray diffraction in materials science X ray diffraction in materials science Goals: Use XRD spectra to determine the orientation of single crystals and preferred orientations in a thin film. Understand how grain size and strain affect the

More information

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014

An Introduction to X-Ray Powder Diffraction. credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 An Introduction to X-Ray Powder Diffraction credits to: Scott A Speakman, Patrick McArdle Edited by Di Cicco 2014 LATTICE ARRAYS AND BRAVAIS LATTICES Crystalline materials differ from amorphous materials

More information

It's cute ( ) But does it DO anything??

It's cute ( ) But does it DO anything?? It's cute ( ) But does it DO anything?? Qualitative analysis - what IS this stuff?!! Every material has a unique x-ray powder pattern Every PHASE has a unique powder pattern This image, taken under a microscope,

More information

XRD AND XAFS STUDIES OF CARBON SUPPORTED Pt-Ru ELECTROCATALYST IN A POLYMER-ELECTROLYTE-FUEL-CELL

XRD AND XAFS STUDIES OF CARBON SUPPORTED Pt-Ru ELECTROCATALYST IN A POLYMER-ELECTROLYTE-FUEL-CELL Copyright JCPDS - International Centre for Diffraction Data 4, Advances in X-ray Analysis, Volume 47. 56 XRD AND XAFS STUDIES OF CARBON SUPPORTED Pt-Ru ELECTROCATALYST IN A POLYMER-ELECTROLYTE-FUEL-CELL

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA

Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscopy (TEM) Prof.Dr.Figen KAYA Transmission Electron Microscope A transmission electron microscope, similar to a transmission light microscope, has the following components along

More information

Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer

Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 177 Characterization of Surfaces and Thin Films Using a High Performance Grazing Incidence X-ray Diffractometer

More information

Quantitative phase analysis using the Rietveld method for samples in the Ti-Cr binary systems

Quantitative phase analysis using the Rietveld method for samples in the Ti-Cr binary systems 586 Quantitative phase analysis using the Rietveld method for samples in the Ti-Cr binary systems Ofer Beeri and Giora Kimmel Nuclear Research Center Negev, P.O.Box 9001, Beer-Sheva, 84190 Israel Abstract

More information

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations

Advanced Methods for Materials Research. Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research Materials Structure Investigations Materials Properties Investigations Advanced Methods for Materials Research 1. The structure and property of sample and methods

More information

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p.

Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. Fundamentals of Crystalline State and Crystal Lattice p. 1 Crystalline State p. 2 Crystal Lattice and Unit Cell p. 4 Shape of the Unit Cell p. 7 Crystallographic Planes, Directions, and Indices p. 8 Crystallographic

More information

Defect and Microstructure Analysis by Diffraction

Defect and Microstructure Analysis by Diffraction Defect and Microstructure Analysis by Diffraction ROBERT L. SNYDER Deparnnent of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, USA JAROSLAV FIALA Department of Metallurgy,

More information

Annealing Effects on the Properties of Copper Selenide Thin Films for Thermoelectric Applications

Annealing Effects on the Properties of Copper Selenide Thin Films for Thermoelectric Applications IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861. Volume 4, Issue 5 (Sep. - Oct. 2013), PP 65-71 Annealing Effects on the Properties of Copper Selenide Thin Films for Thermoelectric Applications

More information

X-ray Diffraction Study on Structural Characteristics of Pure and Doped Perovskite BaTiO 3

X-ray Diffraction Study on Structural Characteristics of Pure and Doped Perovskite BaTiO 3 Egypt. J. Solids, Vol. (31), No. (1), (2008) 55 X-ray Diffraction Study on Structural Characteristics of Pure and Doped Perovskite BaTiO 3 F. F. Hammad 1, A. K. Mohamed 1 and A. M. El-Shabiny 2 1) Inorganic

More information

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling

Effect of Li Addition on Synthesis of Mg-Ti BCC Alloys by means of Ball Milling Materials Transactions, Vol. 48, No. 2 (07) pp. 121 to 126 #07 The Japan Institute of Metals Effect of Li Addition on Synthesis of - BCC Alloys by means of Ball Milling Kohta Asano, Hirotoshi Enoki and

More information

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING

EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG SILICON NANOWIRES USING RADIO FREQUENCY MAGNETRON SPUTTERING International Journal of Nanoscience Vol. 10, Nos. 1 & 2 (2011) 13 17 #.c World Scienti c Publishing Company DOI: 10.1142/S0219581X11007594 EFFECT OF GROWTH TEMPERATURE ON THE CATALYST-FREE GROWTH OF LONG

More information

ANALYSIS OF THE SURFACE MORPHOLOGY OF CVD-GROWN DIAMOND FILMS WITH X-RAY DIFFRACTION

ANALYSIS OF THE SURFACE MORPHOLOGY OF CVD-GROWN DIAMOND FILMS WITH X-RAY DIFFRACTION Copyright JCPDS - International Centre for Diffraction Data 23, Advances in X-ray Analysis, Volume 46. 185 ANALYSIS OF THE SURFACE MORPHOLOGY OF CVD-GROWN DIAMOND FILMS WITH X-RAY DIFFRACTION M.J. Fransen

More information

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage)

Carbon nanostructures. (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) Carbon nanostructures (http://www.mf.mpg.de/de/abteilungen/schuetz/index.php?lang=en&content=researchtopics&type=specific&name=h2storage) 1 Crystal Structures Crystalline Material: atoms arrange into a

More information

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p.

Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. Preface p. xvii Fundamentals of Crystalline State p. 1 Introduction p. 1 Crystalline state p. 2 Crystal lattice and crystal structure p. 4 Shape of the unit cell p. 6 Content of the unit cell p. 7 Asymmetric

More information

Germanium-Silicon Alloy and Core-Shell Nanocrystals by Gas Phase Synthesis

Germanium-Silicon Alloy and Core-Shell Nanocrystals by Gas Phase Synthesis Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for: Germanium-Silicon Alloy and Core-Shell Nanocrystals

More information

A. Indra Wulan Sari Ramadani & Suminar Pratapa*

A. Indra Wulan Sari Ramadani & Suminar Pratapa* Proceeding of International Conference On Research, Implementation And Education Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 LINE BROADENING CORRECTION IN X-RAY DIFFRACTION

More information

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 8, No., June 006, p. 96-940 Preparation and structural characterization of thin-film CdTe/ heterojunctions I. SALAORU a, P. A. BUFFAT b, D. LAUB b,

More information

Density Computations

Density Computations CHAPTER 3 THE STRUCTURE OF CRYSTALLINE SOLIDS Fundamental Concepts 3.1 What is the difference between atomic structure and crystal structure? Unit Cells Metallic Crystal Structures 3.2 If the atomic radius

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

CHARACTERISATION OF CRYSTALLINE AND PARTIALLY CRYSTALLINE SOLIDS BY X-RAY POWDER DIFFRACTION (XRPD)

CHARACTERISATION OF CRYSTALLINE AND PARTIALLY CRYSTALLINE SOLIDS BY X-RAY POWDER DIFFRACTION (XRPD) 2.9.33. Characterisation of crystalline solids by XRPD EUROPEAN PHARMACOPOEIA 6.0 with its standard deviation. The mean values for x 10 and x 90 must not deviate by more than 5 per cent from the certified

More information

Physical Chemistry Chemical Physics. Electronic Supplementary Information

Physical Chemistry Chemical Physics. Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Physical Chemistry Chemical Physics Electronic Supplementary Information High-Temperature

More information

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society Mater. Res. Soc. Symp. Proc. Vol. 940 2006 Materials Research Society 0940-P13-12 A Novel Fabrication Technique for Developing Metal Nanodroplet Arrays Christopher Edgar, Chad Johns, and M. Saif Islam

More information

TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition

TEM and HRTEM studies of ball milled 6061 aluminium alloy powder with Zr addition Journal of Microscopy, Vol. 237, Pt 3 2010, pp. 506 510 Received 9 October 2008; accepted 13 July 2009 doi: 10.1111/j.1365-2818.2009.03310.x TEM and HRTEM studies of ball milled 6061 aluminium alloy powder

More information

Growth of YBa 2 Cu 3 O 7 Films with [110] Tilt of CuO Planes to Surface on SrTiO 3 Crystals

Growth of YBa 2 Cu 3 O 7 Films with [110] Tilt of CuO Planes to Surface on SrTiO 3 Crystals ISSN 163-7745, Crystallography Reports, 213, Vol. 58, No. 3, pp. 488 492. Pleiades Publishing, Inc., 213. Original Russian Text E.A. Stepantsov, F. Lombardi, D. Winkler, 213, published in Kristallografiya,

More information

Solid State Communications

Solid State Communications Solid State Communications 149 009) 1919 193 Contents lists available at ScienceDirect Solid State Communications journal homepage: www.elsevier.com/locate/ssc X-ray peak broadening analysis in ZnO nanoparticles

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures! Face-centered cubic! Body-centered cubic! Hexagonal close-packed Close packed

More information

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016

Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 Introduction to Electron Backscattered Diffraction 1 TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 SE vs BSE 2 Ranges and interaction volumes 3 (1-2 m) http://www4.nau.edu/microanalysis/microprobe/interact-effects.html

More information

Travaux Pratiques de Matériaux de Construction

Travaux Pratiques de Matériaux de Construction Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2009 Etude de Matériaux Cimentaire Par Diffraction des Rayons X Responsable: Silke Ruffing E-Mail: silke.ruffing@epfl.ch

More information

Small-angle X-ray scattering (SAXS) with synchrotron radiation

Small-angle X-ray scattering (SAXS) with synchrotron radiation Small-angle X-ray scattering (SAXS) with synchrotron radiation Martin Müller Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel Introduction to small-angle scattering

More information

CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION

CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION CRYSTAL STRUCTURE DETERMINATION OF PHARMACEUTICALS WITH ELECTRON DIFFRACTION Dr. Partha Pratim Das Application Specialist, NanoMEGAS SPRL, Belgium pharma@nanomegas.com www.nanomegas.com This document was

More information

X-Ray Diffraction Analysis

X-Ray Diffraction Analysis 162402 Instrumental Methods of Analysis Unit III X-Ray Diffraction Analysis Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

The structure of near-spherical carbon nano-shells

The structure of near-spherical carbon nano-shells PERGAMON Carbon 38 (2000) 1437 1444 The structure of near-spherical carbon nano-shells J.M. Cowley *, Ching-Hwa Kiang a, b a Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504,

More information

Matrix-free synthesis of spin crossover micro-rods showing large hysteresis loop. centered at room temperature

Matrix-free synthesis of spin crossover micro-rods showing large hysteresis loop. centered at room temperature Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Matrix-free synthesis of spin crossover micro-rods showing large hysteresis loop centered at room

More information

Thin Film Scattering: Epitaxial Layers

Thin Film Scattering: Epitaxial Layers Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial

More information

ADVANCES IN QUANTITATIVE XRD ANALYSIS FOR CLINKER, CEMENTS, AND CEMENTITIOUS ADDITIONS

ADVANCES IN QUANTITATIVE XRD ANALYSIS FOR CLINKER, CEMENTS, AND CEMENTITIOUS ADDITIONS Copyright JCPDS - International Centre for Diffraction Data 24, Advances in X-ray Analysis, Volume 47. 287 ADVANCES IN QUANTITATIVE XRD ANALYSIS FOR CLINKER, CEMENTS, AND CEMENTITIOUS ADDITIONS G. Walenta

More information

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed.

Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figures Supplementary Figure 1: Geometry of the in situ tensile substrate. The dotted rectangle indicates the location where the TEM sample was placed. Supplementary Figure 2: The original

More information

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems

Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems James R. Connolly Dept. of Earth & Planetary Sciences University of New Mexico 401/501

More information

Chapter Outline How do atoms arrange themselves to form solids?

Chapter Outline How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Face-centered cubic Body-centered cubic Hexagonal close-packed Close packed

More information

Instrument Configuration for Powder Diffraction

Instrument Configuration for Powder Diffraction Instrument Configuration for Powder Diffraction Advanced X-ray Workshop S.N. Bose National Centre for Basic Sciences, 14-15/12/2011 Innovation with Integrity Overview What is the application? What are

More information

Heteroepitaxial B12As2 on silicon substrates

Heteroepitaxial B12As2 on silicon substrates This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Heteroepitaxial

More information

Measurement of Residual Stress by X-ray Diffraction

Measurement of Residual Stress by X-ray Diffraction Measurement of Residual Stress by X-ray Diffraction C-563 Overview Definitions Origin Methods of determination of residual stresses Method of X-ray diffraction (details) References End Stress and Strain

More information

How to Analyze Polymers Using X-ray Diffraction

How to Analyze Polymers Using X-ray Diffraction How to Analyze Polymers Using X-ray Diffraction Polymers An Introduction This tutorial will cover the following topics How to recognize different types of polymers Crystalline, semi-crystalline and amorphous

More information

ANNEALING STUDIES OF PURE AND ALLOYED TANTALUM EMPLOYING ROCKING CURVES

ANNEALING STUDIES OF PURE AND ALLOYED TANTALUM EMPLOYING ROCKING CURVES Copyright JCPDS - International Centre for Diffraction Data 3, Advances in X-ray Analysis, Volume. 5 ISSN 197- Abstract ANNEALING STUDIES OF PURE AND ALLOYED TANTALUM EMPLOYING ROCKING CURVES David W.

More information

Crystallographic phase composition and structural analysis of Ti-Ni-Fe shape memory alloy by synchrotron diffraction

Crystallographic phase composition and structural analysis of Ti-Ni-Fe shape memory alloy by synchrotron diffraction Solid State Phenomena Vol. 105 (005) pp. 139-144 online at http://www.scientific.net 005 Trans Tech Publications, Switzerland Crystallographic phase composition and structural analysis of Ti-Ni-Fe shape

More information

Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement. I. Introduction

Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement. I. Introduction Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement Jane Y. Howe 1*, Burl O. Cavin 1, Amy E. Drakeford 2, Roberta A. Peascoe 1, Tracy L. Zontek 2, and Douglas J. Miller

More information

PREPARATION OF VISIBLE-LIGHT-DRIVEN TIO 2 PHOTOCATALYST DOPED WITH IRON IN SUPERCRITICAL CARBON DIOXIDE

PREPARATION OF VISIBLE-LIGHT-DRIVEN TIO 2 PHOTOCATALYST DOPED WITH IRON IN SUPERCRITICAL CARBON DIOXIDE PREPARATION OF VISIBLE-LIGHT-DRIVEN TIO 2 PHOTOCATALYST DOPED WITH IRON IN SUPERCRITICAL CARBON DIOXIDE Esther Alonso *, Héctor Fernández-Rodríguez and M.J. Cocero Department of Chemical Engineering &

More information

Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys

Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys 19 th Plansee Seminar RM 54/1 Non-destructive measurement of the tungsten content in the binder phase of tungsten heavy alloys S. Marschnigg*, C. Gierl-Mayer*, H. Danninger*, T. Weirather**, T. Granzer**,

More information