What if your diffractometer aligned itself?
|
|
- Angelica Maxwell
- 11 months ago
- Views:
Transcription
1
2 Ultima IV Perhaps the greatest challenge facing X-ray diffractometer users today is how to minimize time and effort spent on reconfiguring of the system for different applications. Wade Adams, Ph.D., Director, Richard E. Smalley Institute for Nanoscale Science & Technology, Rice University Instrument downtime associated with reconfiguration reduces analytical flexibility by introducing a barrier between the desire and opportunity of the user to make diversified measurements. Time spent reconfiguring the diffractometer is time lost for sample measurement and data analysis. Time and effort required for instrument reconfiguration is greatly impacted by the ease in which the system can be aligned. What if your diffractometer aligned itself? The Rigaku Ultima IV offers complete, fully automatic alignment of the entire system, including X-ray source, optics, goniometer, and sample stages. Whether full system alignment at the time of installation or routine sample alignment before a measurement, Rigaku s automatic alignment functions reduce time and improve productivity Source height Source angle CBO optic Crystal optics Slit height Sample surface Detector angle Start the automatic alignment procedure and have a cup of coffee* as the source height, source angle, CBO optic, crystal optics, slit height, sample surface, and detector angle are automatically aligned and optimized. * Coffee not included 1
3 Ultima IV What if you could select focusing or parallel beam geometries without having to reconfigure the diffractometer? Rigaku s patented Cross Beam Optics (CBO) design eliminates the need to switch between focusing (divergent beam), and mirror (parallel beam) geometries by having both sets of optics permanently mounted on the instrument, pre-aligned, and user selectable. CBO technology eliminates time spent switching geometries, enables everyday users to run both sets of experiments without the need to reconfigure the system, and reduces wear and possible optic damage associated with the recurrent switching process. Focusing geometry Parallel beam geometry Automatic alignment and CBO for increased productivity and improved results 2
4 Ultima IV configurations CBO Technology, automatic alignment, and a flexible modular design combine to provide simple, fast reconfiguration for diverse applications. Powder diffraction (focusing) Powder diffraction (parallel beam) Powder diffraction (high speed) Transmission Stress and texture 3
5 Ultima IV configurations Thin film diffraction (glancing incidence) Thin film diffraction (high-resolution) X-ray reflectometry Thin film diffraction (in-plane) Small angle X-ray scattering 4
6 Powder diffraction CBO technology provides unmatched flexibility and performance for powder diffraction measurements. Traditional powder diffraction measurements use the Bragg-Brentano focusing geometry to provide high-intensity, high-resolution measurements of well powdered samples. For many bulk samples with surface irregularities the use of parallel beam geometry is preferred. The on-demand availability of either geometry, fundamental to CBO, offers users complete flexibility without the need for reconfiguration. Supported powder diffraction applications include: Phase identification Crystallite size/strain analysis Quantitative analysis Precise lattice parameter determination Percent crystallinity Rietveld refinement Accurate quantitative analysis using the Rietveld method is an example of an advanced X-ray solution made simple by the Ultima IV system. In this example focusing geometry is used to obtain high resolution peak profiles from a well prepared three phase mixture of ZnO, MgO, and Al 2 O 3. In the case where sample surface quality is poor, one touch selection of parallel beam geometry, made possible by CBO enables accurate data to be collected under adverse conditions. In this example the coarse grains of a photo-catalyst cause no problems in data acquisition for the Ultima IV configured with CBO. A seamlessly integrated, XYZ positioning stage, and magnified CCD camera system allow X-ray diffraction data to be easily collected from different points on a sample surface. In this example the small area measurement system positioning capability and the intense parallel beam provided by CBO combine to make measurements from two different locations on a printed circuit board simple and fast. 5
7 Stress and texture Automatic sample alignment and in-plane scanning combine for an easy-to-use, high-resolution stress and texture system. Automated alignment makes the Ultima IV simple to use for stress and texture measurements. The on-demand in-plane scattering capability made possible by CBO offers two distinct advantages when compared to traditional pole figure measurements. In-plane data collection can use a line focus beam, reducing data collection times and improving sampling errors in non-homogeneous materials. In-plane pole figure measurements removes the need to collect both reflection and transmission data sets for complete texture determination. Supported stress and texture applications include: Sin 2 ψ (stress measurements) Bi-axial stress determination Conventional pole figures In-plane pole figures Inverse pole figures Transmission pole figures Orientation distribution function (ODF) determination For residual stress measurements the determination of absolute peak positions is crucial. Since peak positions are strongly effected by sample displacement errors, both CBO and automatic sample alignment are critical to both accurate results and ease of measurement. The figure to the left shows a traditional Sin 2 ψ plot from an iron nut. This odd shaped sample is easily aligned and accurately measured using the Ultima IV configured with CBO. On demand in-plane scanning provides the ultimate in flexibility when collecting pole-figure data. In this example pole figure data collected from a Cu (111) plate using the in-plane geometry extends out to the edge of the pole figure plot. It was not necessary to re-configure the system to point focus mode or re-mount the sample for transmission measurement to collect this full, α = 0 to 90, pole figure. 6
8 Thin film analysis CBO and on-demand in-plane scanning combine to provide the world s most comprehensive thin film diffraction system. The ability to perform both in- and out-of-plane grazing incidence scans without the need for system reconfiguration revolutionizes thin film analysis. Layers as thin as 1 nm can be routinely measured with Rigaku s patented in-plane scanning goniometer. In-plane orientation and lattice parameters, difficult to measure with conventional asymmetric scanning, can be calculated directly from observed in-plane reflections. Supported thin film applications include: Phase identification Thickness Orientation/texture Interface roughness Crystal perfection Density Strain/stress The use of glancing incidence scanning is shown to be critical in this measurement of a photo-catalyst thin film. CBO allows the measurement of thin films easily and in compliment to other bulk materials and powders. The figure to the left shows the enhancement of the diffraction data in glancing incidence mode compared to a conventional θ/2θ symmetric measurement. Diffraction peaks from the film are clearly visible in the glancing incidence mode. On demand, combined in-plane and out-of-plane scanning provide a full picture of the texturing in thin films. In this example in-plane (00L) and out-of-plane (HK0) scans were made on a 50 nm thin Si/Pentacene thin film structure. The in-plane measurement done at a 0.18 glancing incident angle provides a unique look at the orientation of the film. X-ray reflectivity (XRR) measurements are used to determine thin film thickness, surface roughness, interface roughness, and density in layered materials. Again the one touch selection of parallel beam geometry provided by CBO, and automatic sample alignment critical to XRR makes performing these measurements simple. The example to the left shows both the calculated and experimental collected XRR curves from a three layer stack of oxidized GaAs, GaAs, InGaAs on a GaAs substrate. 7
9 Thin film analysis Analysis of thin film materials. For thin film materials pole figure analysis can be used to determine orientation relationships between substrates and deposited materials. In this example in-plane pole figures were collected on both the Pt substrate and (Pb, La)TiO 3 /Pt/MgO PLT thin layer. The epitaxial relationship between the substrate and layer material is clearly shown. Critical to this measurement is the in-plane geometry which allows full pole figures to be collected on both the substrate and thin layer. Perhaps the most useful measurement for the rigorous interpretation of thin film properties by X-ray diffraction is the reciprocal space map (RSM). RSM s show both the location and characteristics of reciprocal space points coming from epitaxial heterostructures. RSM s can be used to interpret orientation, perfection, strain, and relaxation in complex materials. In this example the use of in-plane scanning allows information to be gathered in directions parallel to the thin film sample surface. For high resolution X-ray diffraction the CBO module provides a high quality, intense parallel beam for further conditioning by the automatically aligned multiple crystal optics proving optimal performance from a simple to use configuration. A high resolution rocking curve (left) shows peak separation between the layer and substrate reflections giving alloy composition. 8
10 In-situ analysis Rigaku non-ambient attachments are designed and manufactured by Rigaku, ensuring seamless integration and functionality. The ability to measure samples under specific non-ambient conditions is essential in the research and development of many advanced materials. The Ultima IV has a wide range of fully integrated non-ambient configurations, including the world s only commercially available combined XRD/DSC system. Non-ambient capabilities include: High temperature Reactive gases Low temperature Combined XRD/DSC Variable humidity Collecting XRD data at variable temperatures can provide structural information on materials under conditions similar to those in which the material will ultimately be used. In this example the Ultima IV with CBO in focusing mode coupled with a high speed position sensitive detector is used to collect high speed (two minutes per scan), diffraction data from a CaCO 3 sample undergoing a thermally induced reaction to CaO. The transition to CaO can be seen to occur at approximately 800 C. Perhaps the most unique non-ambient capability of the Ultima IV is the combined XRD and DSC configuration. The ability to measure combined XRD/DSC data from the same sample at the same time can be critical in the accurate study of heat based transitions in many materials. The figure to the left shows the combined XRD/DSC data display in which multiple XRD patterns, the variable temperature curve, and the associated heat flow data can be observed. In this example a sample KNO 3 observed as the material undergoes three distinct, reversible solid state transitions. The Ultima IV combined XRD/DSC configuration can also operate under conditions of variable humidity. In this configuration hydration reactions can be studied as a function of both variable temperature and variable humidity. In the figure to the left XRD patterns at variable temperature from 50 to 275 C were collected from a trihalose sample under constant humidity. As in the example above the XRD patterns, temperature curve, and heat flow data are displayed. A crystalline anhydrous phase is directly generated under theses conditions as indicated by the XRD data. 9
11 Small angle X-ray scattering ( S A X S ) Small angle X-ray scattering (SAXS) measurements of nanomaterials is the fastest growing application in analytical X-ray analysis. Rigaku s patented CBO SAXS design allows SAXS measurements to 0.1 in q (65 nm) to be performed routinely and in-direct complement to other wide angle scattering and diffraction methods. Both solid and liquid samples can be measured in a wide range of SAXS geometries, including glancing incidence (GISAXS). SAXS applications include: Macromolecular structure and orientation in polymeric materials Particle size distributions of nanoparticles suspended in solution Particle/pore size distributions in deposited or bulk solid nanomaterials Molecular morphology and orientation in nanocomposites Transmission SAXS from nano-particles suspended in solution is a powerful method for the determination of particle sizes and shapes. The requirement for accurate size and shape information is important in many of the emerging areas of nanomaterials research currently taking place throughout the world. The Ultima IV with CBO offers one touch switching from conventional wide angle scattering and diffraction geometries to the ultra-low angle performance needed for SAXS measurements. In this example the experimental SAXS curve (above left) has been overlaid with the calculated SAXS curves from a bimodal distribution of particle sizes (left) modeled in NANO-Solver, Rigaku s powerful software solution for SAXS data processing. The agreement between the experimental and calculated curves shows that the proposed distribution model is in good agreement with what is actually contained in the sample, as observed by TEM. In addition to transmission measurements the CBO SAXS geometry with automatically aligned sample stage is capable of performing reflection SAXS. The figure to the left is a reflection SAXS measurement recorded from a 100 nm thin layer of Ni embedded C on Si. The figure shows output from NANO-Solver displaying the overlaid experimental and calculated reflection SAXS curves. The agreement of the calculated and experimental curves suggest a broad distribution of Ni particle sizes ranging from 2 to 10 nm. 10
12 Ultima IV Specifications Cross Beam Optics Maximum rated output 3 kw X-ray generator Rated tube voltage Rated tube current kv 2-60 ma Focusing Target Cu (others: optional) Focus size 0.4 x 12 mm (others: optional) Scanning mode θs/θd coupled or θs, θd independent Goniometer Goniometer radius 2θ measuring range 185 or 285 mm (may differ depending on configuration) Parallel Minimum step size Divergence slit Fixed or automatic variable Scattering slit Fixed or automatic variable Optics Receiving slit Optics alignment Fixed or automatic variable Automatic alignment of tube height, goniometer, optics and detector High resolution Monochromator Dual position graphite diffracted beam monochromator for Cu (others: optional) Detector Detector Scintillation counter (others: optional) SAXS Rigaku Americas Corporation 9009 New Trails Drive The Woodlands, TX USA Phone: FAX: Micro area SYS_BRO_UIV_01 Copyright Rigaku Americas Corporation. All rights reserved.
Instrument Configuration for Powder Diffraction
Instrument Configuration for Powder Diffraction Advanced X-ray Workshop S.N. Bose National Centre for Basic Sciences, 14-15/12/2011 Innovation with Integrity Overview What is the application? What are
Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems
Earth & Planetary Science Applications of X-Ray Diffraction: Advances Available for Research with our New Systems James R. Connolly Dept. of Earth & Planetary Sciences University of New Mexico 401/501
High Resolution X-ray Diffraction
High Resolution X-ray Diffraction Nina Heinig with data from Dr. Zhihao Donovan Chen, Panalytical and slides from Colorado State University Outline Watlab s new tool: Panalytical MRD system Techniques:
Thin Film Scattering: Epitaxial Layers
Thin Film Scattering: Epitaxial Layers 6th Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31, 2012 Thin films. Epitaxial
Travaux Pratiques de Matériaux de Construction
Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2009 Etude de Matériaux Cimentaire Par Diffraction des Rayons X Responsable: Silke Ruffing E-Mail: silke.ruffing@epfl.ch
ARL X TRA Powder X-ray Diffraction System. Uncompromised Intensity and Resolution
e l e m e n t a l a n a l y s i s ARL X TRA Powder X-ray Diffraction System Uncompromised Intensity and Resolution Analyze Detect Measure Control ARL X TRA Powder X-ray Diffraction System ARL X TRA High
Diffraction: Powder Method
Diffraction: Powder Method Diffraction Methods Diffraction can occur whenever Bragg s law λ = d sin θ is satisfied. With monochromatic x-rays and arbitrary setting of a single crystal in a beam generally
Travaux Pratiques de Matériaux de Construction. Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre
Travaux Pratiques de Matériaux de Construction Section Matériaux 6 ème semestre 2015 Etude de Matériaux Cimentaires par Diffraction des Rayons X sur Poudre Study Cementitious Materials by X-ray diffraction
ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION
Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 291 ZINC/IRON PHASE TRANSFORMATION STUDIES ON GALVANNEALED STEEL COATINGS BY X-RAY DIFFRACTION S.
DIFFRACTION METHODS IN MATERIAL SCIENCE. Lecture 7
DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Tel. 0711 689 3325 Email: zotov@imw.uni-stuttgart.de Room 3N16 Lecture 7 Practicum 15.12.2016 15:15 Room 3P2! Lectures 16.12.2016 11:00 Room
ANALYSIS OF THE SURFACE MORPHOLOGY OF CVD-GROWN DIAMOND FILMS WITH X-RAY DIFFRACTION
Copyright JCPDS - International Centre for Diffraction Data 23, Advances in X-ray Analysis, Volume 46. 185 ANALYSIS OF THE SURFACE MORPHOLOGY OF CVD-GROWN DIAMOND FILMS WITH X-RAY DIFFRACTION M.J. Fransen
Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments
* Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,
X-Ray Diffraction Analysis
162402 Instrumental Methods of Analysis Unit III X-Ray Diffraction Analysis Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam
Study of amorphous, extraordinary absorbing, high-surface area magnesium carbonate using a laboratory diffractometer
X-ray XRD SAXS Study of amorphous, extraordinary absorbing, high-surface area magnesium carbonate using a laboratory diffractometer PDF Olga Narygina 1, Marco Sommariva 1, Sara Frykstrand 2, Johan Forsgren
Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process
Specimen Preparation Technique for a Microstructure Analysis Using the Focused Ion Beam Process by Kozue Yabusaki * and Hirokazu Sasaki * In recent years the FIB technique has been widely used for specimen
Kinematical theory of contrast
Kinematical theory of contrast Image interpretation in the EM the known distribution of the direct and/or diffracted beam on the lower surface of the crystal The image on the screen of an EM = the enlarged
The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole
University of Groningen The growth of patterned ceramic thin films from polymer precursor solutions Göbel, Ole IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you
EBSD Basics EBSD. Marco Cantoni 021/ Centre Interdisciplinaire de Microscopie Electronique CIME. Phosphor Screen. Pole piece.
EBSD Marco Cantoni 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME EBSD Basics Quantitative, general microstructural characterization in the SEM Orientation measurements, phase
MODEL SEM Mill. Two independently adjustable TrueFocus ion sources
MODEL 1060 SEM Mill A state-of-the-art ion milling and polishing system. It is compact, precise, and consistently produces high-quality scanning electron microscopy (SEM) samples for a wide variety of
Development of Piezoelectric Nanocomposites for Energy Harvesting and Self-Sensing
Development of Piezoelectric Nanocomposites for Energy Harvesting and Self- Kenneth J. Loh Assistant Professor Department of Civil & Environmental Engineering University of California, Davis The Applied
Recrystallization in CdTe/CdS
Thin Solid Films 361±362 (2000) 420±425 www.elsevier.com/locate/tsf Recrystallization in CdTe/CdS A. Romeo, D.L. BaÈtzner, H. Zogg, A.N. Tiwari* Thin Film Physics Group, Institute of Quantum Electronics,
Measurement of Residual Stress by X-ray Diffraction
Measurement of Residual Stress by X-ray Diffraction C-563 Overview Definitions Origin Methods of determination of residual stresses Method of X-ray diffraction (details) References End Stress and Strain
Basics of X-Ray Powder Diffraction
Basics of X-Ray Powder Diffraction Scott A. Speakman, Ph.D. For assistance in the X-ray lab, please contact Charles Settens settens@mit.edu Scott A. Speakman, Ph.D. http://prism.mit.edu/xray Training Required
D2 PHASER. 2nd Generation. Innovation with Integrity XRD. Diffraction Solutions
D2 PHASER 2nd Generation Diffraction Solutions Innovation with Integrity XRD Compact all-in-one benchtop design Innovative high-end goniometer design Integrated PC / monitor DIFFRAC.SUITE software Leading
X-RAY POWDER DIFFRACTION XRD
X-RAY POWDER DIFFRACTION XRD for the analyst Getting acquainted with the principles Martin Ermrich nλ = 2d sin θ Detlef Opper The Analytical X-ray Company X-RAY POWDER DIFFRACTION XRD for the analyst Getting
E. Buffagni, C. Ferrari, L. Zanotti, A. Zappettini
E. Buffagni, C. Ferrari, L. Zanotti, A. Zappettini IMEM-CNR Institute, Parma (Italy) 1. Laue lenses for hard x-ray astronomy 2. Mosaic crystals 3. GaAs crystals 4. X-ray diffraction characterization 5.
Transmission Kikuchi Diffraction in the Scanning Electron Microscope
Transmission Kikuchi Diffraction in the Scanning Electron Microscope Robert Keller, Roy Geiss, Katherine Rice National Institute of Standards and Technology Nanoscale Reliability Group Boulder, Colorado
Practical 2P8 Transmission Electron Microscopy
Practical 2P8 Transmission Electron Microscopy Originators: Dr. N.P. Young and Prof. J. M. Titchmarsh What you should learn from this practical Science This practical ties-in with the lecture course on
AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 5 X ray diffraction
1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 5 X ray diffraction Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 3442-7813 Office: P6422 Lecture 5: Outline Review on crystallography
Small-angle X-ray scattering (SAXS) with synchrotron radiation
Small-angle X-ray scattering (SAXS) with synchrotron radiation Martin Müller Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel Introduction to small-angle scattering
A NEWLY DEVELOPED HIGH-TEMPERATURE CHAMBER FOR IN SITU X-RAY DIFFRACTION: SETUP AND CALIBRATION PROCEDURES
THE RIGAKU JOURNAL VOL. 19 / NO.1 / 2002 A NEWLY DEVELOPED HIGH-TEMPERATURE CHAMBER FOR IN SITU X-RAY DIFFRACTION: SETUP AND CALIBRATION PROCEDURES MONICA DAPIAGGI, GILBERTO ARTIOLI AND LASZLO PETRAS*
Growth of YBa 2 Cu 3 O 7 Films with [110] Tilt of CuO Planes to Surface on SrTiO 3 Crystals
ISSN 163-7745, Crystallography Reports, 213, Vol. 58, No. 3, pp. 488 492. Pleiades Publishing, Inc., 213. Original Russian Text E.A. Stepantsov, F. Lombardi, D. Winkler, 213, published in Kristallografiya,
GRAZING INCIDENCE X-RAY DIFFRACTION CHARACTERIZATION OF CORROSION DEPOSITS INDUCED BY CARBON DIOXIDE ON MILD STEEL
Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 319 GRAZING INCIDENCE X-RAY DIFFRACTION CHARACTERIZATION OF CORROSION DEPOSITS INDUCED BY CARBON DIOXIDE
TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE
TEM Study of the Morphology Of GaN/SiC (0001) Grown at Various Temperatures by MBE W.L. Sarney 1, L. Salamanca-Riba 1, V. Ramachandran 2, R.M Feenstra 2, D.W. Greve 3 1 Dept. of Materials & Nuclear Engineering,
Basic X-ray Powder Diffraction (XRPD)
Basic X-ray Powder Diffraction (XRPD) Solid-State, Material Science Crystalline (Scattering : diffraction) Non-crystalline (Scattering) Analytical Tool Qualitative and Quantitative Analysis Quantitative
DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Tel Room 3N16.
DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Tel. 0711 689 3325 Email: zotov@imw.uni-stuttgart.de Room 3N16 Lecture 7 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials
METHOD TO EVALUATE BIAXIAL STRETCH RATIOS IN STRETCH BLOW MOLDING
METHOD TO EVALUATE BIAXIAL STRETCH RATIOS IN STRETCH BLOW MOLDING Masoud Allahkarami 1, 2, Sudheer Bandla 2, and Jay C. Hanan 1 1 Mechanical and Aerospace Engineering, Oklahoma State University, Tulsa,
TEM imaging and diffraction examples
TEM imaging and diffraction examples Duncan Alexander EPFL-CIME 1 Diffraction examples Kikuchi diffraction Epitaxial relationships Polycrystalline samples Amorphous materials Contents Convergent beam electron
Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement. I. Introduction
Influence of Bulk Graphite Thickness on the Accuracy of X-Ray Diffraction Measurement Jane Y. Howe 1*, Burl O. Cavin 1, Amy E. Drakeford 2, Roberta A. Peascoe 1, Tracy L. Zontek 2, and Douglas J. Miller
Electron microscopy II
Electron microscopy II Nanomaterials characterization I RNDr. Věra Vodičková, PhD. Interaction ction: electrons solid matter Signal types SE.secondary e - AE Auger s e - BSE back scattered e - X-ray photons,
Specimen configuration
APPLICATIONNOTE Model 1040 NanoMill TEM specimen preparation system Specimen configuration Preparing focused ion beam (FIB) milled specimens for submission to Fischione Instruments. The Model 1040 NanoMill
ATTACHMENT D3 University of British Columbia X-Ray Diffraction Report and Scanning Electron Microscopy Images
Appendix D Laboratory Geotechnical Data and Interpretation ATTACHMENT D3 University of British Columbia X-Ray Diffraction Report and QUANTITATIVE PHASE ANALYSIS OF ONE POWDER SAMPLE USING THE RIETVELD
THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED BY SEVERE PLASTIC DEFORMATION
The Rev. texture Adv. Mater. strengthening Sci. 31 (2012) effect 157-162 in a magnesium alloy processed by severe plastic deformation 157 THE TEXTURE STRENGTHENING EFFECT IN A MAGNESIUM ALLOY PROCESSED
Steric Effects on the. Transition in YH x
Steric Effects on the Metallic-Mirror Mirror to Transparent-Insulator Transition in YH x Troy C. Messina Department of Physics University of Texas at Austin Final Defense 22 November 2002 Outline Introduction
COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING
COMPATIBILITY OF THE ALTERNATIVE SEED LAYER (ASL) PROCESS WITH MONO- Si AND POLY-Si SUBSTRATES PATTERNED BY LASER OR WET ETCHING Lynne Michaelson 1, Anh Viet Nguyen 2, Krystal Munoz 1, Jonathan C. Wang
Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites
Solar Energy Materials & Solar Cells 8 () 339 38 Structure and optical properties of M/ (M=Au, Cu, Pt) nanocomposites U. Pal a,b, *, J. Garc!ıa-Serrano a, G. Casarrubias-Segura a, N. Koshizaki c, T. Sasaki
Cadmium Oxide Nano Particles by Sol-Gel and Vapour- Liquid-Solid Methods
Nano Vision, Vol.1 (1), 47-53 (2011) Cadmium Oxide Nano Particles by Sol-Gel and Vapour- Liquid-Solid Methods S. SAKTHIVEL* and D. MANGALARAJ 1 *PG and Research Department of Physics, Rajah Serfoji Govt.
The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress
Materials Science Forum Vols. 524-525 (26) pp. 35-31 online at http://www.scientific.net (26) Trans Tech Publications, Switzerland The influence of aluminium alloy quench sensitivity on the magnitude of
GEOLOGY 333 LAB 14. Lab Final Exam See information sheet for details
GEOLOGY 333 LAB 14 X-RAY DIFFRACTION OF EVERYDAY MATERIALS Lab Final Exam See information sheet for details! Next week during Lab (10 am - noon, May 2, 69 CAB).! 25% of Lab grade, out of 65 points plus
This experiment is included in the upgrade packages: XRC 4.0 X-ray characteristics and XRS 4.0 X-ray structural analysis.
Characteristic X-rays of copper TEP Related Topics X-ray tube, bremsstrahlung, characteristic radiation, energy levels, crystal structures, lattice constant, absorption, absorption edges, interference,
MODEL TEM Mill. Two independently adjustable TrueFocus ion sources
MODEL 1050 TEM Mill A state-of-the-art ion milling and polishing system. It is compact, precise, and consistently produces high-quality transmission electron microscopy (TEM) specimens with large electron
Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties
Journal of Multidisciplinary Engineering Science and Technology (JMEST) Growth Of TiO 2 Films By RF Magnetron Sputtering Studies On The Structural And Optical Properties Ahmed K. Abbas 1, Mohammed K. Khalaf
ANNEALING STUDIES OF PURE AND ALLOYED TANTALUM EMPLOYING ROCKING CURVES
Copyright JCPDS - International Centre for Diffraction Data 3, Advances in X-ray Analysis, Volume. 5 ISSN 197- Abstract ANNEALING STUDIES OF PURE AND ALLOYED TANTALUM EMPLOYING ROCKING CURVES David W.
Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture
Poster FVS Workshop 2002 Sputtered Zinc Oxide Films for Silicon Thin Film Solar Cells: Material Properties and Surface Texture Texture etching of sputtered ZnO:Al films has opened up a variety of possibilities
GEOL.3070 EARTH MATERIALS I FORENSIC APPLICATIONS OF X-RAY DIFFRACTION
GEOL.3070 EARTH MATERIALS I FORENSIC APPLICATIONS OF X-RAY DIFFRACTION NAME I. Introduction Our knowledge of the crystalline state is gained by studies utilizing x-rays (the field of x- ray crystallography).
State of the art quality of a GeOx interfacial passivation layer formed on Ge(001)
APPLICATION NOTE State of the art quality of a Ox interfacial passivation layer formed on (001) Summary A number of research efforts have been made to realize Metal-Oxide-Semiconductor Field Effect Transistors
Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor
Visualization and Control of Particulate Contamination Phenomena in a Plasma Enhanced CVD Reactor Manabu Shimada, 1 Kikuo Okuyama, 1 Yutaka Hayashi, 1 Heru Setyawan, 2 and Nobuki Kashihara 2 1 Department
Residual Stress Measurements Using Neutron Diffraction in Magnesium Alloy Laser Welded Joints
Residual Stress Measurements Using Neutron Diffraction in Magnesium Alloy Laser Welded Joints A. Fabre 1, J.-É. Masse 1, M. Ceretti 2 and L. Barrallier 1 1 MécaSurf Team, ENSAM - 2, cours des Arts et Métiers
Multilayer optics for X-ray analysis
Multilayer optics for X-ray analysis Kazuaki Shimizu* and Kazuhiko Omote** 1. Introduction 1.1. History of the development of multilayers Since W. von Laue discovered X-ray diffraction using a zinc sulfide
MODEL 1051 TEM Mill ION MILLING. Ion milling is used on physical science. specimens to reduce thickness to electron
MODEL 1051 TEM Mill A state-of-the-art ion milling and polishing system offering reliable, high performance specimen preparation. It is compact, precise, and consistently produces high-quality transmission
Systematic Errors and Sample Preparation for X-Ray Powder Diffraction. Jim Connolly EPS , Spring 2010
Systematic Errors and Sample Preparation for X-Ray Powder Diffraction Jim Connolly EPS400-001, Spring 2010 Introduction Most systematic errors in diffraction experiments are related to the characteristics,
Determination of dislocation structure and vacancy concentration by in situ synchrotron X-Ray diffraction. Theses of Ph.D. dissertation.
Determination of dislocation structure and vacancy concentration by in situ synchrotron X-Ray diffraction Theses of Ph.D. dissertation Péter Hanák Adviser: Prof. Tamás Ungár, DSc. Physics Doctorate School
arxiv: v1 [cond-mat.mtrl-sci] 19 Dec 2016
How to enable bulk-like martensitic transformation in epitaxial films arxiv:1612.06077v1 [cond-mat.mtrl-sci] 19 Dec 2016 Marius Wodniok, 1 Niclas Teichert, 1,a) Lars Helmich, 1 and Andreas Hütten 1 Center
Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection
Substrate surface effect on the structure of cubic BN thin films from synchrotron-based X-ray diffraction and reflection X.M. Zhang, W. Wen, X.L.Li, X.T. Zhou published on Dec 2012 PHYS 570 Instructor
Introduction to Electron Backscattered Diffraction. TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016
Introduction to Electron Backscattered Diffraction 1 TEQIP Workshop HREXRD Feb 1 st to Feb 5 th 2016 SE vs BSE 2 Ranges and interaction volumes 3 (1-2 m) http://www4.nau.edu/microanalysis/microprobe/interact-effects.html
Lesson 8 Publishing XRD Results
Lesson 8 Publishing XRD Results Nicola Döbelin( s humble opinions ) RMS Foundation, Bettlach, Switzerland totally irrelevant to the rest of the world March 1 2, 216, Freiberg, Germany Relevant Topics -
Volume 8, ISSN (Online), Published at:
IMPACT OF POWDERY OXIDE LAYER IN THE TITANIUM/RUTILE SYSTEM PREPARED BY OXIDATIVE CONSTRUCTING OF CERAMIC MATERIALS Sergey V. Shevtsov, Nikolay A. Alad ev, Konstantin A. Solntsev Baikov Institute of Metallurgy
By: Mahmoud Abdellatief Civil-Mechanical and Environmental engineering Department Trento University MCX beamline, ELETTRA, Trieste 1
By: Mahmoud Abdellatief Civil-Mechanical and Environmental engineering Department Trento University MCX beamline, ELETTRA, Trieste 1 Structural Defects in Nanotechnology Production Application s Characterization
How to Analyze Polymers Using X-ray Diffraction
How to Analyze Polymers Using X-ray Diffraction Polymers An Introduction This tutorial will cover the following topics How to recognize different types of polymers Crystalline, semi-crystalline and amorphous
In-Plane Pole Figure Measurement Part
In-Plane Pole Figure Measurement Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 5 2. Measurement sequence...13
Rietveld refinement of ZrSiO 4 : application of a phenomenological model of anisotropic peak width
Rietveld refinement of ZrSiO 4 : application of a phenomenological model of anisotropic peak width A. Sarkar, P. Mukherjee, P. Barat Variable Energy Cyclotron Centre 1/A Bidhan Nagar, Kolkata 700064, India
8. Epitaxy. - Extended single-crystal film formation on top of a crystalline substrate
8. Epitaxy 1. Introduction επι(epi placed or resting upon) ταξιζ(taxis arrangement) - Extended single-crystal film formation on top of a crystalline substrate - Homoepitaxy : Film and substrate are the
XRD AND XAFS STUDIES OF CARBON SUPPORTED Pt-Ru ELECTROCATALYST IN A POLYMER-ELECTROLYTE-FUEL-CELL
Copyright JCPDS - International Centre for Diffraction Data 4, Advances in X-ray Analysis, Volume 47. 56 XRD AND XAFS STUDIES OF CARBON SUPPORTED Pt-Ru ELECTROCATALYST IN A POLYMER-ELECTROLYTE-FUEL-CELL
High-performance X-ray analysis software
SUPERQ 5 High-performance X-ray analysis software Measuring up to your analytical needs Representing the wealth of PANalytical s experience in analytical XRF, SuperQ 5 takes advanced X-ray analysis to
G. Diego Gatta Università di Milano, Italy F. Nestola Università di Padova, Italy
G. Diego Gatta Università di Milano, Italy [diego.gatta@unimi.it] F. Nestola Università di Padova, Italy DAC data collection and reduction, Oxford Diffraction Instruments http://www.oxford-diffraction.com/
Annealing Effect on Elastic Constant of Ultrathin Films Studied by Acoustic-Phonon Resonance Spectroscopy
1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 28, Montreal, Canada Annealing Effect on Elastic Constant of Ultrathin Films Studied by Acoustic-Phonon
6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations
C. Epitaxial Growth 6.8 Magnetic in-plane anisotropy of epitaxially grown Fe-films on vicinal Ag(001) and Au(001) with different miscut orientations M. Rickart, A.R. Frank, J. Jorzick, Ch. Krämer, S.O.
SUPPLEMENTARY INFORMATION
In the format provided by the authors and unedited. ARTICLE NUMBER: 16178 DOI: 10.1038/NENERGY.2016.178 Enhanced Stability and Efficiency in Hole-Transport Layer Free CsSnI3 Perovskite Photovoltaics Supplementary
SPI Supplies Brand MgO Magnesium Oxide Single Crystal Substrates, Blocks, and Optical Components
SPI Supplies Brand MgO Magnesium Oxide Single Crystal Substrates, Blocks, and Optical Components Used by high temperature thin film superconductor researchers worldwide! Purity better than 99.9%! Choose
Advances in quantitative Rietveld Analysis XRPD for Minerals and Mining Applications
Advances in quantitative Rietveld Analysis XRPD for Minerals and Mining Applications Dipl. Min. Alexander Seyfarth BRUKER AXS Inc., Madison WI, USA Dr. Arnt Kern BRUKER AXS, Karlsruhe, Germany 1 Outline
Microstructural Evolution of Ti-Mo-Ni-C Powder by Mechanical Alloying
Materials Transactions, Vol. 50, No. 1 (2009) pp. 117 to 122 #2009 The Japan Institute of Metals Microstructural Evolution of -Mo-Ni-C Powder by Mechanical Alloying Hiroyuki Hosokawa, Kiyotaka Kato, Koji
EPITAXY extended single-crystal film formation on top of a crystalline substrate. Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs)
extended single-crystal film formation on top of a crystalline substrate Homoepitaxy (Si on Si) Heteroepitaxy (AlAs on GaAs) optoelectronic devices (GaInN) high-frequency wireless communication devices
YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION
YIELD & TENSILE STRENGTH OF STEEL & ALUMINIUM USING MICROINDENTATION Prepared by Duanjie Li, PhD & Pierre Leroux 6 Morgan, Ste156, Irvine CA 9618 P: 949.461.99 F: 949.461.93 nanovea.com Today's standard
Materials Characterization for Stress Management
Materials Characterization for Stress Management Ehrenfried Zschech, Fraunhofer IZFP Dresden, Germany Workshop on Stress Management for 3D ICs using TSVs San Francisco/CA, July 13, 2010 Outline Stress
MODEL PicoMill TEM specimen preparation system. Achieve ultimate specimen quality free from amorphous and implanted layers
MODEL 1080 PicoMill TEM specimen preparation system Combines an ultra-low energy, inert gas ion source, and a scanning electron column with multiple detectors to yield optimal TEM specimens. POST-FIB PROCESSING
Anomaly of Film Porosity Dependence on Deposition Rate
Anomaly of Film Porosity Dependence on Deposition Rate Stephen P. Stagon and Hanchen Huang* Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 J. Kevin Baldwin and Amit Misra
Condensed Matter II: Particle Size Broadening
Condensed Matter II: Particle Size Broadening Benjamen P. Reed & Liam S. Howard IMAPS, Aberystwyth University March 19, 2014 Abstract Particles of 355µm silicon oxide(quartz)were subjected to a ball milling
Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc x Ga 1-x N
NASA/CR-2001-211241 ICASE Report No. 2001-36 Band-gap Engineering in Sputter Deposited Amorphous/Microcrystalline Sc x Ga 1-x N Mark E. Little ICASE, Hampton, Virginia Martin E. Kordesch Ohio University,
1. Introduction. What is implantation? Advantages
Ion implantation Contents 1. Introduction 2. Ion range 3. implantation profiles 4. ion channeling 5. ion implantation-induced damage 6. annealing behavior of the damage 7. process consideration 8. comparison
Electron Channeling Contrast Imaging: Rapid Characterization of Semiconductors. Julia I. Deitz 1
Electron Channeling Contrast Imaging: Rapid Characterization of Semiconductors Julia I. Deitz 1 Introduction For semiconductor technologies, achievement of their ultimate potential depends greatly upon
An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1
Materials Transactions, Vol. 44, No. 3 (2003) pp. 389 to 395 #2003 The Japan Institute of Metals An XPS and Atomic Force Microscopy Study of the Micro-Wetting Behavior of Water on Pure Chromium* 1 Rongguang
INFLUENCE OF LASER ABLATION ON STAINLESS STEEL CORROSION BEHAVIOUR
INFLUENCE OF LASER ABLATION ON STAINLESS STEEL CORROSION BEHAVIOUR Michal ŠVANTNER a, Martin KUČERA b, Šárka HOUDKOVÁ c, Jan ŘÍHA d a University of West Bohemia, Univerzitní 8, 306 14 Plzeň, msvantne@ntc.zcu.cz
Deformation Twinning in Bulk Aluminum with Coarse Grains
Proceedings of the 12th International Conference on Aluminium Proceedings Alloys, of the September 12th International 5-9, 2010, Yokohama, Conference Japan on 2010 Aluminum The Japan Alloys, Institute
Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS
Cu(In,Ga)Se 2 FILM FORMATION FROM SELENIZATION OF MIX METAL/METAL-SELENIDE PRECURSORS Rui Kamada, William N. Shafarman, and Robert W. Birkmire Institute of Energy Conversion University of Delaware, Newark,
3D-EBSD an CrossBeam-Systemen
FIB- Workshop 3.-4. July 2008 3D-EBSD an CrossBeam-Systemen Ulrike Zeile 1, Ali Gholinia 2 and Frank Bauer 3 Arbeitskreis FIB SSOM DGM/DGE ASEM Hotel Seeburg, Luzern, Switzerland 1. Carl Zeiss NTS 2. Oxford
Physics of Nanomaterials. Module II. Properties of Nanomaterials. Learning objectives
Physics of Nanomaterials Module II Properties of Nanomaterials Learning objectives Microstructure and defects in nanomaterials, dislocations, twins, stacking faults and voids, grain boundaries Effect of
Applications of Successive Ionic Layer Adsorption and Reaction (SILAR) Technique for CZTS Thin Film Solar Cells
NANO VISION An International Open Free Access, Peer Reviewed Research Journal www.nano-journal.org ISSN 2231-2579 (Print) ISSN 2319-7633 (Online) Abbr: Nano Vision. 2013, Vol.3(3): Pg.235-239 Applications
MRSI-175Ag Epoxy Dispenser
MRSI-175Ag Epoxy Dispenser Applications: Microwave & RF Modules MEMS Semiconductor Packaging Multi-Chip Modules Hybrid Circuits Optical Modules Overview The MRSI-175Ag Conductive Epoxy Dispenser handles
Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition
Materials Transactions, Vol. 44, No. 10 (2003) pp. 1948 to 1954 Special Issue on Nano-Hetero Structures in Advanced Metallic Materials #2003 The Japan Institute of Metals Nanocrystalline structure and