Overview. Models in laboratory research. The unique position of the mouse as a model. Mouse genetics 101. Genetic engineering for hypothesis testing

Size: px
Start display at page:

Download "Overview. Models in laboratory research. The unique position of the mouse as a model. Mouse genetics 101. Genetic engineering for hypothesis testing"

Transcription

1 Overview Models in laboratory research The unique position of the mouse as a model Mouse genetics 101 Genetic engineering for hypothesis testing Genetic variation

2 Why Use Models? Allows for controlled experiments Environmental variables can be controlled Dosage or exposures can be controlled Experiments can be replicated

3

4

5

6 Phenotypes Genes Environment Chapel Hill Stochastic Processes

7 Effects of Genes Can Be Complex Gene Pleiotropy Phenotypes Phenotype Heterogeneity Genes

8 Unique Position of the Mouse Genetics Genetic Tools Gene Content gataccagattagt agttagagttgaga gtccgctagatcgc Strain: A/J ID: XXXX Tissue: col Histology Molecular Profile Biologic Tools Proteome Content Mutagenesis Physiology DETECTION CHARACTERIZATION VALIDATION Engineering Tools Transgenics Knockouts Knockins

9 Why Mice As an Experimental Organism? Hardy Requires little space Short life cycle Easily bred High fecundity Mammalian species Large amount of phenotypic variation Easy to genetically engineer

10 Evolutionary Relationships Humans Mice Xenopus D. melanogaster C. elegans myr bp

11 The Mus Species Group domesticus musculus castaneus bactrianus The M. musculus group macedonicus (Greece>Iran>Israel) spicilegus (Austria.Ukraine>Bulgaria) spretus (Spain/N. Africa) caroli (Indonesia) cookii (India/S.E. Asia) cervicolor (Nepal/S.E. Asia) booduga (India/Burma/Pakistan) dunni (India/Sumatra) myr bp

12 Genetic Stocks Outbred segregating many alleles ex, Swiss mice, Wistar rats Hybrid isogenic until bred ex, B6D2, B6SJL Inbred genetically identical (isogenic) ex, C57BL/6J Mutant/Engineered specific defects may or may not be genetically clean

13 Exercise A You have developed a compound that you think will help to prevent rejection of transplanted hearts, and you want to test this experimentally. The experiment will involve heart grafts between a donor and recipient mouse (whose own heart is not removed) with a control group and one treated with the compound. The following mouse strains are available: outbred ICR and CD1 and inbred C57BL/6J, A/J, and FVB/NJ. Which strains will you use as donor and recipient? Why?

14 Exercise B You also need to test the potential toxicity of the compound, and will want to do a long-term study with control and treated mice. You know it is not acutely toxic. Being a toxicologist, you reason that in this case since you wish to model humans who are genetically heterogeneous, you decide to use outbred genetically heterogeneous ICR mice, the strategy used by virtually all toxicologists. Do you decide to go with your initial intuition? Why?

15 Identify the Experimental Unit The unit of randomization The experimental units must be capable of being assigned to different treatments Could be: a cage of animals a single animal an animal for a period of time a well in a tissue culture dish

16 The Problem With Genetic Heterogeneity Treated beagle mouse horse gerbil lion cat rabbit Control chicken crow frog hamster beaver dog toad

17 A Better Design Treated beagle mouse horse gerbil lion cat rabbit Control beagle mouse horse gerbil lion cat rabbit

18 A Better Design Treated C57BL/6J A/J FVB/NJ DBA/2J SWR/J SJL/J BALB/cJ Control C57BL/6J A/J FVB/NJ DBA/2J SWR/J SJL/J BALB/cJ

19 Variable Results With Heart Transplants We transplanted hearts of young ICR into recipient CD1. An outbred strain was selected since such animals are usually heartier and easier to handle We are puzzled by our results palpable heart beats were evident in the saline group long after acute rejections were expected Results in the experimental groups varied considerably

20 Exercise C: Power Calculations for Sample Size Barbiturate sleeping time Strain Mean Std. Dev. BALB/c (inbred) 40 4 ICR (outbred) What sample size would be needed to detect a 10% change in mean, with a 90% power and 5% significance level using a 2-sample t-test? Data from Jay (1955) Proc Soc exp Biol Med 90:378

21 Power Calculations for Sample Size BALB/c (inbred) 23 ICR (outbred) 297

22

23

24 Types of Genetic Crosses Cross Matings Uses Backcross Incross A/a X A/A A/a X a/a A/A X A/A a/a X a/a linkage analysis; production of congenic strains Maintenance of an inbred strain Intercross A/a X A/a Linkage analysis Outcross A/A X a/a a 1 /a 2 X a 3 /a 4 Initial step in strain production and linkage analysis; production of F 1 hybrids

25 Making an Inbred Strain P % Homozygosity F 1 Independent Assortment F 2 Inbred F %

26 Inbred Strain 20 or more generation of brother x sister mating Isogenic Homozyogus Phenotypically uniform Long-term stability Unique strain characteristics International distribution Easily identifiable immortal clone of genetically identical individuals

27 Egfr Wa5 /+ C57BL/6J 129S1/SvImJ BALB/cJ

28 The introduction of inbred strains into biology is probably comparable in importance with that of the analytical balance into chemistry Gruneberg (1952)

29 Outbred Stocks Widely used Characteristics not widely understood Advatages cheap easily available (no alternative for some species) breed well outbred like humans (?????) Disadvantages unknown genetics (heterozygosity) subject to genetic change (inbreeding, drift, selection) lack of reliable background information genotype not internationally distributed not histocompatible not easily identifiable

30 Outbred Mice CF1 ICR CD1 MF1 Swiss-Webster B6D2

31 Engineered Models Allows controlled experimental testing of specific genes specific environmental conditions or exposures Ideally suited to test specific hypothesis generated from human population studies or other laboratory findings

32 Engineered Models Transgenics usually used to over-express genes can be global or tissue-specific can be temporally regulated Knockouts/knockins usually used in inactivate genes can be global or tissue-specific can be temporally regulated can introduce genes into a foreign locus can make amino acid modifications

33 Terminology Transgenic (carries foreign DNA; may or may not be mosaic; two parents) Mosaic (may or may not carry foreign DNA; two parents) Chimeric (may or may not carry foreign DNA; more than two parents)

34 Mosaic vs Chimeric Progeny Mosaic Chimeric

35 Pre-implantation Mouse Development Fertilization E0.5 Activation of embryonic genome E1.5 Compaction E2.5 Blastocoelic fluid accumulation E3.5 TE and endoderm differentiation

36 Transgenic Production Flush fertilized oviduct E0.5 pro-nuclear stage DNA pro-nuclear fusion recover test for expression and phenotype test for germline transmission implant into pseudopregnant females founder

37 Gene Targeting in ES Cells electroporate test for germline transmission selection P 1 2 analyze colonies cross heterozygotes Analyze offspring for phenotype test offspring for chimerism implant make chimeras

38 Exercise D You obtain a mouse line from your collaborator that carries a knockout in PPAR-gamma. The collaborator made the mice by gene targeting in 129 strain derived ES cells. He made chimeras with the cells by blastocyst injection into C57BL/6J embryos. After birth, he bred the chimeras to C57BL/6J mice and then intercrossed heterozygous carriers to make the PPAR-gamma knockout homozygous line. You need wild-type controls for your experiment. What mice to you use for this? Why?

39 Making a Congenic Strain Donor Recipient P % Homozygosity F 1 Independent Assortment N 2 Residual Heterozygosity N 3 N 10 Congenic 99.8%

40 Congenic Co-isogenic

41 Genetic Variation Significant extant genetic (and thus phenotypic) variation exists across mouse strains Can be used to identify a more accurate model of specific human exposures or responses Phenotypic variation across inbred mouse strains is as great or greater than humans for virtually any trait

42 Azoxymethane Induction of Mouse Colorectal Tumors 4 X 1 weekly IP injections (10mg/kg) 22 week latency period Tumor Normal Azoxymethane CH 3 N N CH 3 Methylazoxymethanol CH 3 O N N CH 2 OH O Methyldiazonium (alkylating agent) CH 3 + N N Carbonium (methylating agent) + H 3 C + N 2

43 Just as...one person mouse is strain not representative is not representative of the human of population... the human species AKR/J SWR/J A/J

44 Colorectal Cancer Susceptibility Swiss strains Castle s strains Strains from Asia Other strains C57-related strains Wild-derived strains Strain

45

46 mouse populations > human populations Total mouse SNPs = ~40M musculus, domesticus, castaneous

47 mouse populations > human populations Total mouse SNPs = ~40M musculus, domesticus, castaneous Total human SNPs = <20M

48 mouse populations > human populations Total mouse SNPs = ~65M musculus, domesticus, castaneous + spretus Total human SNPs = <20M

49 mouse populations > human populations Total mouse SNPs = ~65M musculus, domesticus, castaneous + spretus QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. + QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture.

50 Why would human and mouse biology be similar? Evolutionary conservation!! - genome (gene content, arrangement and sequence) - structure (gross and molecular anatomy) - function (physiology and molecular circuits)

51 Why would human and mouse biology be similar? Evolutionary conservation!! - Phenotypic differences are due to a finite set of key genes - Key means nodes in regulatory networks

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D.

Use of Gene Editing Technologies in Rodents. Carlisle P. Landel, Ph.D. Use of Gene Editing Technologies in Rodents Carlisle P. Landel, Ph.D. The Mouse as A Model Mammal Small, easy to maintain, fecund Well understood genetics Similarity to humans >90% Availability of inbred

More information

GENOME 371, Problem Set 6

GENOME 371, Problem Set 6 GENOME 371, Problem Set 6 1. S. pombe is a distant relative of baker s yeast (which you used in quiz section). Wild type S. pombe can grow on plates lacking tryptophan (-trp plates). A mutant has been

More information

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission

Transgenesis. Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission Transgenic Mice Transgenesis Stable integration of foreign DNA into host genome Foreign DNA is passed to progeny germline transmission integrates into all cells including sperm or egg Knockin mice DNA

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance

of heritable factor ). 1. The alternative versions of genes are called alleles. Chapter 9 Patterns of Inheritance Chapter 9 Biology and Society: Our Longest-Running Genetic Experiment: Dogs Patterns of Inheritance People have selected and mated dogs with preferred traits for more than 15,000 years. Over thousands

More information

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony

(i) A trp1 mutant cell took up a plasmid containing the wild type TRP1 gene, which allowed that cell to multiply and form a colony 1. S. pombe is a distant relative of baker s yeast (which you used in quiz section). Wild type S. pombe can grow on plates lacking tryptophan (-trp plates). A mutant has been isolated that cannot grow

More information

Lecture 17. Transgenics. Definition Overview Goals Production p , ,

Lecture 17. Transgenics. Definition Overview Goals Production p , , Lecture 17 Reading Lecture 17: p. 251-256, 260-261 & 264-266 Lecture 18: p. 258-264, 508-524 Transgenics Definition Overview Goals Production p.251-256, 260-261, 264-266 315 Definition A transgenic animal

More information

species- Mus musculus Engineering the mouse genome David Ornitz

species- Mus musculus Engineering the mouse genome David Ornitz species- Mus musculus Engineering the mouse genome David Ornitz How do we analyze gene function in mice? Gene addition (transgenic approach) Permits GOF, DN and knockdown experiments Ectopic (spatial or

More information

Exam 3 4/25/07. Total of 7 questions, 100 points.

Exam 3 4/25/07. Total of 7 questions, 100 points. Exam 3 4/25/07 BISC 4A P. Sengupta Total of 7 questions, 100 points. QUESTION 1. Circle the correct answer. Total of 40 points 4 points each. 1. Which of the following is typically attacked by the antibody-mediated

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

Linkage & Genetic Mapping in Eukaryotes. Ch. 6

Linkage & Genetic Mapping in Eukaryotes. Ch. 6 Linkage & Genetic Mapping in Eukaryotes Ch. 6 1 LINKAGE AND CROSSING OVER! In eukaryotic species, each linear chromosome contains a long piece of DNA A typical chromosome contains many hundred or even

More information

B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells. Taconic Webinar Prof. Dr.

B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells. Taconic Webinar Prof. Dr. B6 Albino A ++ Mutant Mice as Embryo Donors for Efficient Germline Transmission of B6 ES Cells Taconic Webinar 2014-05-14 Prof. Dr. Branko Zevnik A decade of gene targeting in B6 ES cells at TaconicArtemis

More information

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION

BIOLOGY 3201 UNIT 4 EVOLUTION CH MECHANISMS OF EVOLUTION BIOLOGY 3201 UNIT 4 EVOLUTION CH. 20 - MECHANISMS OF EVOLUTION POPULATION GENETICS AND HARDY WEINBERG PRINCIPLE Population genetics: this is a study of the genes in a population and how they may or may

More information

Student Learning Outcomes (SLOS) - Advanced Cell Biology

Student Learning Outcomes (SLOS) - Advanced Cell Biology Course objectives The main objective is to develop the ability to critically analyse and interpret the results of the scientific literature and to be able to apply this knowledge to afford new scientific

More information

Analysis of gene function

Analysis of gene function Genome 371, 22 February 2010, Lecture 12 Analysis of gene function Gene knockouts PHASE TWO: INTERPRETATION I THINK I FOUND A CORNER PIECE. 3 BILLION PIECES Analysis of a disease gene Gene knockout or

More information

Theoretical cloning project

Theoretical cloning project Theoretical cloning project Needed to get credits Make it up yourself, don't copy Possible to do in groups of 2-4 students If you need help or an idea, ask! If you have no idea what to clone, I can give

More information

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments

Figure 1: Testing the CIT: T.H. Morgan s Fruit Fly Mating Experiments I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

A) (5 points) As the starting step isolate genomic DNA from

A) (5 points) As the starting step isolate genomic DNA from GS Final Exam Spring 00 NAME. bub ts is a recessive temperature sensitive mutation in yeast. At º C bub ts cells grow normally, but at º C they die. Use the information below to clone the wild-type BUB

More information

B6 Albino Mouse Models

B6 Albino Mouse Models B6 Albino Mouse Models INTRODUCING TWO NEW B6 ALBINO MODELS ON THE C57BL/6NTac BACKGROUND FOR USE AS BLASTOCYST DONORS FOR B6 ES CELLS AND AS AN IMPROVED BACKGROUND FOR IMAGING OF B6 STRAINS: B6 ALBINO

More information

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms

Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms Genetics - Problem Drill 19: Dissection of Gene Function: Mutational Analysis of Model Organisms No. 1 of 10 1. The mouse gene knockout is based on. (A) Homologous recombination (B) Site-specific recombination

More information

Design and Construction of Recombinant Inbred Lines

Design and Construction of Recombinant Inbred Lines Chapter 3 Design and Construction of Recombinant Inbred Lines Daniel A. Pollard Abstract Recombinant inbred lines (RILs) are a collection of strains that can be used to map quantitative trait loci. Parent

More information

Unit 3: Sustainability and Interdependence

Unit 3: Sustainability and Interdependence Unit 3: Sustainability and Interdependence Sub-topic 3.2 Plant and Animal Breeding Page 1 of 17 On completion of this sub-topic I will be able to: understand that plant and animal breeding involves the

More information

7.03 Final Exam Review 12/19/2006

7.03 Final Exam Review 12/19/2006 7.03 Final Exam Review 12/19/2006 1. You have been studying eye color mutations in Drosophila, which normally have red eyes. White eyes is a recessive mutant trait that is caused by w, a mutant allele

More information

Mapping and Mapping Populations

Mapping and Mapping Populations Mapping and Mapping Populations Types of mapping populations F 2 o Two F 1 individuals are intermated Backcross o Cross of a recurrent parent to a F 1 Recombinant Inbred Lines (RILs; F 2 -derived lines)

More information

Human Molecular Genetics Assignment 3 (Week 3)

Human Molecular Genetics Assignment 3 (Week 3) Human Molecular Genetics Assignment 3 (Week 3) Q1. Which one of the following is an effect of a genetic mutation? a. Prevent the synthesis of a normal protein. b. Alters the function of the resulting protein

More information

HCS806 Summer 2010 Methods in Plant Biology: Breeding with Molecular Markers

HCS806 Summer 2010 Methods in Plant Biology: Breeding with Molecular Markers HCS806 Summer 2010 Methods in Plant Biology: Breeding with Molecular Markers Lecture 7. Populations The foundation of any crop improvement program is built on populations. This session will explore population

More information

POPULATION GENETICS. Evolution Lectures 4

POPULATION GENETICS. Evolution Lectures 4 POPULATION GENETICS Evolution Lectures 4 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

1 Genetic Strategies to Detect Genes Involved in Alcoholism and Alcohol Related Traits

1 Genetic Strategies to Detect Genes Involved in Alcoholism and Alcohol Related Traits 1 Genetic Strategies to Detect Genes Involved in Alcoholism and Alcohol Related Traits Danielle M. Dick, Ph.D., and Tatiana Foroud, Ph.D. Danielle M. Dick, Ph.D., is a postdoctoral fellow, and Tatiana

More information

BS 50 Genetics and Genomics Week of Oct 10

BS 50 Genetics and Genomics Week of Oct 10 BS 50 Genetics and Genomics Week of Oct 10 Additional Practice Problems for Section 1. Two purebreeding strains of mice are crossed to produce a mouse heterozygous for dominant and recessive alleles of

More information

Selection and breeding process of the crops. Breeding of stacked GM products and unintended effects

Selection and breeding process of the crops. Breeding of stacked GM products and unintended effects Selection and breeding process of the crops. Breeding of stacked GM products and unintended effects Critical steps in plant transformation Getting the gene into the plant genome Getting the plant cell

More information

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology

Mouse Engineering Technology. Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Mouse Engineering Technology Musculoskeletal Research Center 2016 Summer Educational Series David M. Ornitz Department of Developmental Biology Core service and new technologies Mouse ES core Discussions

More information

Observing Patterns In Inherited Traits

Observing Patterns In Inherited Traits Observing Patterns In Inherited Traits Ø Where Modern Genetics Started/ Gregor Mendel Ø Law of Segregation Ø Law of Independent Assortment Ø Non-Mendelian Inheritance Ø Complex Variations in Traits Genetics:

More information

GENETICS - CLUTCH CH.20 QUANTITATIVE GENETICS.

GENETICS - CLUTCH CH.20 QUANTITATIVE GENETICS. !! www.clutchprep.com CONCEPT: MATHMATICAL MEASRUMENTS Common statistical measurements are used in genetics to phenotypes The mean is an average of values - A population is all individuals within the group

More information

Stem Cel s Key Words:

Stem Cel s Key Words: Stem Cells Key Words: Embryonic stem cells, Adult stem cells, ips cells, self-renewal, differentiation, pluripotent, multipotent, Inner cell mass, Nuclear transfer (Therapeutic cloning), Feeder cells,

More information

Bart Williams, PhD Van Andel Research Center

Bart Williams, PhD Van Andel Research Center A History of Genome Editing in the Laboratory Implications for Translational Applications Bart Williams, PhD Van Andel Research Center Introduction by Matthew Denenberg, MD DeVos Childrens Hospital Disclosures:

More information

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012

Lecture 5: Genetic Variation and Inbreeding. September 7, 2012 Lecture 5: Genetic Variation and Inbreeding September 7, 01 Announcements I will be out of town Thursday Sept 0 through Sunday, Sept 4 No office hours Friday, Sept 1: Prof. Hawkins will give a guest lecture

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

Biology 163 Laboratory in Genetics Midterm 2, Nov. 14, Honor Pledge: I have neither given nor received any unauthorized help on this exam:

Biology 163 Laboratory in Genetics Midterm 2, Nov. 14, Honor Pledge: I have neither given nor received any unauthorized help on this exam: 1 Biology 163 Laboratory in Genetics Midterm 2, Nov. 14, 2005 Honor Pledge: I have neither given nor received any unauthorized help on this exam: Name Printed: ignature: 1. Normally you need to cross two

More information

7.03 Exam 3 Review GENE REGULATION

7.03 Exam 3 Review GENE REGULATION GENE REGULATION Example Problem You are studying the regulation of a yeast enzyme Cal1, whose activity you can measure directly. Expression of the gene encoding Cal1 is inhibited by the presence of calcium

More information

Lecture 8: Transgenic Model Systems and RNAi

Lecture 8: Transgenic Model Systems and RNAi Lecture 8: Transgenic Model Systems and RNAi I. Model systems 1. Caenorhabditis elegans Caenorhabditis elegans is a microscopic (~1 mm) nematode (roundworm) that normally lives in soil. It has become one

More information

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions.

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No.

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: )

Chapter 5 Genetic Analysis in Cell Biology. (textbook: Molecular Cell Biology 6 ed, Lodish section: ) Chapter 5 Genetic Analysis in Cell Biology (textbook: Molecular Cell Biology 6 ed, Lodish section: 5.1+5.4-5.5) Understanding gene function: relating function, location, and structure of gene products

More information

Biol 432L Midterm Oct 6, 2008 Name: 1. Midterm 1, Answer Key Oct. 26, 2009

Biol 432L Midterm Oct 6, 2008 Name: 1. Midterm 1, Answer Key Oct. 26, 2009 Biol 432L Midterm Oct 6, 2008 Name: 1 Midterm 1, Answer Key Oct. 26, 2009 Honor Pledge: I have neither given nor received any unauthorized help on this exam: Name Printed: Signature: 1a. (2 pts) Imagine

More information

CRISPR Applications: Mouse

CRISPR Applications: Mouse CRISPR Applications: Mouse Lin He UC-Berkeley Advantages of mouse as a model organism similar to human Can be genetically manipulated Isogenic and congenic genetic background An accelerated lifespan. Well-characterized

More information

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment.

John Gurdon was testing the hypothesis of genomic equivalence or that when cells divide they retain a full genomic compliment. 1. (15 pts) John Gurdon won the 2012 Nobel Prize in Physiology or Medicine for work he did in the 1960 s. What was the major developmental hypothesis he set out to test? What techniques did he development

More information

Statistical Methods for Quantitative Trait Loci (QTL) Mapping

Statistical Methods for Quantitative Trait Loci (QTL) Mapping Statistical Methods for Quantitative Trait Loci (QTL) Mapping Lectures 4 Oct 10, 011 CSE 57 Computational Biology, Fall 011 Instructor: Su-In Lee TA: Christopher Miles Monday & Wednesday 1:00-1:0 Johnson

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

Chapters 15,16,17. Mandy Leber RVT, RLATG Training and Outreach Coordinator

Chapters 15,16,17. Mandy Leber RVT, RLATG Training and Outreach Coordinator Chapters 15,16,17 Mandy Leber RVT, RLATG Training and Outreach Coordinator 17.9 In relation to rodents, what does genetic engineering mean? a. Genes are specified in an engineered design. b. Rodents were

More information

LS4 final exam. Problem based, similar in style and length to the midterm. Articles: just the information covered in class

LS4 final exam. Problem based, similar in style and length to the midterm. Articles: just the information covered in class LS4 final exam Problem based, similar in style and length to the midterm Articles: just the information covered in class Complementation and recombination rii and others Neurospora haploid spores, heterokaryon,

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

A Primer of Ecological Genetics

A Primer of Ecological Genetics A Primer of Ecological Genetics Jeffrey K. Conner Michigan State University Daniel L. Hartl Harvard University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Contents Preface xi Acronyms,

More information

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group.

This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. Biology 160 NAME: Reading Guide 12: Population Dynamics, Humans, Part II This is DUE: Tuesday, March 1, 2011 Come prepared to share your findings with your group. *As before, please turn in only the Critical

More information

Lecture 5: Inbreeding and Allozymes. Sept 1, 2006

Lecture 5: Inbreeding and Allozymes. Sept 1, 2006 Lecture 5: Inbreeding and Allozymes Sept 1, 2006 Last Time Tandem repeats and recombination Organellar DNA Introduction to DNA in populations Organelle Inheritance Organelles can be excluded from one parent's

More information

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits 13.1 How Do Alleles Contribute to Traits? Blending inheritance 19th century idea Failed to explain

More information

Chapter 3: Evolutionary genetics of natural populations

Chapter 3: Evolutionary genetics of natural populations Chapter 3: Evolutionary genetics of natural populations What is Evolution? Change in the frequency of an allele within a population Evolution acts on DIVERSITY to cause adaptive change Ex. Light vs. Dark

More information

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology.

1/21/ Exploring Mendelian Genetics. What is the principle of independent assortment? Independent Assortment. Biology. Biology 1 of 31 11-3 Exploring Mendelian Exploring Genetics Mendelian Genetics 2 of 31 What is the principle of independent assortment? 3 of 31 1 The principle of independent assortment states that genes

More information

POPULATION GENETICS. Evolution Lectures 1

POPULATION GENETICS. Evolution Lectures 1 POPULATION GENETICS Evolution Lectures 1 POPULATION GENETICS The study of the rules governing the maintenance and transmission of genetic variation in natural populations. Population: A freely interbreeding

More information

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko Chapter 11 How Genes Are Controlled PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and

More information

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development

Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development Biology 4361 Developmental Biology Lecture 4. The Genetic Core of Development The only way to get from genotype to phenotype is through developmental processes. - Remember the analogy that the zygote contains

More information

Topics in Molecular Biology ( ) 3 rd Lecture Hall, Room 504 Thursday 1pm-2:50pm

Topics in Molecular Biology ( ) 3 rd Lecture Hall, Room 504 Thursday 1pm-2:50pm Topics in Molecular Biology (01139620) 3 rd Lecture Hall, Room 504 Thursday 1pm-2:50pm Instructor: Ming Tian Biology Building 633 E-mail: mingtian@pku.edu.cn Phone: 6275-6459 Office hours: Monday 1pm-4pm

More information

Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Patterns of Inheritance.

Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Early Ideas of Heredity. Patterns of Inheritance. Patterns of Inheritance Chapter 12 Before the 20 th century, 2 concepts were the basis for ideas about heredity: -heredity occurs within species -traits are transmitted directly from parent to offspring

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Exam Questions from Exam 3 Eukaryotic Gene Regulation, Genome Modifications in Eukaryotes, Population Genetics

Exam Questions from Exam 3 Eukaryotic Gene Regulation, Genome Modifications in Eukaryotes, Population Genetics Exam Questions from Exam 3 Eukaryotic Gene Regulation, Genome Modifications in Eukaryotes, Population Genetics 1. Consider an autosomal recessive trait that occurs at a frequency of 10-6 in a specific

More information

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution:

Exam 1, Fall 2012 Grade Summary. Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average Grade Distribution: Exam 1, Fall 2012 Grade Summary Points: Mean 95.3 Median 93 Std. Dev 8.7 Max 116 Min 83 Percentage: Average 79.4 Grade Distribution: Name: BIOL 464/GEN 535 Population Genetics Fall 2012 Test # 1, 09/26/2012

More information

7.03 Final Exam. TA: Alex Bagley Alice Chi Dave Harris Max Juchheim Doug Mills Rishi Puram Bethany Redding Nate Young

7.03 Final Exam. TA: Alex Bagley Alice Chi Dave Harris Max Juchheim Doug Mills Rishi Puram Bethany Redding Nate Young 7.03 Final Exam Name: TA: Alex Bagley Alice Chi Dave Harris Max Juchheim Doug Mills Rishi Puram Bethany Redding Nate Young Section time: There are 13 pages including this cover page Please write your name

More information

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003

Genome manipulation by homologous recombination in Drosophila Xiaolin Bi and Yikang S. Rong Date received (in revised form): 9th May 2003 Xiaolin Bi is a post doctoral research fellow at the Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA. Yikang S. Rong is the principal

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

TRANSGENIC TECHNOLOGIES: Gene-targeting

TRANSGENIC TECHNOLOGIES: Gene-targeting TRANSGENIC TECHNOLOGIES: Gene-targeting Reverse Genetics Wild-type Bmp7 -/- Forward Genetics Phenotype Gene or Mutations First Molecular Analysis Second Reverse Genetics Gene Phenotype or Molecular Analysis

More information

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons)

Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics. BIT 220 End of Chapter 22 (Snustad/Simmons) Biotech Applications Nucleic acid therapeutics, Antibiotics, Transgenics BIT 220 End of Chapter 22 (Snustad/Simmons) Nucleic Acids as Therapeutic Agents Many diseases (cancer, inflammatory diseases) from

More information

1. You are studying regulation of the yeast enzyme glutamine synthetase (GS), which

1. You are studying regulation of the yeast enzyme glutamine synthetase (GS), which Problem set questions from Exam 3 Eukaryotic Gene Regulation, Genome Modifications in Eukaryotes, Population Genetics Characterizing novel pathways that control the expression of yeast genes 1. You are

More information

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce

Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce Dr. Bertolotti Essential Question: Population- group of individuals of the SAME species that live in the same area Species- a group of similar organisms that can breed and produce FERTILE offspring Allele-

More information

Exam 1 Answers Biology 210 Sept. 20, 2006

Exam 1 Answers Biology 210 Sept. 20, 2006 Exam Answers Biology 20 Sept. 20, 2006 Name: Section:. (5 points) Circle the answer that gives the maximum number of different alleles that might exist for any one locus in a normal mammalian cell. A.

More information

PopGen1: Introduction to population genetics

PopGen1: Introduction to population genetics PopGen1: Introduction to population genetics Introduction MICROEVOLUTION is the term used to describe the dynamics of evolutionary change in populations and species over time. The discipline devoted to

More information

Genetic dissection of complex traits, crop improvement through markerassisted selection, and genomic selection

Genetic dissection of complex traits, crop improvement through markerassisted selection, and genomic selection Genetic dissection of complex traits, crop improvement through markerassisted selection, and genomic selection Awais Khan Adaptation and Abiotic Stress Genetics, Potato and sweetpotato International Potato

More information

selective breeding of a novel outbred mouse stock Matsumoto, Yuki Doctor of Philosophy Department of Genetics School of Life Science SOKENDAI

selective breeding of a novel outbred mouse stock Matsumoto, Yuki Doctor of Philosophy Department of Genetics School of Life Science SOKENDAI Identification of genomic regions associated with tameness using selective breeding of a novel outbred mouse stock Matsumoto, Yuki Doctor of Philosophy Department of Genetics School of Life Science SOKENDAI

More information

LECTURE 1 : GENETICS

LECTURE 1 : GENETICS LECTURE 1 : GENETICS Introduction to Genetics and heredity Gregor Mendel Genetic terminology (glossary) Monohybrid crosses Patterns of inheritance Dihybrid crosses Test cross Introduction to Genetics GENETICS

More information

Exam Plant Genetics CSS/Hort 430/530

Exam Plant Genetics CSS/Hort 430/530 Exam 1 2010 Plant Genetics CSS/Hort 430/530 Barley can produce seed which is hulled or hull-less. This trait is determined by one gene, hulled being the dominant phenotype and hull-less being the recessive.

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations What you need to know How and reproduction each produce genetic. The conditions for equilibrium. How to use the Hardy-Weinberg equation to calculate allelic and to test whether

More information

Inheritance Biology. Unit Map. Unit

Inheritance Biology. Unit Map. Unit Unit 8 Unit Map 8.A Mendelian principles 482 8.B Concept of gene 483 8.C Extension of Mendelian principles 485 8.D Gene mapping methods 495 8.E Extra chromosomal inheritance 501 8.F Microbial genetics

More information

Genetics - Fall 2004 Massachusetts Institute of Technology Professor Chris Kaiser Professor Gerry Fink Professor Leona Samson

Genetics - Fall 2004 Massachusetts Institute of Technology Professor Chris Kaiser Professor Gerry Fink Professor Leona Samson 7.03 - Genetics - Fall 2004 Massachusetts Institute of Technology Professor Chris Kaiser Professor Gerry Fink Professor Leona Samson 1 1. Consider an autosomal recessive trait that occurs at a frequency

More information

MOD1 DNA ENGINEERING. Day 6. Why you owe Your Life to Homologous Recombina9on. Engelward, Fall Rad51 / Normal

MOD1 DNA ENGINEERING. Day 6. Why you owe Your Life to Homologous Recombina9on. Engelward, Fall Rad51 / Normal MOD1 DNA ENGINEERING Engelward, Fall 2009 Lecture 1: Intro to importance of HR Polymerases & PCR Lecture 2: How HR works Overview of experiments & discussion of controls (single digests) Lecture 3: Why

More information

Stocks, Breeding Records, and Tank Tags

Stocks, Breeding Records, and Tank Tags Stocks, Breeding Records, and Tank Tags Good record keeping is essential. We can trace most of our stocks all the way back to founding lines at the University of Oregon (c. 1980). We aim to preserve this

More information

KEY Reproductive cloning Therapeutic cloning

KEY Reproductive cloning Therapeutic cloning 1. (20 pts) Define Reproductive and Therapeutic cloning. Make sure your descriptions clearly distinguish the critical differences between them. Describe an example of each. Reproductive cloning refers

More information

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types

Lecture 12. Genomics. Mapping. Definition Species sequencing ESTs. Why? Types of mapping Markers p & Types Lecture 12 Reading Lecture 12: p. 335-338, 346-353 Lecture 13: p. 358-371 Genomics Definition Species sequencing ESTs Mapping Why? Types of mapping Markers p.335-338 & 346-353 Types 222 omics Interpreting

More information

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC

Population Genetics. If we closely examine the individuals of a population, there is almost always PHENOTYPIC 1 Population Genetics How Much Genetic Variation exists in Natural Populations? Phenotypic Variation If we closely examine the individuals of a population, there is almost always PHENOTYPIC VARIATION -

More information

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Genetics Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Genetics Test Multiple Choice Identify the choice that best completes the statement or answers the question. 41. Situations in which one allele for a gene is not completely dominant over another allele

More information

Chapter 14. Mendel and the Gene Idea

Chapter 14. Mendel and the Gene Idea Chapter 14 Mendel and the Gene Idea Gregor Mendel Gregor Mendel documented a particular mechanism for inheritance. Mendel developed his theory of inheritance several decades before chromosomes were observed

More information

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium Gregor Mendel Hardy Weinberg Equilibrium Lectures 4-11: Mechanisms of Evolution (Microevolution) Hardy Weinberg Principle (Mendelian Inheritance) Genetic Drift Mutation Sex: Recombination and Random Mating

More information

Breeding Strategies for Maintaining Colonies of Laboratory Mice

Breeding Strategies for Maintaining Colonies of Laboratory Mice Breeding Strategies for Maintaining Colonies of Laboratory Mice A Jackson Laboratory Resource Manual Tis manual describes breeding strategies and techniques for maintaining colonies of laboratory mice.

More information

Mapping Toxicity Traits using Diversity Outbred Mice. Daniel M. Gatti, Ph.D. HESI Genomics Genetically Diverse Mouse Models Nov.

Mapping Toxicity Traits using Diversity Outbred Mice. Daniel M. Gatti, Ph.D. HESI Genomics Genetically Diverse Mouse Models Nov. Mapping Toxicity Traits using Diversity Outbred Mice Daniel M. Gatti, Ph.D. HESI Genomics Genetically Diverse Mouse Models Nov. 28, 2012 The Diversity Outbred (DO) mice are a mapping population Ideal for

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

Population Dynamics. Population: all the individuals of a species that live together in an area

Population Dynamics. Population: all the individuals of a species that live together in an area Population Dynamics Population Dynamics Population: all the individuals of a species that live together in an area Demography: the statistical study of populations, make predictions about how a population

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 8: Origins of Genetic Variation Notes Meiosis is reduction division. The main role of meiosis is production of haploid gametes as cells produced by meiosis have half the

More information

Chapter 20 Biotechnology and Animal Breeding

Chapter 20 Biotechnology and Animal Breeding Source: NILGS (Japan) I. Reproductive Technologies II. Molecular Technologies Learning Objective: To learn about recent biotechnologies that are currently available and are likely to affect animal breeding.

More information

Why do we need statistics to study genetics and evolution?

Why do we need statistics to study genetics and evolution? Why do we need statistics to study genetics and evolution? 1. Mapping traits to the genome [Linkage maps (incl. QTLs), LOD] 2. Quantifying genetic basis of complex traits [Concordance, heritability] 3.

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Chapter 14: Mendel and the Gene Idea

Chapter 14: Mendel and the Gene Idea Chapter 4: Mendel and the Gene Idea. The Experiments of Gregor Mendel 2. Beyond Mendelian Genetics 3. Human Genetics . The Experiments of Gregor Mendel Chapter Reading pp. 268-276 TECHNIQUE Parental generation

More information