principles of innate and adaptive immunity

Size: px
Start display at page:

Download "principles of innate and adaptive immunity"

Transcription

1 Paper No.: 10: Module :01: Development Team Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer: Content Reviewer: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Prof. D.K. Singh Department of Zoology, University of Delhi Prof. Anju Srivastava Department of Zoology, University of Delhi Dr Ravi Toteja Acharya Narendra Dev College, University of Delhi Prof. Sukhmahendra Singh Banaras Hindu University 1

2 Description of Module Subject Name Paper Name Module Name/Title Module ID Keywords Zool 010: Overview of Immune system M01 Components of the immune system,principles of innate and adaptive immunity Innate immune response, Adaptive immune response, Active immunity, Passive immunity, Inflammation Why have an immune system in the first place? An organism's integrity is under daily threat from external sources. The integrity of the individual must be protected from challenges which can be grouped into five main categories. Competition for survival. We live on an over populated world. Not just humans but many species within their own spatial niches are competing for limited space and food. To protect against assimilation. The constant battle involves avoiding cell fusion. Single cell organisms can be readily fused together. A more aggressive species or subspecies may attempt to "assimilate" non-aggressive or weaker cells into the more aggressive population. In this way the aggressive cell population reduces the competition for food space and light and may obtain added advantages from receiving some of the weaker population's DNA. At the single cell level, fusion can be accomplished between widely different species and the remnants of this cell fusion acceptance can be observed in humans. Siamese twins are the result of partial fusion of embryos. Frequently, one twin becomes dominant over the other. This twin will try to assimilate the other (unconsciously of course) and will thrive while the other becomes steadily weaker. Extreme examples of this dominance of one Siamese twin over another may be observed in the total assimilation of one twin while still within the womb. The only clue to this assimilation may be the Fossilized remnants of weaker twin revealed during X-ray of the survivor. To protect against organ damage and aid repair. Penetration of the body by a sharp rock. An extremity lost during a fight. A tissue succumbing to attack by bacteria. These, and other destroyers of tissue, can endanger the welfare of an individual. To protect against Parasitism. A parasite is an organism that lives on another organism and depends on it entirely for nourishment and protection. Within this definition we can include macroscopic parasites such as tape worms and microscopic 2

3 parasites" (pathogens). Every species is the potential host for numerous parasites. The parasite may feed on the host to exhaustion and ultimate death, or the parasite may remain almost unnoticed. Regardless, parasites are a threat to the host's integrity and welfare. At the very least they compromise the host by taking nourishment intended for the host's cells. At worst they hijack the host's body functions for the use of the parasite leading ultimately to death of the host. Microorganisms are perhaps the greatest threat to humans. While some are benign others have the ability to cause disease (dis-ease) in other words they have pathogenicity, they are pathogenic organisms. Invasion of the host is an infection and if transfer from host to host is possible, then the pathogen is capable of infectious disease and the initiation of an epidemic within a host population. Regulation of integrity. Multi-celled organisms develop from a highly regulated division of cells. Variants or mutants may occur during duplication of cells in the development and maintenance of the individual. These variant cells may be the result of viral contamination, chemical modification, or even the imperfect cell division mechanisms and duplication of DNA. At best the variant cells are benign, they simply take up space and nutrients. At worst, the cells are a threat to the host integrity, proliferating out of control, threatening to use up all the nutrients and resources available. They are neoplasms or tumors. In this sense, the variant cells are very much parasites except the danger comes from the individual's own cells rather than a different, invading species. Regardless of being benign or cancerous, the variant cells are a drawback compromising the optimum functioning of the individual. THEY MUST BE REMOVED. Source: The Germ Theory of Disease Louis Pasteur's main contributions to microbiology and medicine were instituting changes in hospital/medical practices to minimize the spread of disease by microbes or germs. Discovering that weak forms of disease could be used as an immunization against stronger forms and that rabies was transmitted by viruses too small to be seen under the microscopes of the time introducing the medical world to the concept of viruses. Biography of Louis Pasteur Louis Pasteur was born in Dole France, married to Marie Laurent and had five children. Three of his children died of typhoid fever, maybe leading to Pasteur's drive to save people from disease. He graduated in 1842 from Besancon College Royal de la Franche with honors in physics, mathematics, Latin, and drawing. Louis Pasteur later 3

4 attended Ecole Normaleto study physics and chemistry, specializing in crystals. In his early research Pasteur worked with the wine growers of France, helping with the fermentation process to develop a way to pasteurize and kill germs. He was granted U.S. patent 135,245 for "Improvement in Brewing Beer and Ale Pasteurization." Pasteur then worked within the textile industry finding a cure for a disease affecting silk worms. He also found cures for chicken cholera, anthrax and rabies. The Pasteur Institute: The Pasteur Institute was opened in During Louis Pasteur's lifetime it was not easy for him to convince others of his ideas, controversial in their time but considered absolutely correct today. Pasteur fought to convince surgeons that germs existed and carried diseases, and dirty instruments and hands spread germs and therefore disease. Pasteur's pasteurization process killed germs and prevented the spread of disease. Source: History of Time Line 1718 Lady Mary Wortley Montagu, the wife of the British ambassador to Constantinople, observed the positive effects of variolation on the native population and had the technique performed on her own children Edward Jenner, Smallpox vaccination 1862 Ernst Haeckel, Recognition of phagocytosis 1877 Paul Erlich, recognition of mast cells 1879 Louis Pasteur, Attenuated chicken cholera vaccine development 1883 Elie Metchnikoff Cellular theory of vaccination 1885 Louis Pasteur, Rabies vaccination development 1888 Pierre Roux & Alexandre Yersin, Bacterial toxins 1888 George Nuttall, Bactericidal action of blood 1891 Robert Koch, Delayed type hypersensitivity 1894 Richard Pfeiffer, Bacteriolysis 1895 Jules Bordet, Complement and antibody activity in bacteriolysis 1900 Paul Erlich, Antibody formation theory 1901 Karl Landsteiner, A, B and O blood groupings Carl Jensen & Leo Loeb, Transplantable tumors 1902 Paul Portier & Charles Richet, Anaphylaxis 1903 Almroth Wright & Stewart Douglas, Opsonization reactions 1906 Clemens von Pirquet, coined the word allergy 1907 Svante Arrhenius, coined the term immunochemistry 1910 Emil von Dungern, & Ludwik Hirszfeld, Inheritance of ABO blood groups 1910 Peyton Rous, Viral immunology theory 4

5 1914 Clarence Little, Genetics theory of tumor transplantation Leonell Strong & Clarence Little, Inbred mouse strains 1917 Karl Landsteiner, Haptens 1921 Carl Prausnitz & Heinz Kustner, Cutaneous reactions 1924 L Aschoff, Reticuloendothelial system 1926 Lloyd Felton & GH Bailey, Isolation of pure antibody preparation John Marrack, Antigen-antibody binding hypothesis 1936 Peter Gorer, Identification of the H-2 antigen in mice 1940 Karl Lansteiner & Alexander Weiner, Identification of the Rh antigens 1941 Albert Coons, Immunofluorescence technique 1942 Jules Freund & Katherine McDermott, Adjuvants 1942 Karl Landsteiner & Merill Chase, Cellular transfer of sensitivity in guinea pigs (anaphylaxis) 1944 Peter Medwar, Immunological hypothesis of allograft rejection 1948 Astrid Fagraeus, Demonstration of antibody production in plasma B cells 1948 George Snell, Congenic mouse lines 1949 Macfarlane Burnet & Frank Fenner, Immunological tolerance hypothesis 1950 Richard Gershon and K Kondo, Discovery of suppressor T cells 1952 Ogden and Bruton, discovery of agammagobulinemia antibody immunodeficiency 1953 Morton Simonsen and WJ Dempster, Graft-versus-host reaction 1953 James Riley & Geoffrey West, Discovery of histamine in mast cells 1953 Rupert Billingham, Leslie Brent, Peter Medwar, & Milan Hasek, Immunological tolerance hypothesis Niels Jerne, David Talmage, Macfarlane Burnet, Clonal selection theory 1957 Ernest Witebsky et al., Induction of autoimmunity in animals 1957 Alick Isaacs & Jean Lindemann, Discovery of interferon (cytokine) Jean Dausset et al., Human leukocyte antigens Rodney Porter et al., Discovery of antibody structure 1959 James Gowans, Lymphocyte circulation Jaques Miller et al., Discovery of thymus involvement in cellular immunity Noel Warner et al., Distinction of cellular and humoral immune responses 1963 JaquesOudin et al., antibody idiotypes Anthony Davis et al., T and B cell cooperation in immune response 1965 Thomas Tomasi et al., Secretory immunoglobulin antibodies 1967 Kimishige Ishizaka et al., Identification of IgE as the reaginic antibody 1971 Donald Bailey, Recombinent inbred mouse strains 1974 Rolf Zinkernagel& Peter Doherty, MHC restriction 1975 Kohler and Milstein, Monoclonal antibodies used in genetic analysis 1984 Robert Good, Failed treatment of severe combined immunodeficiency (SCID, David 5

6 the bubble boy) by bone marrow grafting Tonegawa, Hood et al., Identification of immunoglobulin genes Leroy Hood et al., Identification of genes for the T cell receptor 1990 Yamamoto et al., Molecular differences between the genes for blood groups O and A and between those for A and B 1990 NIH team, Gene therapy for SCID using cultured T cells NIH team, Treatment of SCID using genetically altered umbilical cord cells onwards Rapid identification of genes for immune cells, antibodies, cytokines and other immunological structures Identification of genes for the T cell receptor 1986 Hepatitis B vaccine produced by genetic engineering 1986 Th1 vs Th2 model of T helper cell function (Timothy Mosmann) 1988 Discovery of biochemical initiators of T-cell activation: CD4- and CD8- p56lck complexes (Christopher E. Rudd) 1990 Gene therapy for SCID 1994 'Danger' model of immunological tolerance (Polly Matzinger) 1995 Regulatory T cells (Shimon Sakaguchi) Identification of Toll-like receptors 2001 Discovery of FOXP3 - the gene directing regulatory T cell development 2005 Development of human papillomavirus vaccine (Ian Frazer) Source: Information provided by: Theories of Paul Ehrlich According to Ehrlich s Side Chain Theory, an antigen binds to a side chain receptor (Nutrient R, ingested via eating) and results in release of the side chain. This induces the cell to produce and release more side chains of the same specificity. This is a selective theory because the side-chain (antibody) repertoire exists independently of exposure to antigen the antigen simply binds to particular side chains and stimulates their production. Karl Landsteiner Landsteiner modified antigens into structures that had never existed before, and found they all induced antibody production. Researchers wondered why people would have antibodies for non-existent antigens, and how this specificity could occur with a limited number of genes. Thus, selective theories lost favor. Linus Pauling

7 Linus Pauling spearheaded instructional theories, which proposed that antigens encountered antibody templates. These antibody templates would wrap around the antigen, forming a complementary molecular which would neutralize similar antigen molecules in the future. While these theories explained specificity and diversity, they did not explain: how the body recognized self from non-self, as a blank template would be blind; memory, since subsequent responses to a particular antigen are exponentially higher and faster than in the initial encounter. Burnett Burnett s Clonal Selection Theory assumes that there are certain cells dedicated to making antibody, and that this is where antibody diversity is generated, stored and expressed. In simple terms: Every cell in this population makes a single kind of antibody with its own unique antigen specificity. The antibody the cell makes is determined randomly, completely independent of the antigenic universe. The cell displays a copy of the antibody it makes on its cell surface.any cell making antibody reactive with self is eliminated or silenced. Source: Interesting Immune system Facts The first layer of our body is the skin and the mucus membrane acts as the physical barrier to the harmful organisms and substances. The second protective layer is the 'innate immune system'. It acts as a short-term non- specific immune response. If this first and second protective barrier is crossed by the microbes, they encounter the third and more active immune response. When the immune system attacks a harmless substance or chemical in the body, it leads to an allergic reaction. There are four phases of an immune response: recognition, amplification of defense, attack and suppression. The environment plays an important role in affecting our immune response. Toxic substances, air pollution, pesticides and second hand cigarette smoke affects the defense system of our body. It is very important to get your beauty sleep for at least 8 hours as under 5 hours of sleep can significantly depress the immune functions. The body has over 50 million white blood cells that work to protect the body's defense system. One may lose five billion WBC's when donating blood and still be left with enough to fight a full fledged immune response. CD8 and catecholamine cells are severely affected by psychological stress. If their normal levels are altered, it may suppress the immune system making the body prone to infections. 7

8 Dieting reduces the number of killer cells, which leads to a weaker immune system. Pumping excessive iron in the gym makes the body produce more cortisol and adrenaline. These hormones temporarily impair the immune function. It is great way to overcome stress and fatigue by regular massages. But these beauty massages also help increase the number and aggressiveness of the natural killer cells and protective antibodies. This boosts the immune system to fight the invading bodies more efficiently. Too much of anything is always harmful. Similarly, some sunlight helps the body produce vitamin D and too much sunlight suppresses the immune system. Quit smoking! You can build your weak immune system within a month of quitting. There is increase in immune cell activity and cortisol, that is a stress hormone. Lymph nodes, the most important defense mechanisms of the body are not found in the feet! Laughter is the best medicine. This is not just an old saying but laughter induces a proactive immune response that leads to a healthy body. Well, these are a few interesting immune system facts. Our body has a defense mechanism that is stronger, more organized and more efficient than the strongest armies in the world. In order to keep your body's defense system impregnable, pump your body with vitamins and minerals following a healthy diet. Exercise regularly and keep away from tobacco, alcohol and narcotics. Stay stress-free and keep laughing for a stronger immune system. Source: Evolution of Immune Response The development of immunity in major animal groups Because the immune system is composed of cells and tissues that do not lend themselves to fossilization, it is impossible to trace the evolution of immunity from the paleontological record. But, because all animals exhibit some general ability to recognize self and to repel foreign substances, it is possible to study the immune capacity of living animals and, based on the relative positions of these animals in the evolutionary tree, to extrapolate a reasonable evolutionary history of the immune system. Immune capacity among invertebrates From the lowliest protozoans to the higher marine tunicates, invertebrates have means of distinguishing self components from nonself components. Sponges from one colony will reject tissue grafts from a different colony but will accept grafts from their own. When tissue grafts are made in animals higher up the evolutionary tree between individual annelid worms or starfish, for example the foreign tissue is commonly invaded by phagocytic cells (cells that engulf and destroy foreign material) and cells resembling 8

9 lymphocytes (white blood cells of the immune system), and it is destroyed. Yet tissues grafted from one part of the body to another on the same individual adhere and heal readily and remain healthy. So it seems that something akin to cellular immunity is present at this level of evolution. Insects engulf and eliminate foreign invaders through the process of phagocytosis ( cellular eating ). They have factors present in their circulatory fluids that can bind to foreign cells and cause clumping, or agglutination, of a number of these cells, an event that facilitates phagocytosis. Insects also seem to acquire immunity to infectious agents. Immune capacity among vertebrates The most sophisticated immune systems are those of the vertebrates. Recognizable lymphocytes and immunoglobulins (Ig; also called antibodies) appear only in these organisms. The most primitive living vertebrates the jawless fishes (hagfish and lampreys) do not have lymphoid tissues corresponding to a spleen or a thymus, and their immune responses, although demonstrable, are very weak and sluggish. Farther up the evolutionary tree, at the level of the cartilaginous fishes (sharks and rays) and the bony fishes, a thymus and a spleen are present, as are immunoglobulins, although only those immunoglobulins of the IgM class are detectable. Fish lack specialized lymph nodes, but they do have clusters of lymphocytes in the gut that may serve an analogous purpose. It is not until the level of the terrestrial vertebrates amphibians, reptiles, birds, and mammals that a complete immune system with thymus, spleen, bone marrow, and lymph nodes is present and IgM and IgG antibodies are made. Antibodies of the IgA class are found only in birds and mammals, and IgE antibodies are confined to mammals. So it appears that the most primitive devices for producing specific, acquired immunity gradually diversified to meet the new environmental hazards as animals moved out of the sea onto the land. The evolution of the complement system (a group of proteins involved in immune responses) may have occurred faster than that of the immunoglobulin system. The jawless fishes have complement components corresponding only to the later-acting (i.e., cytolytic, or cell-killing) aspects of complement function, but all higher vertebrates have components similar to the complete complement system of mammals. The fact that the complement system has been so well conserved during evolution implies not only that it has been of great biological value but also that complement and immunoglobulins have interacted throughout the evolution of the immune system in higher vertebrates. (For more information on the complement system, see Antibody-mediated immune mechanisms.) Source: Evolution-of-the-immune-system 9

10 Glossary Active Immune Response: usually long-lasting immunity that is acquired through the production of antibodies and memory T cells within the organism in response to the presence of antigens. Adaptive Immunity: also called the acquired immune system, this component of the immune system comprises white blood cells, particularly lymphocytes. When it is presented with a new microbe or vaccine, it may take days or weeks to respond or adapt, but the resultant improved immune readiness, or memory, is sustained for long periods (years). Antigen: a substance which reacts with antibody. Immunogen: an agent which evokes an immune response. Inflammation:A buildup of fluid and cells that occurs as the immune system fights a hostile invader. Innate Immunity: component of the immune system that consists of a set of genetically encoded responses to pathogens and does not change or adapt during the lifetime of the organism. Innate immunity involves quickly mobilized defenses triggered by receptors that recognize a broad spectrum of microbes; in contrast to adaptive immunity, it does not acquire memory for an improved response during a second exposure to infection. Passive Immune Response: immunity acquired by the transfer of antibodies (as by injection of serum from an individual with active immunity). Pasteurization: a process by which harmful microbes inperishable food products are destroyed by heat, without destroying the food. Phagocytosis: the process of engulfing and consuming foreign material, such as microorganisms. Variolation: a practice of applying powdered smallpox "crusts" and inserting them with a pin or poking device into the skin. Suggested Readings Richards A. Goldsby, Thomas J. Kindt and Barbara A. Osborne (2009), 10

11 Kuby 6 th Edition. W.H. Freeman and Company. Fahim Khan (2009) The Elements of, Pearson Education. WebLinks

Chapter 3 The Immune System

Chapter 3 The Immune System Chapter 3 The Immune System Why is the Immune System Important? Why is the Immune System Relevant to HIV? T Lymphocyte Infected by HIV Brief History of Immunology Immunity- Observation reported in 430

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 17 Adaptive Immunity: Specific Defenses of the Host The Adaptive Immune System Adaptive immunity:

More information

Immunology: An Overview

Immunology: An Overview Immunology: An Overview Definitions Law. Exemption from a service, obligation, or duty; Freedom from liability to taxation, jurisdiction, etc.; Privilege granted to an individual or a corporation conferring

More information

ANTIBODIES. Agents of Immunity

ANTIBODIES. Agents of Immunity ANTIBODIES Agents of Immunity - Antibodies are: The Organization What are they? Protective agents of the immune system Neutralize foreign agents called antigens Essential part of the Adaptive Immune System

More information

OpenStax-CNX module: m Antibodies * OpenStax. Abstract

OpenStax-CNX module: m Antibodies * OpenStax. Abstract OpenStax-CNX module: m44823 1 Antibodies * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able to:

More information

Introduction and Overview of Immunology

Introduction and Overview of Immunology Introduction and Overview of Immunology Immunology Immunology is the study of mechanisms that humans and other animals use to defend their bodies from invading organisms or foreign macromolecules and their

More information

THE FIRST OBSERVATIONS

THE FIRST OBSERVATIONS THE FIRST OBSERVATIONS ROBERT HOOK FIRST TO SEE CELLS WHILE OBSERVING A THIN SLICE OF CORK MARKED THE BEGINNING OF THE CELL THEORY: THEORY THAT ALL LIVING THINGS ARE COMPOSED OF CELLS ANTON VAN LEEUWENHOEK

More information

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology

Humoral Immune Response. Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Humoral Immune Response Dr. Iman Hussein Shehata Professor of Medical Microbiology and Immunology Intended Learning Outcomes By the end of this lesson the student is expected to: 1-Decribe the sequence

More information

Blood Physiology. Blood Physiology. Dr. Rodolfo T. Rafael. Agglutination Hemolysis Immunology

Blood Physiology. Blood Physiology. Dr. Rodolfo T. Rafael. Agglutination Hemolysis Immunology Blood Physiology Dr. Rodolfo T. Rafael 1 Blood Physiology Agglutination Hemolysis Immunology 2 1 Agglutination is an antigen- antibody reaction Blood clumping of red blood cells Blood Typing 3 BLOOD TYPING

More information

Chapter 3. Clonal selection

Chapter 3. Clonal selection Chapter 3. Clonal selection I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection -Charles Darwin, On the Origin of Species, 1859 4 The

More information

Session 3 Lecture 1 Dynamics of the GIT Microbiome: Microbial Darwinism

Session 3 Lecture 1 Dynamics of the GIT Microbiome: Microbial Darwinism Session 3 Lecture 1 Dynamics of the GIT Microbiome: Microbial Darwinism 10 14 bacteria representing ~1000 species and many phyla live in a crowded ecological space: The GIT Four major phyla dominate: By

More information

Immunological Applications. Chapter 8: Background

Immunological Applications. Chapter 8: Background Immunological Applications Chapter 8: Background The Immune System Types of Immunity Innate The natural immunity present at birth Acquired A specific response to foreign substances. Some cells remember

More information

D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 DEPARTMENT OF ZOOLOGY IMMUNOLOGY (15CZO6B)

D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 DEPARTMENT OF ZOOLOGY IMMUNOLOGY (15CZO6B) D.K.M. COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1 DEPARTMENT OF ZOOLOGY IMMUNOLOGY (15CZO6B) SECTION-A (UNIT-I) 1. Lysozyme. 2. SALT(skin associated lymphoid tissues). 3. Innate immunity. 4. Sources of

More information

Chapter 2. Antibodies

Chapter 2. Antibodies Chapter 2. Antibodies An iddy-biddy antibody Just nanometers long Saved the butt of a sumo man Hundreds of kilos strong Anonymous The main elements of the immune system are firstly antibodies, secondly

More information

Microbiology An Introduction Tortora Funke Case Eleventh Edition

Microbiology An Introduction Tortora Funke Case Eleventh Edition Microbiology An Introduction Tortora Funke Case Eleventh Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World

More information

There was a reduction in number of new individuals being vaccinated / vaccine uptake was lower / higher number of babies; 1 [7]

There was a reduction in number of new individuals being vaccinated / vaccine uptake was lower / higher number of babies; 1 [7] 1. (a) Antibody binds/eq/recognises only to cancer cells; because of antibody-antigen binding/eg; enzyme activates the drug; at cancer cells only; max 3 B lymphocytes produce antibodies/involved in humoral

More information

Antibodies. Immunoglobulin (Ig) is a synonym for antibody. Most antibodies are found in the gamma globulin fraction of serum.

Antibodies. Immunoglobulin (Ig) is a synonym for antibody. Most antibodies are found in the gamma globulin fraction of serum. Antibodies Introduction Antibodies are a class of serum proteins which are induced following contact with antigen. They bind specifically with antigen which induced their formation. Immunoglobulin (Ig)

More information

THE UNIVERSITY OF TEXAS AT EL PASO COLLEGE OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES SYLLABUS

THE UNIVERSITY OF TEXAS AT EL PASO COLLEGE OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES SYLLABUS THE UNIVERSITY OF TEXAS AT EL PASO COLLEGE OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES SYLLABUS Course #: MICR 4453 Course Title: Immunology CRNs: 12950, 12952, 12953, 15016, 17668 Credit Hrs: 4.0 Term:

More information

Humoral Immunity. Humoral Immunity and Complement. B cell Antigens. Location of B Cell Activation. B Cell Activation T-dependent antigens

Humoral Immunity. Humoral Immunity and Complement. B cell Antigens. Location of B Cell Activation. B Cell Activation T-dependent antigens Humoral Immunity and Humoral Immunity Robert Beatty MCB150 Transfer of non-cell components of blood-- antibodies, complement Humoral immunity = antibody mediated B cell Antigens B Cell Activation of T-dependent

More information

IMMUNOBIOLOGY : AN INTRODUCTION

IMMUNOBIOLOGY : AN INTRODUCTION 31 IMMUNO : AN INTRODUCTION We all get infections, but some of us fall sick more frequently than others. This is related to the immune system. Proper functioning of immune system protects us from the infections.

More information

MERIAL AVIAN SCIENCE REVIEW

MERIAL AVIAN SCIENCE REVIEW MERIAL AVIAN SCIENCE REVIEW THE BURSA OF FABRICIUS AND ITS ESSENTIAL ROLE IN B-CELL DEVELOPMENT AND ANTIBODY PRODUCTION. BY PROF. BERND KASPERS PROFESSOR OF ANIMAL PHYSIOLOGY UNIVERSITY OF MUNICH - GERMANY

More information

Immunoglobulins. Harper s biochemistry Chapter 49

Immunoglobulins. Harper s biochemistry Chapter 49 Immunoglobulins Harper s biochemistry Chapter 49 Immune system Detects and inactivates foreign molecules, viruses, bacteria and microorganisms Two components with 2 strategies B Lymphocytes (humoral immune

More information

Antibodies (Immunoglobulins)

Antibodies (Immunoglobulins) Antibodies (Immunoglobulins) The immune system plays a major role in the body s defense mechanisms against pathogens and other foreign bodies. It protects organisms from infection with a layered defense

More information

The Immune System and Microgravity. Overview in Humans. Innate Immunity

The Immune System and Microgravity. Overview in Humans. Innate Immunity The Immune System and Microgravity Dr. Patricia C. Hunt DO, MHA, CHCQM Overview in Humans There are two types of immune response: innate immunity First line of defense when a microbe enters the body. Rapid

More information

Microbial Biotechnology agustin krisna wardani

Microbial Biotechnology agustin krisna wardani Microbial Biotechnology agustin krisna wardani 1. The Structure of Microbes Microbes (microorganisms) are tiny organisms that are too small to be seen individually by the naked eye and must be viewed with

More information

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation?

1 Name. 1. (3 pts) What is apoptosis and how does it differ from necrosis? Which is more likely to trigger inflammation? 1 Name MCB 150 Midterm Eam #1 (100 points total) Please write your full name on each page of the eam!! The eam consists of 17 questions (6 pages). Each has a different point count as indicated. Please

More information

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions.

MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam will have 40 multiple choice questions. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No.

a. Hypoxanthine was present in the media. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. MCB 4211, Fall 2018, Practice Exam 1 Last, First name Student ID # Seat No. ***NOTE: Exam 1 2018 will have 40 multiple choice questions. READ ALL THE CHOICES AND SELECT THE BEST 1. Which of the following

More information

IMMUNOBIOLOGY : AN INTRODUCTION

IMMUNOBIOLOGY : AN INTRODUCTION Immunobiology : An Introduction MODULE - 5 30 IMMUNO : AN INTRODUCTION We all get infections, but some of us fall sick more frequently than others. This is related to the immune system. Proper functioning

More information

Cloning from plant cells

Cloning from plant cells Cloning plants, animals, and cells Take a cutting from a plant, put it in a pot of soil, and you have cloned an organism. The plant that grows from the cutting will be genetically identical to the one

More information

Artificial Immune Systems

Artificial Immune Systems Artificial Immune Systems Dr. Mario Pavone Department of Mathematics & Computer Science University of Catania mpavone@dmi.unict.it http://www.dmi.unict.it/mpavone/ Biological Immune System (1/4) Immunology

More information

Observations about complement were carried out by Nuthall Pfeiffer and Bordet in the 1800's.

Observations about complement were carried out by Nuthall Pfeiffer and Bordet in the 1800's. COMPLEMENT SYSTEM Observations about complement were carried out by Nuthall Pfeiffer and Bordet in the 1800's. Researchers compared cholera vibrio with immune fresh serum in the test tube and; Cholera

More information

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION

CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION The specificity of humoral immune responses relies on the huge DIVERSITY of antigen combining sites present in antibodies, diversity which

More information

Introduction to Microbiology Lecture #1 Dr. Gary Mumaugh

Introduction to Microbiology Lecture #1 Dr. Gary Mumaugh Subjects Covered Microbiology Overview Microbiology History Microbiology Relevance & Impact Germ Theory Koch s Postulates Cell Theory Introduction to Microbiology Lecture #1 Dr. Gary Mumaugh Microbiology

More information

Biological immune systems

Biological immune systems Immune Systems 1 Introduction 2 Biological immune systems Living organism must protect themselves from the attempt of other organisms to exploit their resources Some would-be exploiter (pathogen) is much

More information

Introduction to Antibody Structure/Function. Med Chem 528

Introduction to Antibody Structure/Function. Med Chem 528 Introduction to Antibody Structure/Function Med Chem 528 Origins of antibodies Product of the adaptive immune system B cells (antibody based immunity) T cells (cell based immunity) Pre-exposure protects

More information

Disclaimer: this is a very big topic and coverage will be only superficial.

Disclaimer: this is a very big topic and coverage will be only superficial. Vascular Biology 4 Blood and its components: 1 Disclaimer: this is a very big topic and coverage will be only superficial. 1. Erythrocytes: eat your spinach (or steak). ~8 um diameter, 2 um thickness no

More information

The University of Jordan

The University of Jordan The University of Jordan Faculty: Pharmacy Department: Pharmaceutics & Pharmaceutical technology Program: Pharmacy Academic Year/ Semester: 2013/2014 Pharmaceutical Microbiology I (Course Number: 1202341)

More information

Antibody-Mediated Immunity

Antibody-Mediated Immunity Color code: Important in red Extra in blue Antibody-Mediated Immunity For team error adjustments, click here Objectives To describe B-cells as the mediators of humoral immunity, (antibody-mediated immunity)

More information

Immunogenetics. Immunodeficiency

Immunogenetics. Immunodeficiency 4.05.009 Immune response represents a system of recognition of foreign molecules. Immunogenetics Foreign molecules (proteins, glycoproteins, carbohydrates, ssdna, viruses) or parts of foreign molecules

More information

Lab. 7: Serological Tests ELISA. 320 MIC Microbial Diagnosis 320 MBIO PRACTICAL. Amal Alghamdi 2018

Lab. 7: Serological Tests ELISA. 320 MIC Microbial Diagnosis 320 MBIO PRACTICAL. Amal Alghamdi 2018 Lab. 7: 320 MIC Microbial Diagnosis Serological Tests ELISA. 320 MBIO PRACTICAL Amal Alghamdi 2018 1 Infection and Immunity Serology is the study of immune bodies in human blood. These are products of

More information

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche

Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Metodi e tecniche di ottimizzazione innovative per applicazioni elettromagnetiche Algoritmi stocastici Parte 3 Artificial Immune Systems M. Repetto Dipartimento Ingegneria Elettrica Industriale - Politecnico

More information

Chapter 1: Scope and History of Microbiology

Chapter 1: Scope and History of Microbiology Chapter 1: Scope and History of Microbiology Why Study Microbiology? Microbes (bacteria, viruses, fungi, protozoa, and some algae) live in us, on us, and nearly everywhere around us. They have a major

More information

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION

Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Chapter 4 ANTIBODY STRUCTURE AND FUNCTION Different way to depict an Ig molecule Y In both the heavy and light chain variable regions there is variability at every position and there are hypervariable

More information

Recombination Lecture, Dr. Aguilera 2/17/2014

Recombination Lecture, Dr. Aguilera 2/17/2014 Lymphocytes and Antigen Receptors Thymus T-Cells Lymph nodes Spleen } T+B-cells Paper Presentation: Bone Marrow Stem cells and B-cells Nat. Rev. Immunol. STEM CELL CLP Committed Lymphocyte Precursor T-cells

More information

M1. (a) stomach and pancreas correctly labelled 1. bacteria not killed (by stomach acid / HCl) and so they damage mucus lining 1

M1. (a) stomach and pancreas correctly labelled 1. bacteria not killed (by stomach acid / HCl) and so they damage mucus lining 1 M. (a) stomach and pancreas correctly labelled (b) bacteria not killed (by stomach acid / HCl) and so they damage mucus lining so acid / HCl damages stomach tissue / causes an ulcer allow bacteria infect

More information

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function

Basic Antibody Structure. Multiple myeloma = cancerous plasma cells Monomer = 150,000. Chapter 4. Immunoglobulin Structure and Function Chapter 4. Immunoglobulin Structure and Function. Functional Regions. Types of chains. Constant & Variable regions 4. Glycoprotein * * * Heavy chain= 446 aa Light chain= 4aa Each heavy and light chain

More information

Dr. Gary Mumaugh. Introduction to Microbiology

Dr. Gary Mumaugh. Introduction to Microbiology Dr. Gary Mumaugh Introduction to Microbiology Microbiology Overview Microbiology History Microbiology Relevance & Impact Germ Theory Koch s Postulates Cell Theory Microbiology Overview Branch of biology

More information

Immunology 101: Implications for Medical Device Failure. Joshua B. Slee, PhD Assistant Professor of Biology

Immunology 101: Implications for Medical Device Failure. Joshua B. Slee, PhD Assistant Professor of Biology Immunology 101: Implications for Medical Device Failure Joshua B. Slee, PhD Assistant Professor of Biology Learning Goals Understand innate and adaptive immunity Explain how innate and adaptive immunity

More information

Basic Immunology Lecture 1 st and 2 nd

Basic Immunology Lecture 1 st and 2 nd Basic Immunology Lecture 1 st and 2 nd Introduction Requirements of the Department. Historical overview. Composition of the immune system. Molecular components of the immune systemes Immunological recognition

More information

Genomics. Genomics. Understanding the human genome. The human genome. Genomics = study of an organism s entire genome or entire DNA sequence

Genomics. Genomics. Understanding the human genome. The human genome. Genomics = study of an organism s entire genome or entire DNA sequence Genomics Genomics Genomics = study of an organism s entire genome or entire DNA sequence billion bases % of DNA shared Humans 3.2 99.5% Chimpanzee 2.8 98.5% Mouse 2.5 80% Chicken 1.0 So what s a genome?

More information

Virulence factors: name them and explain what they do, how do you calculate how virulent something is

Virulence factors: name them and explain what they do, how do you calculate how virulent something is General Microbiology Final Exam Study Guide Spring 2017 Ginny L. Please bring various colored writing utensils! Fair warning, I am not a TA or teacher and I have not seen your final exam, this is to cover

More information

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies

Antigens & Antibodies II. Polyclonal antibodies vs Monoclonal antibodies A Brief Review of Antibody Structure A Brief Review of Antibody Structure The basic antibody is a dimer of dimer (2 heavy chain-light chain pairs) composed of repeats of a single structural unit known

More information

Chapter 14. Second symmetry

Chapter 14. Second symmetry Chapter 14. Second symmetry Tyger Tyger, burning bright In the forests of the night What immortal hand or eye Could frame thy fearful symmetry? -William Blake Songs of Experience (1794) A good general

More information

Immunology: Antibody Basics

Immunology: Antibody Basics e-learning JABSOM Immunology: Antibody Basics One :: General Structure Identify the Parts of an Antibody Two :: Isotypes Identify Antibody Isotypes Three :: Function Match Antibody Functions With Isotypes

More information

Students should be able to explain how the spread of diseases can be reduced or prevented.

Students should be able to explain how the spread of diseases can be reduced or prevented. 4.3 Infection and response Pathogens are microorganisms such as viruses and bacteria that cause infectious diseases in animals and plants. They depend on their host to provide the conditions and nutrients

More information

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood Veins have large radii and low resistance. Walls are thin, not elastic Most blood volume is in veins Veins returning blood Veins Valves prevent engorgement and backflow Sympathetic NS constricts veins

More information

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003

BEH.462/3.962J Molecular Principles of Biomaterials Spring 2003 Lecture 17: Drug targeting Last time: Today: Intracellular drug delivery Drug targeting Reading: T.J. Wickham, Ligand-directed targeting of genes to the site of disease, Nat. Med. 9(1) 135-139 (2003) Drug

More information

Explain how the energy of the Sun can be transferred to a secondary consumer.

Explain how the energy of the Sun can be transferred to a secondary consumer. Explain how the energy of the Sun can be transferred to a secondary consumer. Plant cells contain, the site of photosynthesis. Plants and many microorganisms use energy to combine the inorganic molecules

More information

Immune System. Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc

Immune System. Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc Immune System Branden & Tooze, Chapter 15 Protects complex multicellular organisms from pathogens, e.g. virus, bacteria, yeast, parasites, worms, etc Innate immunity first line of defense past physical

More information

Lesson Overview Identifying the Substance of Genes

Lesson Overview Identifying the Substance of Genes 12.1 Identifying the Substance of Genes THINK ABOUT IT How do genes work? To answer that question, the first thing you need to know is what genes are made of. How would you go about figuring out what molecule

More information

Antibody Structure. Antibodies

Antibody Structure. Antibodies Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Antibody Structure supports Function

Antibody Structure supports Function Antibodies Secreted by B lymphocytes Great diversity and specificity: >10 9 different antibodies; can distinguish between very similar molecules Tag particles for clearance/destruction Protect against

More information

Information Processing in Living Systems

Information Processing in Living Systems Information Processing in Living Systems http://upload.wikimedia.org/wikipedia/commons/f/f3/cavernous_hemangioma_t2.jpg Does the brain compute? http://www.cheniere.org/images/rife/rife20.jpg Does the

More information

21/10/2012. Learning Outcome E1 & E2. Origin of Living Things. Origin of Living Things. Student Achievement Indicators (E1)

21/10/2012. Learning Outcome E1 & E2. Origin of Living Things. Origin of Living Things. Student Achievement Indicators (E1) Learning Outcome E1 & E2 & the Effects have on Human Health Evaluate the evidence used to classify viruses as living or non-living Evaluate the effects of viruses on human health Learning Outcome E1 &

More information

Blood is 55% Plasma (Liquid)

Blood is 55% Plasma (Liquid) Blood is 55% Plasma (Liquid) The plasma portion of blood is: 91% Water Maintains blood volume Transports molecules 7% Proteins (ie: clotting proteins, albumin, immunoglobulins ) 2 % Salts, gases (O 2,

More information

Departments of Biotechnology. Academic planner for (ODD semesters) Month I Semester III Semester V Semester

Departments of Biotechnology. Academic planner for (ODD semesters) Month I Semester III Semester V Semester Departments of Biotechnology Academic planner for 2014-15 (ODD semesters) Subject: Biotechnology Month I Semester III Semester V Semester JULY AUGUST Cell as a Basic unit of Living Systems, Discovery of

More information

Antibodies and Antigens In the blood bank

Antibodies and Antigens In the blood bank Antibodies and Antigens In the blood bank 1 Nice game!! http://nobelprize.org/ 2 Karl Landsteiner discovered blood groups in 1901. Awarded Nobel Prize for Physiology or Medicine in 1930 3 Why we study

More information

1.1 The Scope of Microbiology Microbiology: : The study of living things too small to be seen without magnification Microorganisms or microbes- these

1.1 The Scope of Microbiology Microbiology: : The study of living things too small to be seen without magnification Microorganisms or microbes- these Microbiology: A Systems Approach, 2 nd ed. Chapter 1: The Main Themes of Microbiology 1.1 The Scope of Microbiology Microbiology: : The study of living things too small to be seen without magnification

More information

CONCEPT QUESTIONS FOR EXAMINATION III - Biology 2420 Talaro & Chess, 9 th

CONCEPT QUESTIONS FOR EXAMINATION III - Biology 2420 Talaro & Chess, 9 th CONCEPT QUESTIONS FOR EXAMINATION III - Biology 2420 Talaro & Chess, 9 th Dr. Raj Ramakrishnan, Ph.D. NOTE: The topic sheets prepared by Dr. David Schwartz are being used by me with his kind permission.

More information

Composition of the Microbial World: - Procaryotes: relative simple morphology and lack true membrane delimited nucleus

Composition of the Microbial World: - Procaryotes: relative simple morphology and lack true membrane delimited nucleus Welcome to TL2203 Environmental Microbiology Introduction to the biology of bacterial and archaeal organisms. Topics include microbial cell structure and function, methods of cultivation, genetics, phylogeny

More information

Starting as an undifferentiated cell, a multi-cellular organism possessing many different types of cells is produced.

Starting as an undifferentiated cell, a multi-cellular organism possessing many different types of cells is produced. Domain 5: Regulation 5.1: Timing and coordination of specific events are necessary for the normal development of an organism, and these events are regulated by a variety of mechanisms. (EK2.E.1) 1. Development

More information

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17

Antibody Structure, and the Generation of B-cell Diversity. Chapter 4 5/1/17 Antibody Structure, and the Generation of B-cell Diversity B cells recognize their antigen without needing an antigen presenting cell Chapter 4 Structure of Immunoglobulins Structure and function Immunoglobulin

More information

Genetic Control of Immune Responses

Genetic Control of Immune Responses Genetic Control of Immune Responses fatchiyah, lab of Molecular Biology Brawijaya University 1 3/26/2010 APC Antigen processing (M et al.) MHC-linked Antigen "presentation" Ag/Ab complexes ANTIGEN Antigenspecific

More information

Passing on characteristics

Passing on characteristics 1 of 50 Boardworks Ltd 2006 2 of 50 Boardworks Ltd 2006 Passing on characteristics 3 of 50 Boardworks Ltd 2006 What makes this baby human? What determines its gender? In all living things, characteristics

More information

Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October

Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October Immunology 2011 Lecture 9 Immunoglobulin Biosynthesis 3 October APC Antigen processing (dendritic cells, MΦ et al.) Antigen "presentation" Ag/Ab complexes Antigenspecific triggering B T ANTIGEN Proliferation

More information

Microbiology: A Systems Approach, Chapter 1: The Main Themes of Microbiology

Microbiology: A Systems Approach, Chapter 1: The Main Themes of Microbiology Microbiology: A Systems Approach, Chapter 1: The Main Themes of Microbiology 1.1 The Scope of Microbiology Microbiology: The study of living things too small to be seen without magnification Microorganisms

More information

Adrenal Gland. MEDULLA Epinephrine CORTEX. Zona reticularis --adrenal androgen. Zona fasciculata --glucocorticoids

Adrenal Gland. MEDULLA Epinephrine CORTEX. Zona reticularis --adrenal androgen. Zona fasciculata --glucocorticoids STRESS AND IMMUNITY STRESS Defined as life under tension Homeostatic range: normal physiological balance Stressors: physical and emotional stimuli that disrupt homeostasis Eustress vs Distress Stress response:

More information

Antigen-Antibody Interaction

Antigen-Antibody Interaction - Interaction JASON BROWNLEE Technical Report 070427A Complex Intelligent Systems Laboratory, Centre for Information Technology Research, Faculty of Information and Communication Technologies, Swinburne

More information

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes.

IMMUNOLOGY Receptors of T cells are TCR T Cell Receptors which are present on the cell surface of T lymphocytes. IMMUNOLOGY - 4 - What is an ANTIGEN? It is a molecule that can be recognized by a receptor and combine with it specifically and the receptor here is the one either produced by B cells or T cells: Receptors

More information

The shrimp defense mechanism: simple but efficient. Pikul Jiravanichpaisal

The shrimp defense mechanism: simple but efficient. Pikul Jiravanichpaisal The shrimp defense mechanism: simple but efficient Pikul Jiravanichpaisal Germs are everywhere Infectious disease process Dose 1. Entry the host- getting in 2. Establishment- staying in 3. Avoid, evade,

More information

S uf6t<.. f\tj<t1&6t-'l

S uf6t<.. f\tj<t1&6t-'l Immunagens. An immune response is evoked by a foreign agent called antigen or immunogen. The distinction between these two terms is functional, an antigen is a compound that is capable of binding with

More information

Lecture 24. Autoimmunity. Origins of autoimmunity. Diseases. Immune Diseases - Chapter 16 - Allergies - Autoimmunity - Immunodeficiency

Lecture 24. Autoimmunity. Origins of autoimmunity. Diseases. Immune Diseases - Chapter 16 - Allergies - Autoimmunity - Immunodeficiency Lecture 24 Immune Diseases - Chapter 16 - Allergies - Autoimmunity - Immunodeficiency Disease Diagnostics - Chapter 17 - Sample Collections - Phenotypic Method - Genotypic Method - Immunological Method

More information

Interplay of Cells involved in Therapeutic Agent Immunogenicity. Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology

Interplay of Cells involved in Therapeutic Agent Immunogenicity. Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology Interplay of Cells involved in Therapeutic Agent Immunogenicity Robert G. Hamilton, Ph.D., D.ABMLI Professor of Medicine and Pathology Disclosure The author works with Amicus on an immunogenicity project

More information

Name Block Desk # BACTERIA AND VIRUSES. 1. What are prokaryotes? They are -celled organisms with no

Name Block Desk # BACTERIA AND VIRUSES. 1. What are prokaryotes? They are -celled organisms with no Name Block Desk # BACTERIA AND VIRUSES Identifying Bacteria: 1. What are prokaryotes? They are -celled organisms with no - bound organelles. 2. True or false: prokaryotes are much larger that eukaryotes.

More information

LESSON ONE: BAD BACTERIA

LESSON ONE: BAD BACTERIA LESSON ONE: BAD BACTERIA KEY QUESTION(S): What are virulence factors? How do bacteria use virulence factors to infect an organism and cause disease? How do bacteria gain or lose virulence factors? OVERALL

More information

The Complexity of the Immune System: Scaling Laws. Alan S. Perelson* Theoretical Division. Los Alamos National Laboratory. Los Alamos, NM 87545

The Complexity of the Immune System: Scaling Laws. Alan S. Perelson* Theoretical Division. Los Alamos National Laboratory. Los Alamos, NM 87545 The Complexity of the Immune System: Scaling Laws Alan S. Perelson* Theoretical Division Los Alamos National Laboratory Los Alamos, NM 87545 Jason G. Bragg Department of Biology University of New Mexico

More information

CANCER RESEARCH: Down to the Basics

CANCER RESEARCH: Down to the Basics CANCER RESEARCH: Down to the Basics At Caltech it is an accepted fact that, in the long run, basic research is often the best kind of applied research. Although the results of a scientist's investigations

More information

Blood. Intermediate 2 Biology Unit 3 : Animal Physiology

Blood. Intermediate 2 Biology Unit 3 : Animal Physiology Blood Intermediate 2 Biology Unit 3 : Animal Physiology Composition of Blood Blood contains Red blood cells White blood cells platelets plasma Plasma Watery, yellowish fluid Suspended in plasma Proteins

More information

Virginia Western Community College BIO 205 General Microbiology

Virginia Western Community College BIO 205 General Microbiology Prerequisites BIO 205 General Microbiology One year of college biology and one year of college chemistry or divisional approval; an ENG 111 placement recommendation, co-enrollment in ENF 3/ENG 111, or

More information

Immunoglobulins have protective functions which enable the living organism to fight multiple different infections.

Immunoglobulins have protective functions which enable the living organism to fight multiple different infections. Immunology 8 Immunoglobulins properties 20-6-2013 **Those are just extra notes for Immunoglobulins properties slides Introduction: Immunoglobulins have protective functions which enable the living organism

More information

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood

Veins Valves prevent engorgement and backflow. Baroreceptor reflex. Veins returning blood Veins have large radii and low resistance. Walls are thin, not elastic Most blood volume is in veins Veins returning blood Veins Valves prevent engorgement and backflow Sympathetic NS constricts veins

More information

E Answers Marks Additional Guidance 1 (a) 1

E Answers Marks Additional Guidance 1 (a) 1 Question E Answers Marks Additional Guidance 1 (a) 1 8 9 10 11 1 water jacket maintain optimum / constant temperature ; to prevent enzymes denaturing ; loss of shape / ref. to active site ; (because as)

More information

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Chapter 19 Viral Genomes Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Genome is usually organized as a single linear or circular molecule

More information

Biology 318 Introduction to Microbiology

Biology 318 Introduction to Microbiology Biology 318 Introduction to Microbiology Microbiology The study of small living things Cells - Bacteria, Algae, Protozoa, Fungi Not Cells - Viruses and Prions All are UBIQUITOUS Prokaryotic Cells Simpler,

More information

1 R21 AI A1 2 VMD HALFORD, W

1 R21 AI A1 2 VMD HALFORD, W 1 R21 AI081072-01A1 2 VMD 1R21AI081072-01A1 ILLIAM RESUME AND SUMMARY OF DISCUSSION: The proposed study is to develop safe and effective live attenuated vaccines against herpes simplex virus 2 by using

More information

Test Bank for Microbiology An Introduction with MyMicrobiologyPlace Website 10th Edition by Tortora

Test Bank for Microbiology An Introduction with MyMicrobiologyPlace Website 10th Edition by Tortora Test Bank for Microbiology An Introduction with MyMicrobiologyPlace Website 10th Edition by Tortora Link download full: https://testbankservice.com/download/test-bank-formicrobiology-an-introduction-with-mymicrobiologyplace-website-10th-edition-bytortora/

More information

About ATCC. Established partner to global researchers and scientists

About ATCC. Established partner to global researchers and scientists Discovering ATCC Primary Immunology Cells - Model Systems to Study the Immune and Cardiovascular Systems James Clinton, Ph.D. Scientist, ATCC July 14, 2016 About ATCC Founded in 1925, ATCC is a non-profit

More information

Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Practical Applications of Immunology (Chapter 18) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology

More information

BIOMAN 2015 IMMUNOASSAYS. Barbara Bielska Northampton Community College Tannersville, PA

BIOMAN 2015 IMMUNOASSAYS. Barbara Bielska Northampton Community College Tannersville, PA BIOMAN 2015 IMMUNOASSAYS Barbara Bielska Northampton Community College Tannersville, PA 1 Immunoassays An immunoassay is a biochemical test that measures the presence or concentration of a molecules (typically

More information