Fluorescence Nanoscopy

Size: px
Start display at page:

Download "Fluorescence Nanoscopy"

Transcription

1 Fluorescence Nanoscopy Keith A. Lidke University of New Mexico panda3.phys.unm.edu/~klidke/index.html

2 Optical Microscopy 30 µm

3 Fluorescent Probes Michalet et. al. Science. Vol 307 p. 538 QD cell membrane 5 nm protein zeiss-campus.magnet.fsu.edu/articles/probes/fpintroduction.html

4 Fluorophore Energy Levels

5 Epi-Fluorescence Setup Objective Lens Dichroic Mirror Sample Microscope Slide Single Mode Fiber Emission Filter Tube Lens 488 nm Laser CCD Camera

6 Imaging in a light microscope Point Spread Function (PSF) Point Source Objective Lens Tube Lens n=1.5 NA=1.4 lambda=.55 CCD Camera

7 Point Spread Function and Optical Transfer Function PSF OTF k max =2 NA/λ OTF is the Fourier Transform of the PSF

8

9 Wide Field Immunofluorescence

10 Wide Field Immunofluorescence 1 µm

11 Single-Molecule Localization-Based Super-Resolution f(palm), (d)storm, Pointillism, GSDIM, PAINT, Blink Microscopy,

12 Single Molecule Localization λ em =emission wavelength γ=collection efficiency A= emission rate Ober, R.J., et al, Biophysical Journal, (2): p

13 Single Molecule Super-Resolution Concept Single Molecule Localization Photo-Activation Photo-Switching or Blinking t

14 Actin in HeLa Cell

15 Mechanisms for on / off switching (f)palm = (fluorescence) Photo-Activation Localization Microscopy Betzig/ H.Hess, Science 2006 S. Hess, Biophysical Journal 2006 PA-FP (Kaede, meos,...) photobleaching

16 Mechanisms for on / off switching STORM = STochastical Optical Reconstruction Microscopy (Zhuang, Nat. Methods 2006) dimer construct (Cy3/Cy5,...)

17 Mechanisms for on / off switching GSDIM = Ground State Depletion followed by single molecule IMaging (Hell, PRL 2007)

18 Mechanisms for on / off switching dstorm = "direct" STORM (Heilemann, Angew. Chem. 2008) any fluorophore O 2 O 2 reduction fluorescence oxidation

19 Image Processing Pipeline

20 3D Localization Techniques Dual Focal Plane -1000nm -500nm 0nm Juette, Nat. Meth.,2008 Ram, Biophys. J., 2008 Astigmatism 500nm Double-helix PSF Huang, Science, 2008 Pavani, PNAS, 2009

21 Dealing with reality: Aberrations Image of a point source at various defocus Pupil Function Data Model Data Model 10 um

22 Dual focal plane setup Emission light from microscope

23 Dual Focal Plane 3D SR Data

24 3D Super-resolution using Dual Focal Planes

25 Can we image multiple targets with a single fluorophore?

26 Crosstalk NaBH4 and Photo-bleaching Original SR reconstruction Post-photodestruction No significant cross-talk

27 Brightfield registration and alignment Sequential imaging of β-tubulin and α-tubulin, overlay using BF alignment α-tub Photodestruction β-tub

28 Localization of EGFR within clathrin-coated vesicles

29 Four color super-resolution imaging with a single fluorophore, and negligible crosstalk Valley CC, Liu S, Lidke DS, Lidke KA (2015) Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore. PLoS ONE

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life Super Resolution Microscopy STORM/PALM Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 1/31/211 Looking into microscopic world of life 1 µm 1 µm 1 nm 1 nm 1 nm 1 Å Naked

More information

SIM SSIM. nanoscopy RESOLFT. Super-resolution STORM GSDIM. dstorm PALMIRA FPALM PALM PAINT SPRAIPAINT SOFI BALM CALM. Bo Huang

SIM SSIM. nanoscopy RESOLFT. Super-resolution STORM GSDIM. dstorm PALMIRA FPALM PALM PAINT SPRAIPAINT SOFI BALM CALM. Bo Huang STEDGSD STORM SOFI nanoscopy GSDIM PALMIRA SMACM BBB PAINT SPRAIPAINT CALM RESOLFT BALM SIM SSIM Super-resolution Bo Huang 2013.08.01 dstorm FPALM PALM 50 years to extend the resolution Confocal microscopy

More information

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM Bi177 - Lecture 13 Microscopy Outside the Box Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM The diffraction limit: Abbe s law The Problem Diffraction limit 100x larger than molecular scale! Green Fluorescent

More information

Introduction to N-STORM

Introduction to N-STORM Introduction to N-STORM Dan Metcalf Advanced Imaging Manager Outline Introduction Principles of STORM Applications N-STORM overview Biological Scale Mitochondrion Microtubule Amino Acid 1Å Kinesin 1nm

More information

Super-resolution Microscopy

Super-resolution Microscopy Semr oc kwhi t epaperser i es : 1. Introduction Super-resolution Microscopy Fluorescence microscopy has revolutionized the study of biological samples. Ever since the invention of fluorescence microscopy

More information

PALM/STORM, BALM, STED

PALM/STORM, BALM, STED PALM/STORM, BALM, STED Last class 2-photon Intro to PALM/STORM Cyanine dyes/dronpa This class Finish localization super-res BALM STED Localization microscopy Intensity Bins = pixels xx 2 = ss2 + aa 2 /12

More information

Tracking sub-microscopic protein organisation at the plasma membrane of live cells using triple-colour superresolution

Tracking sub-microscopic protein organisation at the plasma membrane of live cells using triple-colour superresolution Tracking sub-microscopic protein organisation at the plasma membrane of live cells using triple-colour superresolution microscopy Jacob Piehler Division of Biophysics, University of Osnabrück, Germany

More information

Localization-Based Super-Resolution Light Microscopy

Localization-Based Super-Resolution Light Microscopy Kristin A. Gabor, 1,2,3 Mudalige S. Gunewardene, 1 David Santucci, 4 and Samuel T. Hess 1,3, * 1 Department of Physics and Astronomy, 120 Bennett Hall, University of Maine, Orono, ME 04469 2 Department

More information

SUPER-RESOLUTION MICROSCOPY. Dr. Nathalie Garin

SUPER-RESOLUTION MICROSCOPY. Dr. Nathalie Garin SUPER-RESOLUTION MICROSCOPY Dr. Nathalie Garin Content Motivation for superresolution Superresolution, nanoscopy, : definition Structured Illumination Microscopy (SIM) Localization microscopy STimulated

More information

A Brief History of Light Microscopy And How It Transformed Biomedical Research

A Brief History of Light Microscopy And How It Transformed Biomedical Research A Brief History of Light Microscopy And How It Transformed Biomedical Research Suewei Lin Office: Interdisciplinary Research Building 8A08 Email: sueweilin@gate.sinica.edu.tw TEL: 2789-9315 Microscope

More information

Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc.

Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc. 15/05/2012 Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc. Prof. Dr. Rainer Duden duden@bio.uni-luebeck.de 1 Using conventional light microscopy resolution is limited

More information

Lab 5: Optical trapping and single molecule fluorescence

Lab 5: Optical trapping and single molecule fluorescence Lab 5: Optical trapping and single molecule fluorescence PI: Matt Lang Lab Instructor: Jorge Ferrer Summary Optical tweezers are an excellent experimental tool to study the biophysics of single molecule

More information

Introduction to Computational Fluorescence Microscopy!

Introduction to Computational Fluorescence Microscopy! Introduction to Computational Fluorescence Microscopy! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 13! Gordon Wetzstein! Stanford University! Midterm! Tuesday, Feb

More information

Confocal Microscopy & Imaging Technology. Yan Wu

Confocal Microscopy & Imaging Technology. Yan Wu Confocal Microscopy & Imaging Technology Yan Wu Dec. 05, 2014 Cells under the microscope What we use to see the details of the cell? Light and Electron Microscopy - Bright light / fluorescence microscopy

More information

Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging

Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging Topic Introduction Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging Mark Bates, Sara A. Jones, and Xiaowei Zhuang The relatively low spatial resolution

More information

PEER REVIEW FILE. Reviewers' comments: Reviewer #1 (Remarks to the Author):

PEER REVIEW FILE. Reviewers' comments: Reviewer #1 (Remarks to the Author): PEER REVIEW FILE Reviewers' comments: Reviewer #1 (Remarks to the Author): General In its beginnings in the mid 1990s, localization microscopy based on optical isolation of fluorescent point targets was

More information

Fluorescence Nanoscopy 高甫仁 ) Institute of Biophotonics, National Yang Ming University. Outline

Fluorescence Nanoscopy 高甫仁 ) Institute of Biophotonics, National Yang Ming University. Outline Fluorescence Nanoscopy 高甫仁 ) Fu-Jen Kao ( 高甫仁 Institute of Biophotonics, National Yang Ming University Outline The Abbe s (diffraction) limit and nanoscopy Fundamentals and opportunities of FLIM/FRET Visualizing

More information

Lecture 13. Motor Proteins I

Lecture 13. Motor Proteins I Lecture 13 Motor Proteins I Introduction: The study of motor proteins has become a major focus in cell and molecular biology. Motor proteins are very interesting because they do what no man-made engines

More information

Fluorescence microscopy

Fluorescence microscopy Fluorescence microscopy 1 Fluorescence microscopies basic fluorescence, fluorophores Deconvolution Confocal Two-photon/multi-photon 4Pi Light sheet Total internal reflection STED FRAP/FLIP/FCS FRET PALM/STORM/iPALM

More information

Nanoscale measurement examples in biology: Sub-diffractive imaging & the fly brain challenge

Nanoscale measurement examples in biology: Sub-diffractive imaging & the fly brain challenge Nanoscale measurement examples in biology: Sub-diffractive imaging & the fly brain challenge Harald Hess, HHMI Janelia Farm Introduction to HHMI Janelia Farms Sample: Nerves, Worm Brains, Fly Brains, Rodent

More information

5/11/2015 MICROSCOPIC TECHNIQUES 2. Fluorescence microscopy SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY

5/11/2015 MICROSCOPIC TECHNIQUES 2. Fluorescence microscopy SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY UNIVERSITY OF PÉCS MEDICAL SCHOOL www.medchool.pte.hu MICROSCOPIC TECHNIQUES 2 SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY BIOPHYSICS 2. 2015 25th March Dr. Beáta Bugyi Department of Biophyic Fluorecence

More information

Sample region with fluorescent labeled molecules

Sample region with fluorescent labeled molecules FLUORESCENCE IMAGING I. Fluorescence-imaging with diffraction limited spots The resolution in optical microscopy has been hampered by the smallest spot possible (~ λ/2) that can be achieved by conventional

More information

Introduction CHAPTER 1

Introduction CHAPTER 1 CHAPTER 1 Introduction 1.1 Light Microscopy The light microscope is one of the significant inventions in the history of humankind that, along with the telescope, played a central role in the Scientific

More information

Widefield Microscopy Bleed-Through

Widefield Microscopy Bleed-Through In widefield microscopy the excitation wavelengths which illuminate the sample, and the emission wavelengths which reach the CCD camera are selected throughout a filter cube. A filter cube consists of

More information

Super-Resolution Localization Microscopy

Super-Resolution Localization Microscopy APPLICATION NOTE Super-Resolution Localization Microscopy Light microscopy techniques have been vital to our understanding of biological structures and systems since their invention in the late 16 th Century.

More information

Localization Microscopy

Localization Microscopy Localization Microscopy Theory, Sample Prep & Practical Considerations Patrina Pellett & Ann McEvoy Applications Scientist GE Healthcare, Cell Technologies May 27 th, 2015 Localization Microscopy Talk

More information

Q&A: Single-molecule localization microscopy for biological imaging

Q&A: Single-molecule localization microscopy for biological imaging Q U E S T I O N & ANSWER Q&A: Single-molecule localization microscopy for biological imaging Ann L McEvoy 1, Derek Greenfield 1,2,5, Mark Bates 3 and Jan Liphardt 1,2,4 * Open Access Why is it important

More information

Fluorescence Light Microscopy for Cell Biology

Fluorescence Light Microscopy for Cell Biology Fluorescence Light Microscopy for Cell Biology Why use light microscopy? Traditional questions that light microscopy has addressed: Structure within a cell Locations of specific molecules within a cell

More information

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ

Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Optical Observation - Hyperspectral Characterization of Nano-scale Materials In-situ Research at the nanoscale is more effective, when research teams can quickly and easily observe and characterize a wide

More information

New developments in STED Microscopy

New developments in STED Microscopy New developments in STED Microscopy Arnold Giske*, Jochen Sieber, Hilmar Gugel, Marcus Dyba, Volker Seyfried, Dietmar Gnass Leica Microsystems CMS, Am Friedensplatz 3, 68126 Mannheim, Germany ABSTRACT

More information

Rational design of true monomeric and bright photoconvertible

Rational design of true monomeric and bright photoconvertible Rational design of true monomeric and bright photoconvertible fluorescent proteins Mingshu Zhang, Hao Chang, Yongdeng Zhang, Junwei Yu, Lijie Wu, Wei Ji, Juanjuan Chen, Bei Liu, Jingze Lu, Yingfang Liu,

More information

Three Dimensional Orientation of Anisotropic. Plasmonic Aggregates at Intracellular Nuclear. Indentation Sites by Integrated Light Sheet Super-

Three Dimensional Orientation of Anisotropic. Plasmonic Aggregates at Intracellular Nuclear. Indentation Sites by Integrated Light Sheet Super- Supporting Information Three Dimensional Orientation of Anisotropic Plasmonic Aggregates at Intracellular Nuclear Indentation Sites y Integrated Light Sheet Super- Resolution Microscopy Suresh Kumar Chakkarapani,

More information

Nature Methods: doi: /nmeth Supplementary Figure 1

Nature Methods: doi: /nmeth Supplementary Figure 1 Supplementary Figure 1 File Hierarchy, Single Molecule Profiler software interface and datamining using Cell Profiler Analyst The Single Molecule Profiler (SMP) software automatically generates a database

More information

FLIM Fluorescence Lifetime IMaging

FLIM Fluorescence Lifetime IMaging FLIM Fluorescence Lifetime IMaging Fluorescence lifetime t I(t) = F0 exp( ) τ 1 τ = k f + k nr k nr = k IC + k ISC + k bl Batiaens et al, Trends in Cell Biology, 1999 τ τ = fluorescence lifetime (~ns to

More information

Super-resolution microscopy at a glance

Super-resolution microscopy at a glance ARTICLE SERIES: Imaging Cell Science at a Glance 1607 Super-resolution microscopy at a glance Catherine G. Galbraith 1, * and James A. Galbraith 2, * 1 National Institute of Health, 1 NICHD and 2 NINDS,

More information

F* techniques: FRAP, FLIP, FRET, FLIM,

F* techniques: FRAP, FLIP, FRET, FLIM, F* techniques: FRAP, FLIP, FRET, FLIM, FCS Antonia Göhler March 2015 Fluorescence explained in the Bohr model Absorption of light (blue) causes an electron to move to a higher energy orbit. After a particular

More information

Fluorescence Microscopy: A Biological Perspective

Fluorescence Microscopy: A Biological Perspective Fluorescence Microscopy: A Biological Perspective From nanometre to metre: the scale of life Instrumentation and accessible scale limits the questions that can be addressed in biology Why are there limits?

More information

Fast, three-dimensional super-resolution imaging of live cells

Fast, three-dimensional super-resolution imaging of live cells Nature Methods Fast, three-dimensional super-resolution imaging of live cells Sara A Jones, Sang-Hee Shim, Jiang He & Xiaowei Zhuang Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3

More information

Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging

Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging Graham T Dempsey 1,6, Joshua C Vaughan 2,3,6, Kok Hao Chen 3,6, Mark Bates 4 & Xiaowei Zhuang 2,3,5 211

More information

Final Exam, 176 points PMB 185: Techniques in Light Microscopy

Final Exam, 176 points PMB 185: Techniques in Light Microscopy Final Exam, 176 points Name PMB 185: Techniques in Light Microscopy Point value is in parentheses at the end of each question. 1) Order the steps in setting up Köhler illumination. It is not necessary

More information

Supplementary Table 1. Components of an FCS setup (1PE and 2PE)

Supplementary Table 1. Components of an FCS setup (1PE and 2PE) Supplementary Table 1. Components of an FCS setup (1PE and 2PE) Component and function Laser source Excitation of fluorophores Microscope with xy-translation stage mounted on vibration isolated optical

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Fluorescent probes for superresolution imaging in living cells

Fluorescent probes for superresolution imaging in living cells Fluorescent probes for superresolution imaging in living cells Marta Fernández-Suárez* and Alice Y. Ting* Abstract In 1873, Ernst Abbe discovered that features closer than ~200 nm cannot be resolved by

More information

Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells

Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells Leading Edge Primer Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells Bo Huang, 1 Hazen Babcock, 2 and Xiaowei Zhuang 2,3, * 1 Department of Pharmaceutical Chemistry and Department of

More information

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Sabrina Campelo, Dr. Andrew Harken Outline Motivation Fluorescence Microscopy -Multiphoton Imaging

More information

Super Resolution Imaging Solution Provider. Imaging Future

Super Resolution Imaging Solution Provider. Imaging Future Super Resolution Imaging Solution Provider Imaging Future Imaging Solution More Than Equipment NanoBioImaging(NBI) is the Industrial Partner of HKUST Super Resolution Imaging Center (SRIC). NBI aims to

More information

Microscopy. CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror

Microscopy. CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror Microscopy CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror 1 Outline Microscopy: the basics Fluorescence microscopy Resolution limits The diffraction limit Beating the diffraction limit 2 Microscopy:

More information

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng Scientific Reports Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng 1 Supplementary figures and notes Supplementary Figure S1 Volumetric

More information

Live cell microscopy

Live cell microscopy Live cell microscopy 1. Why do live cell microscopy? 2. Maintaining living cells on a microscope stage. 3. Considerations for imaging living cells. 4. Fluorescence labeling of living cells. 5. Imaging

More information

Direct stochastic optical reconstruction microscopy with standard fluorescent probes

Direct stochastic optical reconstruction microscopy with standard fluorescent probes Direct stochastic optical reconstruction microscopy with standard fluorescent probes Sebastian van de Linde, Anna Löschberger, Teresa Klein, Meike Heidbreder, Steve Wolter, Mike Heilemann & Markus Sauer

More information

CHARACTERIZATION OF MOLECULAR ORIENTATION IN SUPER-RESOLUTION FLUORESCENCE MICROSCOPY

CHARACTERIZATION OF MOLECULAR ORIENTATION IN SUPER-RESOLUTION FLUORESCENCE MICROSCOPY Master Erasmus Mundus in Photonics Engineering, Nanophotonics and Biophotonics Europhotonics MASTER THESIS WORK CHARACTERIZATION OF MOLECULAR ORIENTATION IN SUPER-RESOLUTION FLUORESCENCE MICROSCOPY Yibing

More information

EuBI application for access

EuBI application for access * Title * First name * Last name * Email address * Institution/Company URL of the Institution/Company * Phone number Country code Phone * Street address * Zip Code * City * Country * Position * Not a Principal

More information

Winter College on Micro and Nano Photonics for Life Sciences February General Overview

Winter College on Micro and Nano Photonics for Life Sciences February General Overview 1932-15 Winter College on Micro and Nano Photonics for Life Sciences 11-22 February 2008 General Overview Martina Havenith Ruhr University Bochum Bochum, Germany Microscopy- An Overview M. Havenith Ruhr-University

More information

STED microscopy with single light source. TeodoraŞcheul

STED microscopy with single light source. TeodoraŞcheul STED microscopy with single light source TeodoraŞcheul Dr. Iréne Wang, Dr. Jean-Claude Vial LIPhy, Grenoble, France Summary I. Introduction to STED microscopy II. STED with one laser source 1. Two-photon

More information

Next-generation optical microscopy

Next-generation optical microscopy Next-generation optical microscopy Rahul Roy* Department of Chemical Engineering, and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India A new breed of microscopy techniques

More information

Femtosecond micromachining in polymers

Femtosecond micromachining in polymers Femtosecond micromachining in polymers Prof. Dr Cleber R. Mendonca Daniel S. Corrêa Prakriti Tayalia Dr. Tobias Voss Dr. Tommaso Baldacchini Prof. Dr. Eric Mazur fs-micromachining focus laser beam inside

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION a 14 12 Densitometry (AU) 1 8 6 4 2 t b 16 NMHC-IIA GAPDH NMHC-IIB Densitometry (AU) 14 12 1 8 6 4 2 1 nm 1 nm 1 nm 1 nm sirna 1 nm 1 nm Figure S1 S4 Quantification of protein levels. (a) The microtubule

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

8:00 pm David A. Agard, HHMI/University of California, San Francisco Welcome and introduction to the meeting

8:00 pm David A. Agard, HHMI/University of California, San Francisco Welcome and introduction to the meeting Sunday, May 20 th 3:00 pm Check-in 6:00 pm Reception 7:00 pm Dinner 8:00 pm Session 1: Introduction 8:00 pm David A. Agard, HHMI/University of California, San Francisco Welcome and introduction to the

More information

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen

HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING. Marc Verhaegen HYPERSPECTRAL MICROSCOPE PLATFORM FOR HIGHLY MULTIPLEX BIOLOGICAL IMAGING Marc Verhaegen CMCS, MONTREAL, MAY 11 th, 2017 OVERVIEW Hyperspectral Imaging Multiplex Biological Imaging Multiplex Single Particle

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky FLUORESCENCE Matyas Molnar and Dirk Pacholsky 1 Information This lecture contains images and information from the following internet homepages http://micro.magnet.fsu.edu/primer/index.html http://www.microscopyu.com/

More information

Supporting Information. Two-Photon Luminescence of Single Colloidal Gold NanoRods: Revealing the Origin of Plasmon Relaxation in Small Nanocrystals

Supporting Information. Two-Photon Luminescence of Single Colloidal Gold NanoRods: Revealing the Origin of Plasmon Relaxation in Small Nanocrystals Supporting Information Two-Photon Luminescence of Single Colloidal Gold NanoRods: Revealing the Origin of Plasmon Relaxation in Small Nanocrystals Céline Molinaro 1, Yara El Harfouch 1, Etienne Palleau

More information

Chip Based Nanoscopy: Towards Integration and High-throughput Imaging

Chip Based Nanoscopy: Towards Integration and High-throughput Imaging Chip Based Nanoscopy: Towards Integration and High-throughput Imaging David A. Coucheron* 1, Øystein I. Helle 1, Cristina I. Øie 1, Firehun T. Dullo 1, Balpreet S. Ahluwalia 1 1 UiT The Arctic University

More information

Confocal Microscopes. Evolution of Imaging

Confocal Microscopes. Evolution of Imaging Confocal Microscopes and Evolution of Imaging Judi Reilly Hans Richter Massachusetts Institute of Technology Environment, Health & Safety Office Radiation Protection What is Confocal? Pinhole diaphragm

More information

F luorescence imaging of live cells plays a crucial role in the study of biological processes at the cellular and

F luorescence imaging of live cells plays a crucial role in the study of biological processes at the cellular and SUBJECT AREAS: SUPER-RESOLUTION MICROSCOPY WIDE-FIELD FLUORESCENCE MICROSCOPY BIOPHOTONICS SINGLE-MOLECULE BIOPHYSICS Received 6 December 2012 Accepted 4 January 2013 Published 4 February 2013 Correspondence

More information

Leica SR GSD Super-Resolution Microscopy with GSDIM

Leica SR GSD Super-Resolution Microscopy with GSDIM Application NOTE 07/2012 Leica SR GSD Super-Resolution Microscopy with GSDIM Widefield GSD CONTENT The new world of resolution....... 3 The Leica SR GSD System for brilliant Super-Resolution Images.. 5

More information

Imagerie et spectroscopie de fluorescence par excitation non radiative

Imagerie et spectroscopie de fluorescence par excitation non radiative Imagerie et spectroscopie de fluorescence par excitation non radiative comment s affranchir de la limite de diffraction Rodolphe Jaffiol, Cyrille Vézy, Marcelina Cardoso Dos Santos LNIO, UTT, Troyes NanoBioPhotonics

More information

Lasers for Microscopy: Major Trends

Lasers for Microscopy: Major Trends Lasers for Microscopy: Major Trends Marco Arrigoni, Nigel Gallaher, Darryl McCoy, Volker Pfeufer and Matthias Schulze, Coherent Inc. Laser development for the microscopy market continues to be driven by

More information

In spite of its long history, optical

In spite of its long history, optical Major Trends Laser development for the microscopy market continues to be driven by key trends in applications, which currently include superresolution techniques, multiphoton applications in optogenetics

More information

D e c N o. 2 8

D e c N o. 2 8 D e c. 2 0 0 7 N o. 2 8 CONFOCAL APPLICATION LETTER resolution FRET Acceptor Photobleaching LAS AF Application Wizard FRET with Leica TCS SP5 LAS AF Version 1.7.0 Introduction Fluorescence Resonance Energy

More information

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f Microscopes and Microscopy MCB 380 Good information sources: Alberts-Molecular Biology of the Cell http://micro.magnet.fsu.edu/primer/ http://www.microscopyu.com/ Approaches to Problems in Cell Biology

More information

A cost-effective fluorescence detection system for pulsed laser analysis

A cost-effective fluorescence detection system for pulsed laser analysis Susquehanna University Scholarly Commons Chemistry Faculty Publications 2-2015 A cost-effective fluorescence detection system for pulsed laser analysis J. W. Lafferty Susquehanna University N. A. Fox Susquehanna

More information

a) JOURNAL OF BIOLOGICAL CHEMISTRY b) PNAS c) NATURE

a) JOURNAL OF BIOLOGICAL CHEMISTRY b) PNAS c) NATURE a) JOURNAL OF BIOLOGICAL CHEMISTRY b) c) d) ........................ JOURNAL OF BIOLOGICAL CHEMISTRY MOLECULAR PHARMACOLOGY TRENDS IN PHARMACOLOGICAL S AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY

More information

Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy

Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy G-Protein-Coupled Receptors: from Structural Insights to Functional Mechanisms 191 Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy

More information

High Power Diode Lasers and Multi Laser Engines, Expanding the Range of Biophotonics Applications. Konstantin Birngruber TOPTICA Photonics AG

High Power Diode Lasers and Multi Laser Engines, Expanding the Range of Biophotonics Applications. Konstantin Birngruber TOPTICA Photonics AG High Power Diode Lasers and Multi Laser Engines, Expanding the Range of Biophotonics Applications Konstantin Birngruber TOPTICA Photonics AG TOPTICA Photonics AG Company facts Founded 1998 180 employees

More information

Imaging facilities at WUR

Imaging facilities at WUR Imaging facilities at WUR Advanced light microscopy facilities at Wageningen UR Programme Thursday 13 June 2013 Lunch meeting organized by Cat-Agro Food 12.00 Welcome and sandwich lunch 12.10 Introduction

More information

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V

Cellular imaging using Nano- Materials. A Case-Study based approach Arun Murali, Srivats V Cellular imaging using Nano- Materials A Case-Study based approach Arun Murali, Srivats V Agenda Discuss a few papers Explain a couple of new imaging techniques and their benefits over conventional imaging

More information

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000

Confocal Microscopy of Electronic Devices. James Saczuk. Consumer Optical Electronics EE594 02/22/2000 Confocal Microscopy of Electronic Devices James Saczuk Consumer Optical Electronics EE594 02/22/2000 Introduction! Review of confocal principles! Why is CM used to examine electronics?! Several methods

More information

Spectral Separation of Multifluorescence Labels with the LSM 510 META

Spectral Separation of Multifluorescence Labels with the LSM 510 META Microscopy from Carl Zeiss Spectral Separation of Multifluorescence Labels with the LSM 510 META Indians living in the South American rain forest can distinguish between almost 200 hues of green in their

More information

Measure of surface protein mobility with u-paint technique

Measure of surface protein mobility with u-paint technique Measure of surface protein mobility with u-paint technique How dynamic image can solve the situation? Random distribution or cluster? Why live super-resolution microscopy can solve the situation With mobility

More information

Fluorescence Microscopy

Fluorescence Microscopy Fluorescence Microscopy Dr. Arne Seitz Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP arne.seitz@epfl.ch Fluorescence Microscopy Why do we need fluorescence

More information

Imaging of endocrine organs

Imaging of endocrine organs Imaging of endocrine organs Helen Christian Department of Physiology, Anatomy & Genetics St Anne s College, University of Oxford Diabetesforum, Stockholm 2017 Islets of Langerhan Pituitary gland Renin

More information

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens for Deep Tissue Imaging of Living Specimens Tilman Franke* and Sebastian Rhode TILL Photonics GmbH, an FEI company, Lochhamer Schlag 21, D-82166 Gräfelfing, Germany *tilman.franke@fei.com Introduction

More information

Wednesday, October 8. Today: Last Time: Changes in T & P Units Equilibrium calculations: some examples. Readings: Chang & Thoman:

Wednesday, October 8. Today: Last Time: Changes in T & P Units Equilibrium calculations: some examples. Readings: Chang & Thoman: Wednesday, October 8 Last Time: Entropy of mixing Chemical potential and equilibrium The equilibrium constant Today: Changes in T & P Units Equilibrium calculations: some examples Readings: Chang & Thoman:

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Supporting Information

Supporting Information Supporting Information Stavru et al. 0.073/pnas.357840 SI Materials and Methods Immunofluorescence. For immunofluorescence, cells were fixed for 0 min in 4% (wt/vol) paraformaldehyde (Electron Microscopy

More information

T he recent widespread uptake of new super resolution techniques has revolutionized and invigorated molecular

T he recent widespread uptake of new super resolution techniques has revolutionized and invigorated molecular OPEN SUBJECT AREAS: SUPER-RESOLUTION MICROSCOPY SINGLE-MOLECULE BIOPHYSICS Received 16 October 2014 Accepted 11 December 2014 Published 21 January 2015 Correspondence and requests for materials should

More information

Partha Roy

Partha Roy Fluorescence microscopy http://micro.magnet.fsu.edu/primer/index.html Partha Roy 1 Lecture Outline Definition of fluorescence Common fluorescent reagents Construction ti of a fluorescence microscope Optical

More information

Dino-Lite knowledge & education. Fluorescence Microscopes

Dino-Lite knowledge & education. Fluorescence Microscopes Dino-Lite knowledge & education Fluorescence Microscopes Dino-Lite Fluorescence models Smallest fluorescence microscope in the world Revolution to biomedical and educational applications Flexible Easy

More information

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Euiheon Chung 1, 2, Yang-Hyo Kim 1, Wai Teng Tang 3, Colin J. R. Sheppard 4, and 1, 5* Peter T. C. So

More information

Journal of Molecular and Cellular Cardiology

Journal of Molecular and Cellular Cardiology Journal of Molecular and Cellular Cardiology 58 (2013) 13 21 Contents lists available at SciVerse ScienceDirect Journal of Molecular and Cellular Cardiology journal homepage: www.elsevier.com/locate/yjmcc

More information

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging

Rice/TCU REU on Computational Neuroscience. Fundamentals of Molecular Imaging Rice/TCU REU on Computational Neuroscience Fundamentals of Molecular Imaging June 2, 2009 Neal Waxham 713-500-5621 m.n.waxham@uth.tmc.edu Objectives Introduction to resolution in light microscopy Brief

More information

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics MPSF educator packet This packet contains illustrations and figures from the Molecular Probes School of Fluorescence website. They illustrate concepts from the basic physical properties that underlie fluorescence

More information

Fs- Using Ultrafast Lasers to Add New Functionality to Glass

Fs- Using Ultrafast Lasers to Add New Functionality to Glass An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference Fs- Using Ultrafast Lasers to Add New Functionality to Glass Denise M. Krol University of California, Davis 17th

More information

Supplementary Information

Supplementary Information Supplementary Information STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA Iddo Heller, Gerrit Sitters, Onno D. Broekmans, Géraldine Farge, Carolin Menges,

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Comprehensive opto-mechanical design of the dual-axis microscope.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Comprehensive opto-mechanical design of the dual-axis microscope. Supplementary Figure 1 Comprehensive opto-mechanical design of the dual-axis microscope. (a) The complete microscope is shown to scale. The laser beam is depicted in light red. (b) A close-up view of the

More information

Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates

Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates A p p l i c a t i o n N o t e Brightfield and Fluorescence Imaging using 3D PrimeSurface Ultra-Low Attachment Microplates Brad Larson, BioTek Instruments, Inc., Winooski, VT USA Anju Dang, S-BIO, Hudson,

More information

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa

Single cell molecular profiling using Quantum Dots. Technical Journal Club Rahel Gerosa Single cell molecular profiling using Quantum Dots Technical Journal Club 01.10.2013 Rahel Gerosa Molecular Profiling Powerful technique to study complex molecular networks underlying physiological and

More information

Microscopy from Carl Zeiss. DirectFRAP. News from the Cell. The New Class of Laser Manipulation for the Analysis of Cell Dynamics

Microscopy from Carl Zeiss. DirectFRAP. News from the Cell. The New Class of Laser Manipulation for the Analysis of Cell Dynamics Microscopy from Carl Zeiss DirectFRAP News from the Cell The New Class of Laser Manipulation for the Analysis of Cell Dynamics DirectFRAP. New Insights into Cell Dynamics. Fluorescence breaks new ground:

More information