Microscopy. CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror

Size: px
Start display at page:

Download "Microscopy. CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror"

Transcription

1 Microscopy CS/CME/BioE/Biophys/BMI 279 Nov. 2, 2017 Ron Dror 1

2 Outline Microscopy: the basics Fluorescence microscopy Resolution limits The diffraction limit Beating the diffraction limit 2

3 Microscopy: the basics 3

4 Most of what we know about the structure of cells come from imaging Light microscopy, including fluorescence microscopy articles/livecellimaging/ livecellmaintenance.html Electron microscopy blog.library.gsu.edu/ wp-content/uploads/ 2010/11/mtdna.jpg 4

5 Basic idea: Light microscopy Shine light on a biological sample (i.e., one or more cells) Measure the light that is reflected or transmitted Use lenses Basically, you see a magnified image of the sample. Transmitted light: observe the light that is blocked by the sample. Reflected light: observe the light that bounces off the sample and back into your eye. This is how every-day vision works. Why do we need lenses in a microscope? 5

6 Lenses in microscopy The lenses in a microscope do two things: Magnify the image Focus the image, so that much of the light coming from a particular point in the sample ends up focusing on a particular point on either your retina or a sensor (e.g., CCD) You need a lens to form a clear image, even if you have a very high-resolution sensor This is what your eye does! 6

7 Fluorescence microscopy 7

8 Fluorescence microscopy: basic idea Suppose we want to know where a particular type of protein is located in the cell, or how these proteins move around We can t do this by simply looking through a microscope, because: i.e. the smallest dots you can pick out in your light microscope image will be 100x bigger than the width of a typical protein We (usually) don t have sufficient resolution The protein of interest doesn t look different from the ones around it If only the protein would glow! Can we get a protein (or other molecule of interest) to glow? 8

9 Fluorescence microscopy: basic idea Make the molecules of interest glow Attach a fluorophore (fluorescent molecule) to the molecule of interest When you shine light of a particular wavelength on a fluorophore, it emits light of a different wavelength (this is actually different from glowing, in which a protein consumes energy to generate light on its own.) Additional advantage: not only does the molecule glow, the light it emits has a different wavelength than the incident illumination, making it easier to isolate This is an advantage because the light you re shining will also bounce off the sample and generate a lot of background signal. So instead you detect the emitted light wavelengths instead. The emitted light always has a longer wavelength i.e. lower energy than the absorbed light. 9

10 Fluorophores Fluorophores can themselves be either proteins or much smaller molecules There are also small molecule fluorophores, which are harder to attach to proteins but often glow much brighter. Among the most widely used is green fluorescent protein (GFP) An easy way to do this is to fuse the GFP gene to your protein of interest, so that a fusion protein is expressed in your cell. GFP 10

11 Fluorescence microscopy images There are many types of fluorescence microscopy: wide-field, confocal, TIRF (total internal reflectance fluorescence), etc. You re not responsible for knowing them TIRF Wide-field Confocal confocalintrobasics.html Von Zastrow lab, UCSF Analyzing this data quantitatively involves the types of image analysis we discussed in previous lectures, and more 11

12 Single-molecule tracking If the density of fluorescent molecules is sufficiently low, we can track individual molecules Doing this well is a challenging computational problem Data: Bettina van Lengerich, Natalia Jura Tracking and movie: Robin Jia 12

13 Resolution limits 13

14 Resolution limits The diffraction limit 14

15 A limit on focusing light The physics of light in particular, the fact that it is a wave impose a fundamental limit on how well a lens can focus it The light from a single point in space will not focus to a single point Instead, it will focus to a disk-like pattern called an Airy pattern This means the observed image will be slightly blurred In fact, we can think of the observed image as the true image convolved with the Airy pattern. This constitutes a low-pass filter. Airy pattern 15 You re not responsible for details of the underlying physics here

16 The diffraction limit File:Ernst-Abbe-Denkmal_Jena_F%C3%BCrstengraben_- _ _ jpg This limit on how well one can focus light is known as the diffraction limit It s literally written in stone in Jena, Germany (on a memorial to Ernst Abbe, who published it in 1873) The radius d of the Airy disk (the central spot of the Airy pattern) is proportional to the wavelength λ of the light It also depends on some other parameters that determine the numerical aperture (n sinθ) You don t need to worry about this It s usually between 0.1 and 1 e.g. visible light has wavelength ~ nm 16

17 The bottom line Resolution limit of a light microscope: The wavelength of visible light is nm A light microscope can t distinguish points that are closer than 200 nm Many cellular structures are smaller than this. A protein is just a few nm across. 17

18 Resolution limits Beating the diffraction limit 18

19 Option 1: Decrease the wavelength Higher-frequency radiation (e.g., x-rays) has shorter wavelengths and thus allows higher resolution It also damages the sample more It s possible to image with electrons, which have a much shorter wavelength (~.1 nm) Electron microscopy can thus achieve much higher resolution Disadvantages: can t use living cells, and molecules of interest won t glow Transmission electron microscopy Scanning electron microsopy Ch2_Ultrastructure/Tempcell.htm dn14136/dn _788.jpg 19

20 Option 2: super-resolution fluorescence microscopy A number of recently developed techniques achieve resolution well beyond the diffraction limit This requires violating some of the assumptions of that limit I ll briefly describe the most popular of these techniques, known alternately as STORM (stochastic optical reconstruction microscopy) or PALM (photoactivation localization microscopy) You re not responsible for this 20

21 STORM/PALM If we have only a few fluorophores in an image, we can localize them very accurately Thus by getting only a few fluorophores to turn on at a time, identifying their locations in each image, and combining that information (computationally) across many images, we can build a composite image of very high resolution (d) Bassoon Homer1 WIDE-FIELD 1µm STORM 21 Sigrist & Sabakni, Current Opinion in Neurobiology 22:1-8, 2011

A Brief History of Light Microscopy And How It Transformed Biomedical Research

A Brief History of Light Microscopy And How It Transformed Biomedical Research A Brief History of Light Microscopy And How It Transformed Biomedical Research Suewei Lin Office: Interdisciplinary Research Building 8A08 Email: sueweilin@gate.sinica.edu.tw TEL: 2789-9315 Microscope

More information

Confocal Microscopy & Imaging Technology. Yan Wu

Confocal Microscopy & Imaging Technology. Yan Wu Confocal Microscopy & Imaging Technology Yan Wu Dec. 05, 2014 Cells under the microscope What we use to see the details of the cell? Light and Electron Microscopy - Bright light / fluorescence microscopy

More information

PALM/STORM, BALM, STED

PALM/STORM, BALM, STED PALM/STORM, BALM, STED Last class 2-photon Intro to PALM/STORM Cyanine dyes/dronpa This class Finish localization super-res BALM STED Localization microscopy Intensity Bins = pixels xx 2 = ss2 + aa 2 /12

More information

Super-resolution Microscopy

Super-resolution Microscopy Semr oc kwhi t epaperser i es : 1. Introduction Super-resolution Microscopy Fluorescence microscopy has revolutionized the study of biological samples. Ever since the invention of fluorescence microscopy

More information

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life

STORM/PALM. Super Resolution Microscopy 10/31/2011. Looking into microscopic world of life Super Resolution Microscopy STORM/PALM Bo Huang Department of Pharmaceutical Chemistry, UCSF CSHL Quantitative Microscopy, 1/31/211 Looking into microscopic world of life 1 µm 1 µm 1 nm 1 nm 1 nm 1 Å Naked

More information

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM

Bi177 - Lecture 13 Microscopy Outside the Box. Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM Bi177 - Lecture 13 Microscopy Outside the Box Fluorescence Nanoscopy TIRF 4-pi STED STORM/PALM The diffraction limit: Abbe s law The Problem Diffraction limit 100x larger than molecular scale! Green Fluorescent

More information

Final Exam, 176 points PMB 185: Techniques in Light Microscopy

Final Exam, 176 points PMB 185: Techniques in Light Microscopy Final Exam, 176 points Name PMB 185: Techniques in Light Microscopy Point value is in parentheses at the end of each question. 1) Order the steps in setting up Köhler illumination. It is not necessary

More information

CS/BioE/Biophys/BMI/CME 279 Computational biology: Structure and organization of biomolecules and cells

CS/BioE/Biophys/BMI/CME 279 Computational biology: Structure and organization of biomolecules and cells CS/BioE/Biophys/BMI/CME 279 Computational biology: Structure and organization of biomolecules and cells Image credit: Ansgar Philippsen Sept 26, 2017 Ron Dror Outline for lecture 1 (course overview) What

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 3 Tools of the Laboratory: The Methods for Studying Microorganisms Copyright The McGraw-Hill Companies, Inc. Permission

More information

Introduction to Computational Fluorescence Microscopy!

Introduction to Computational Fluorescence Microscopy! Introduction to Computational Fluorescence Microscopy! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 13! Gordon Wetzstein! Stanford University! Midterm! Tuesday, Feb

More information

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI) ADVANTAGES Optical Imaging OI Optical Imaging is based on the detection of weak light by a highly sensitive and high resolution CCD camera DISADVANTAGES High sensitivity Limited penetration depth Easy

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Total Internal Reflection Fluorescence Microscopy

Total Internal Reflection Fluorescence Microscopy Total Internal Reflection Microscopy Nicole O Neil Indiana University October 24, 2005 Agenda Why use TIRFM? Theory behind TIR Snell s Law Instrumentation Evanescent Wave Excitation of Fluorophores Advantages/Disadvantages

More information

BIOCHEMIST ALL IN ONE ARTICLE

BIOCHEMIST ALL IN ONE ARTICLE BIOCHEMIST ALL IN ONE ARTICLE Bringing ease-of-use to microscopy From the Philosopher s Stone to the Researcher s Dream Although naturally occurring luminescence has been observed for many centuries, the

More information

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments

Experiment 2b X-Ray Diffraction* Optical Diffraction Experiments * Experiment 2b X-Ray Diffraction* Adapted from Teaching General Chemistry: A Materials Science Companion by A. B. Ellis et al.: ACS, Washington, DC (1993). Introduction Inorganic chemists, physicists,

More information

Methods of Culturing Microorganisms. Chapter 3. Five Basic Techniques of Culturing Bacteria. Topics

Methods of Culturing Microorganisms. Chapter 3. Five Basic Techniques of Culturing Bacteria. Topics Chapter 3 Topics Methods of Culturing Microorganisms Microscope (History, Types, Definitions) Staining (Gram s) Methods of Culturing Microorganisms Five basic techniques of culturing Media Microbial growth

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Dead White Men Who Discovered (and were made of) Cells: Anton Van Leeuwenhoek Robert Hooke Where the Magic Happened Schleiden Cell Theory All plants are made of cells Schwann

More information

Microscopy, Staining, and Classification

Microscopy, Staining, and Classification CSLO CHECK CSLO1. Describe distinctive characteristics and diverse growth requirements of prokaryotic organisms compared to eukaryotic organisms. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell,

More information

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy

A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy Journal of Optoelectronical Nanostructures Islamic Azad University Summer 2017 / Vol. 2, No. 2 A Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy Neda Roostaie 1, Elham Sheykhi

More information

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility

Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Super Resolution Microscopy - Breaking the Diffraction Limit Radiological Research Accelerator Facility Sabrina Campelo, Dr. Andrew Harken Outline Motivation Fluorescence Microscopy -Multiphoton Imaging

More information

Fluorescence microscopy

Fluorescence microscopy Fluorescence microscopy 1 Fluorescence microscopies basic fluorescence, fluorophores Deconvolution Confocal Two-photon/multi-photon 4Pi Light sheet Total internal reflection STED FRAP/FLIP/FCS FRET PALM/STORM/iPALM

More information

Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc.

Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc. 15/05/2012 Super-resolution imaging: early days w/ Video-enhanced DIC, TIRF, PALM, STORM, etc. Prof. Dr. Rainer Duden duden@bio.uni-luebeck.de 1 Using conventional light microscopy resolution is limited

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Measuring subwavelength spatial coherence with plasmonic interferometry Drew Morrill, Dongfang Li, and Domenico Pacifici School of Engineering, Brown University, Providence, RI 02912, United States List

More information

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky

FLUORESCENCE. Matyas Molnar and Dirk Pacholsky FLUORESCENCE Matyas Molnar and Dirk Pacholsky 1 Information This lecture contains images and information from the following internet homepages http://micro.magnet.fsu.edu/primer/index.html http://www.microscopyu.com/

More information

Visualizing Cells Molecular Biology of the Cell - Chapter 9

Visualizing Cells Molecular Biology of the Cell - Chapter 9 Visualizing Cells Molecular Biology of the Cell - Chapter 9 Resolution, Detection Magnification Interaction of Light with matter: Absorbtion, Refraction, Reflection, Fluorescence Light Microscopy Absorbtion

More information

Confocal Microscopy Analyzes Cells

Confocal Microscopy Analyzes Cells Choosing Filters for Fluorescence A Laurin Publication Photonic Solutions for Biotechnology and Medicine November 2002 Confocal Microscopy Analyzes Cells Reprinted from the November 2002 issue of Biophotonics

More information

Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers

Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers Multiphoton Microscopy / Fiber Laser Simultaneous multi-color, multiphoton fluorophore excitation using dual-color fiber lasers Matthias Handloser, Tim Paasch-Colberg, Bernhard Wolfring TOPTICA Photonics

More information

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens

Two-Photon Microscopy for Deep Tissue Imaging of Living Specimens for Deep Tissue Imaging of Living Specimens Tilman Franke* and Sebastian Rhode TILL Photonics GmbH, an FEI company, Lochhamer Schlag 21, D-82166 Gräfelfing, Germany *tilman.franke@fei.com Introduction

More information

Absorption of an electromagnetic wave

Absorption of an electromagnetic wave In vivo optical imaging?? Absorption of an electromagnetic wave Tissue absorption spectrum Extinction = Absorption + Scattering Absorption of an electromagnetic wave Scattering of an electromagnetic wave

More information

BASICS OF FLOW CYTOMETRY

BASICS OF FLOW CYTOMETRY BASICS OF FLOW CYTOMETRY AUTHOR: Ana Isabel Vieira APPROVAL: Henrique Veiga Fernandes Ana Sílvia Gonçalves SOP.UCF.002 03-09-2015 Pag. 1/9 Overview Flow: Fluid Cyto: Cell Metry: Measurement Flow cytometry

More information

Localization Microscopy

Localization Microscopy Localization Microscopy Theory, Sample Prep & Practical Considerations Patrina Pellett & Ann McEvoy Applications Scientist GE Healthcare, Cell Technologies May 27 th, 2015 Localization Microscopy Talk

More information

Practical light microscopy: an introduction

Practical light microscopy: an introduction Practical light microscopy: an introduction Dr. Mark Leake, Oxford University www.physics.ox.ac.uk/users/leake Aim of today s talk: Explanation of the very (very) basics of how a light microscope works

More information

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength.

Contact Details. Dr Alexander Galkin. Office: MBC Room 186. Tel: (028) Frequency and wavelength. Contact Details The electromagnetic spectrum Biological Spectroscopy Dr Alexander Galkin Email: a.galkin@qub.ac.uk Dr Alexander Galkin MSc Biomolecular Function - BBC8045 Office: MBC Room 186 Tel: (028)

More information

SUPER-RESOLUTION MICROSCOPY. Dr. Nathalie Garin

SUPER-RESOLUTION MICROSCOPY. Dr. Nathalie Garin SUPER-RESOLUTION MICROSCOPY Dr. Nathalie Garin Content Motivation for superresolution Superresolution, nanoscopy, : definition Structured Illumination Microscopy (SIM) Localization microscopy STimulated

More information

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f

Resolution of Microscopes Visible light is nm Dry lens(0.5na), green(530nm light)=0.65µm=650nm for oil lens (1.4NA) UV light (300nm) = 0.13µm f Microscopes and Microscopy MCB 380 Good information sources: Alberts-Molecular Biology of the Cell http://micro.magnet.fsu.edu/primer/ http://www.microscopyu.com/ Approaches to Problems in Cell Biology

More information

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT)

ECE280: Nano-Plasmonics and Its Applications. Week5. Extraordinary Optical Transmission (EOT) ECE280: Nano-Plasmonics and Its Applications Week5 Extraordinary Optical Transmission (EOT) Introduction Sub-wavelength apertures in metal films provide light confinement beyond the fundamental diffraction

More information

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave

Biophotonics?? Biophotonics. technology in biomedical engineering. Advantages of the lightwave Biophotonics - Imaging: X-ray, OCT, polarimetry, DOT, TIRF, photon migration, endoscopy, confocal microscopy, multiphoton microscopy, multispectral imaging - Biosensing: IR spectroscopy, fluorescence,

More information

Fluorescence Nanoscopy

Fluorescence Nanoscopy Fluorescence Nanoscopy Keith A. Lidke University of New Mexico panda3.phys.unm.edu/~klidke/index.html Optical Microscopy http://en.wikipedia.org/wiki/k%c3%b6hler_illumination 30 µm Fluorescent Probes Michalet

More information

Measure of surface protein mobility with u-paint technique

Measure of surface protein mobility with u-paint technique Measure of surface protein mobility with u-paint technique How dynamic image can solve the situation? Random distribution or cluster? Why live super-resolution microscopy can solve the situation With mobility

More information

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati

TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati TEM and Electron Diffraction Keith Leonard, PhD (1999) U. Cincinnati Electron Microscopes: Electron microscopes, such as the scanning electron microscope (SEM) and transmission electron microscope (TEM)

More information

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy

Fluorescence Microscopy. Terms and concepts to know: 10/11/2011. Visible spectrum (of light) and energy Fluorescence Microscopy Louisiana Tech University Ruston, Louisiana Microscopy Workshop Dr. Mark DeCoster Associate Professor Biomedical Engineering 1 Terms and concepts to know: Signal to Noise Excitation

More information

Fluorescence Nanoscopy 高甫仁 ) Institute of Biophotonics, National Yang Ming University. Outline

Fluorescence Nanoscopy 高甫仁 ) Institute of Biophotonics, National Yang Ming University. Outline Fluorescence Nanoscopy 高甫仁 ) Fu-Jen Kao ( 高甫仁 Institute of Biophotonics, National Yang Ming University Outline The Abbe s (diffraction) limit and nanoscopy Fundamentals and opportunities of FLIM/FRET Visualizing

More information

Fast, three-dimensional super-resolution imaging of live cells

Fast, three-dimensional super-resolution imaging of live cells Nature Methods Fast, three-dimensional super-resolution imaging of live cells Sara A Jones, Sang-Hee Shim, Jiang He & Xiaowei Zhuang Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3

More information

Lab-on-a Chip Systems. with Optical Detection of Toxicological Effects. in Medicine

Lab-on-a Chip Systems. with Optical Detection of Toxicological Effects. in Medicine Lab-on-a Chip Systems with Optical Detection of Toxicological Effects in Medicine Karl-Heinz Feller Ernst-Abbe-Fachhochschule Jena Jencolor Innovation Forum 2012 4.9. 5. 9. 2012 Jena RESEARCH GROUP INSTRUMENTAL

More information

Cell analysis and bioimaging technology illustrated

Cell analysis and bioimaging technology illustrated Cell analysis and bioimaging technology illustrated The Cell Analysis Center Scientific Bulletin Part 1 Sysmex has been studying and exploring principles of automated haematology analysers, making full

More information

Optical microscopy Theoretical background Galina Kubyshkina

Optical microscopy Theoretical background Galina Kubyshkina Optical microscopy Theoretical background Galina Kubyshkina Elektromaterial Lendava d.d., Slovenia Crystalline materials presence of a unit (cell), which is periodically repeated in space regular structure

More information

Widefield Microscopy Bleed-Through

Widefield Microscopy Bleed-Through In widefield microscopy the excitation wavelengths which illuminate the sample, and the emission wavelengths which reach the CCD camera are selected throughout a filter cube. A filter cube consists of

More information

BIO 315 Lab Exam I. Section #: Name:

BIO 315 Lab Exam I. Section #: Name: Section #: Name: Also provide this information on the computer grid sheet given to you. (Section # in special code box) BIO 315 Lab Exam I 1. In labeling the parts of a standard compound light microscope

More information

Imaging facilities at WUR

Imaging facilities at WUR Imaging facilities at WUR Advanced light microscopy facilities at Wageningen UR Programme Thursday 13 June 2013 Lunch meeting organized by Cat-Agro Food 12.00 Welcome and sandwich lunch 12.10 Introduction

More information

Confocal Microscopes. Evolution of Imaging

Confocal Microscopes. Evolution of Imaging Confocal Microscopes and Evolution of Imaging Judi Reilly Hans Richter Massachusetts Institute of Technology Environment, Health & Safety Office Radiation Protection What is Confocal? Pinhole diaphragm

More information

Live Specimen Microscopy

Live Specimen Microscopy Jens Jens Rietdorf: Rietdorf: This This presentation presentation is is meant meant give give some some general general hints hints for for live live specimen specimen microscopy microscopy Live Specimen

More information

Microscopy...Seeing the Unseen

Microscopy...Seeing the Unseen Technical Workshops Series 2013 Three Day Intensive Workshop on Venture Center Microscopy...Seeing the Unseen Organized by Venture Center Learn Organized by For whom When Principles and applications of

More information

Fluorescence Light Microscopy for Cell Biology

Fluorescence Light Microscopy for Cell Biology Fluorescence Light Microscopy for Cell Biology Why use light microscopy? Traditional questions that light microscopy has addressed: Structure within a cell Locations of specific molecules within a cell

More information

5/11/2015 MICROSCOPIC TECHNIQUES 2. Fluorescence microscopy SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY

5/11/2015 MICROSCOPIC TECHNIQUES 2. Fluorescence microscopy SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY UNIVERSITY OF PÉCS MEDICAL SCHOOL www.medchool.pte.hu MICROSCOPIC TECHNIQUES 2 SPECIAL TECHNIQUES BASED ON FLUORESCENCE MICROSCOPY BIOPHYSICS 2. 2015 25th March Dr. Beáta Bugyi Department of Biophyic Fluorecence

More information

Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures

Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures Supplementary Information Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures Masakazu Iwai, Makio Yokono, Kazuo Kurokawa, Akira Ichihara & Akihiko Nakano Supplementary

More information

Digital resolution enhancement in surface plasmon microscopy

Digital resolution enhancement in surface plasmon microscopy Digital resolution enhancement in surface plasmon microscopy I.I. Smolyaninov 1) *, J. Elliott 2), G. Wurtz 2), A.V. Zayats 2), C.C. Davis 1) 1) Department of Electrical and Computer Engineering, University

More information

Sample region with fluorescent labeled molecules

Sample region with fluorescent labeled molecules FLUORESCENCE IMAGING I. Fluorescence-imaging with diffraction limited spots The resolution in optical microscopy has been hampered by the smallest spot possible (~ λ/2) that can be achieved by conventional

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

Biophysics of contractile ring assembly

Biophysics of contractile ring assembly Biophysics of contractile ring assembly Dimitrios Vavylonis Department of Physics, Lehigh University October 1, 2007 Physical biology of the cell Physical processes in cell organization and function: Transport

More information

Super Resolution Imaging Solution Provider. Imaging Future

Super Resolution Imaging Solution Provider. Imaging Future Super Resolution Imaging Solution Provider Imaging Future Imaging Solution More Than Equipment NanoBioImaging(NBI) is the Industrial Partner of HKUST Super Resolution Imaging Center (SRIC). NBI aims to

More information

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng

Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng Scientific Reports Multiplexed 3D FRET imaging in deep tissue of live embryos Ming Zhao, Xiaoyang Wan, Yu Li, Weibin Zhou and Leilei Peng 1 Supplementary figures and notes Supplementary Figure S1 Volumetric

More information

SAPIENZA Università di Roma Laurea magistrale in Ingegneria delle Nanotecnologie A.A Biophotonics Laboratory Course

SAPIENZA Università di Roma Laurea magistrale in Ingegneria delle Nanotecnologie A.A Biophotonics Laboratory Course SAPIENZA Università di Roma Laurea magistrale in Ingegneria delle Nanotecnologie A.A. 2016-2017 Biophotonics Laboratory Course Prof. Francesco Michelotti SAPIENZA Università di Roma Facoltà di Ingegneria

More information

Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny

Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny Microbiology Chapter 2 Laboratory Equipment and Procedures 2:1 The Light Microscope MICROSCOPE: any tool with a lens to magnify and observe tiny details of specimens Micro tiny, small Scope to see SIMPLE

More information

ASSISTING HYBRIDIZED MICROSCOPIC IMAGING

ASSISTING HYBRIDIZED MICROSCOPIC IMAGING ASSISTING HYBRIDIZED MICROSCOPIC IMAGING ALEKSANDAR JOVANOVIĆ, MIROSLAV MARIĆ, MAJA JOVANOVIĆ, NENAD ANDONOVSKI GIS - Group for Intelligent Systems, School of Mathematics, University of Belgrade, Studentski

More information

Super-Resolution Localization Microscopy

Super-Resolution Localization Microscopy APPLICATION NOTE Super-Resolution Localization Microscopy Light microscopy techniques have been vital to our understanding of biological structures and systems since their invention in the late 16 th Century.

More information

In-situ laser-induced contamination monitoring using long-distance microscopy

In-situ laser-induced contamination monitoring using long-distance microscopy In-situ laser-induced contamination monitoring using long-distance microscopy Paul Wagner a, Helmut Schröder* a, Wolfgang Riede a a German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring

More information

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY

STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY STUDY & ANALYSIS OF ALUMINIUM FOIL AND ANATASE TITANIUM OXIDE (TiO2) USING TRANSMISSION ELECTRON MICROSCOPY Ayush Garg Department of Chemical and Materials Engineering, University of Auckland, Auckland,

More information

Microscopy from Carl Zeiss. DirectFRAP. News from the Cell. The New Class of Laser Manipulation for the Analysis of Cell Dynamics

Microscopy from Carl Zeiss. DirectFRAP. News from the Cell. The New Class of Laser Manipulation for the Analysis of Cell Dynamics Microscopy from Carl Zeiss DirectFRAP News from the Cell The New Class of Laser Manipulation for the Analysis of Cell Dynamics DirectFRAP. New Insights into Cell Dynamics. Fluorescence breaks new ground:

More information

1P1b: Introduction to Microscopy

1P1b: Introduction to Microscopy 1P1b: Introduction to Microscopy Central to the study and characterisation of metals and many other materials is the microscope, ranging from the magnification of, say, 1 to 35 in a simple stereo binocular

More information

MICROSCOPY. "micro" (small) "scopeo" (to watch)

MICROSCOPY. micro (small) scopeo (to watch) MICROSCOPY "micro" (small) "scopeo" (to watch) THE RELATIVE SIZES OF MOLECULES, CELLS AND ORGANISMS THE RELATIVE SIZES OF MOLECULES, CELLS AND ORGANISMS MICROSCOPY 1590 2012 MICROSCOPY THE LIGHT Light:

More information

Dark- Field Total Internal Reflection Microscopy for the Study of Kinesin Motor Proteins

Dark- Field Total Internal Reflection Microscopy for the Study of Kinesin Motor Proteins Dark- Field Total Internal Reflection Microscopy for the Study of Kinesin Motor Proteins Christopher Pfeiffer- Kelly Penn State College of Engineering Summer REU Program (CERI) Abstract: Kinesin motor

More information

THE ADVANCED IMAGING CENTER AT JANELIA RESEARCH CAMPUS. Call for Proposals

THE ADVANCED IMAGING CENTER AT JANELIA RESEARCH CAMPUS. Call for Proposals THE ADVANCED IMAGING CENTER AT JANELIA RESEARCH CAMPUS Call for Proposals janelia.org/aic Call for Proposals THE ADVANCED IMAGING CENTER AT JANELIA RESEARCH CAMPUS We are now accepting proposals from scientists

More information

Digital Image Fundamentals. Chapter Two Instructor: Hossein Pourghassem. Human Visual Perception

Digital Image Fundamentals. Chapter Two Instructor: Hossein Pourghassem. Human Visual Perception Digital Image Fundamentals Chapter Two Instructor: Hossein Pourghassem Human Visual Perception 1 Human Visual Perception requires some knowledge of of how we we see see colors Islamic Azad University of

More information

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION

PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1191-1195 Invited lecture PATTERNING OF OXIDE THIN FILMS BY UV-LASER ABLATION J. Ihlemann * Laser-Laboratorium Göttingen e.v.,

More information

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma

Chapter 3 Basic Crystallography and Electron Diffraction from Crystals. Lecture 9. Chapter 3 CHEM Fall, L. Ma Chapter 3 Basic Crystallography and Electron Diffraction from Crystals Lecture 9 Outline The geometry of electron diffraction Crystallography Kinetic Theory of Electron diffraction Diffraction from crystals

More information

Microstructural Characterization of Materials

Microstructural Characterization of Materials Microstructural Characterization of Materials 2nd Edition DAVID BRANDON AND WAYNE D. KAPLAN Technion, Israel Institute of Technology, Israel John Wiley & Sons, Ltd Contents Preface to the Second Edition

More information

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging

QImaging Camera Application Notes Multicolor Immunofluorescence Imaging QImaging Camera Application Notes Multicolor Immunofluorescence Imaging In order to image localization of intracellular proteins with high specificity, it is frequently necessary to multiplex antibody

More information

Illumatool ΤΜ Tunable Light System: A Non-Destructive Light Source For Molecular And Cellular Biology Applications. John Fox, Lightools Research.

Illumatool ΤΜ Tunable Light System: A Non-Destructive Light Source For Molecular And Cellular Biology Applications. John Fox, Lightools Research. Illumatool ΤΜ Tunable Light System: A Non-Destructive Light Source For Molecular And Cellular Biology Applications. John Fox, Lightools Research. Fluorescent dyes and proteins are basic analytical tools

More information

X-ray diffraction. Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics

X-ray diffraction. Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics X-ray diffraction Talián Csaba Gábor University of Pécs, Medical School Department of Biophysics 2012.10.11. Outline of the lecture X-ray radiation Interference, diffraction Crystal structure X-ray diffraction

More information

8. PYROMETRY FUNDAMENTALS

8. PYROMETRY FUNDAMENTALS 8. PYROMETRY FUNDAMENTALS Being part of a highly specialized field of measuring techniques has developed a certain mysterious aura about it. This mystery stems from the false perception that the technique

More information

A Brief Introduction to Structural Biology and Protein Crystallography

A Brief Introduction to Structural Biology and Protein Crystallography A Brief Introduction to Structural Biology and Protein Crystallography structural biology of H2O http://courses.cm.utexas.edu/jrobertus/ch339k/overheads-1/water-structure.jpg Protein polymers fold up into

More information

IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS

IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS Journal of Optoelectronics and Advanced Materials Vol. 7, No. 5, October 2005, p. 2581-2586 IMMERSION HOLOGRAPHIC RECORDING OF SUBWAVELENGTH GRATINGS IN AMORPHOUS CHALCOGENIDE THIN FILMS J. Teteris *,

More information

Vertico-SMI /SPDMphymod: Next Level of Super-Resolution Fluorescence Microscopy

Vertico-SMI /SPDMphymod: Next Level of Super-Resolution Fluorescence Microscopy Work in your familiar GFP/YFP/RFP system from the first experiment to the nanoimage Bwcon business award winner: Inventor Prof Christoph Cremer Vertico-SMI /SPDMphymod: Next Level of Super-Resolution Fluorescence

More information

Winter College on Micro and Nano Photonics for Life Sciences February General Overview

Winter College on Micro and Nano Photonics for Life Sciences February General Overview 1932-15 Winter College on Micro and Nano Photonics for Life Sciences 11-22 February 2008 General Overview Martina Havenith Ruhr University Bochum Bochum, Germany Microscopy- An Overview M. Havenith Ruhr-University

More information

PALM Microscope User Manual

PALM Microscope User Manual PALM Microscope User Manual Stephan Uphoff, Mathew Stracy, Federico Garza de Leon Microscope components: The laser excitation is delivered from a Toptica Multi Laser Engine with 405 nm, 488 nm, 561 nm,

More information

OCTOPLUS QPLEX FLUORESCENCE IMAGER. for fast & powerful fast 2D Gel image acquisition

OCTOPLUS QPLEX FLUORESCENCE IMAGER. for fast & powerful fast 2D Gel image acquisition OCTOPLUS QPLEX FLUORESCENCE IMAGER for fast & powerful fast 2D Gel image acquisition Octoplus QPLEX Fluorescence Imager The new Octoplus QPLEX fluorescence imager sets a novel standard fluorescence 2D

More information

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool.

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool. Proceedings of the 4th Annual ISC Research Symposium ISCRS 2010 April 21, 2010, Rolla, Missouri LOW COST IMAGING OF MELTPOOL IN MICRO LASER AIDED MANUFACTURING PROCESS (µlamp) ABSTRACT This paper describes

More information

Next Level of Super Resolution Fluorescence Microscopy

Next Level of Super Resolution Fluorescence Microscopy Work in your familiar GFP/YFP/RFP system from the first experiment to the nanoimage Bwcon business award winner: Inventor Prof Christoph Cremer Next Level of Super Resolution Fluorescence Microscopy Resolution:

More information

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves

Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Wide-field extended-resolution fluorescence microscopy with standing surface plasmon resonance waves Euiheon Chung 1, 2, Yang-Hyo Kim 1, Wai Teng Tang 3, Colin J. R. Sheppard 4, and 1, 5* Peter T. C. So

More information

New developments in STED Microscopy

New developments in STED Microscopy New developments in STED Microscopy Arnold Giske*, Jochen Sieber, Hilmar Gugel, Marcus Dyba, Volker Seyfried, Dietmar Gnass Leica Microsystems CMS, Am Friedensplatz 3, 68126 Mannheim, Germany ABSTRACT

More information

Special Techniques 1. Mark Scott FILM Facility

Special Techniques 1. Mark Scott FILM Facility Special Techniques 1 Mark Scott FILM Facility SPECIAL TECHNIQUES Multi-photon microscopy Second Harmonic Generation FRAP FRET FLIM In-vivo imaging TWO-PHOTON MICROSCOPY Alternative to confocal and deconvolution

More information

Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy. Andrea Lynn McEvoy

Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy. Andrea Lynn McEvoy Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy by Andrea Lynn McEvoy A dissertation submitted in partial satisfaction of the requirements for the degree

More information

New single-molecule imaging system ends prna debate over phi29 motor

New single-molecule imaging system ends prna debate over phi29 motor Page 1 of 5 January 30, 2007 New single-molecule imaging system ends prna debate over phi29 motor WEST LAFAYETTE, Ind. - Scientists are able to view active molecules within a biological motor of the nanometer

More information

Introduction. (b) (a)

Introduction. (b) (a) Introduction Whispering Gallery modes (WGMs) in dielectric micro-cavities are resonant electromagnetic modes that are of considerable current interest because of their extremely high Q values leading to

More information

3.1.4 DNA Microarray Technology

3.1.4 DNA Microarray Technology 3.1.4 DNA Microarray Technology Scientists have discovered that one of the differences between healthy and cancer is which genes are turned on in each. Scientists can compare the gene expression patterns

More information

Bioinstrumentation Light Sources Lasers or LEDs?

Bioinstrumentation Light Sources Lasers or LEDs? Bioinstrumentation Light Sources Lasers or LEDs? A comprehensive analysis of all the factors involved in designing and building life sciences instrumentation reveals that lasers provide superior performance

More information

Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600.

Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600. Photoacoustic Imaging in Biomedicine Critical Review by Saurabh Vyas Group 9: Interventional Photoacoustic Ultrasound CIS II: 600.446, Spring 2011 Introduction Photoacoustic imaging (PA Imaging) is the

More information

MicroTime 200 STED. Super-resolution add-on for the confocal time-resolved microscopy platform

MicroTime 200 STED. Super-resolution add-on for the confocal time-resolved microscopy platform MicroTime 200 STED Super-resolution add-on for the confocal time-resolved microscopy platform confocal STED 2 Vision The MicroTime 200... The MicroTime 200 is a high-end confocal fluorescence lifetime

More information

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics

Contents. SCHOOL of FLUORESCENCE. For more information, go to lifetechnologies.com/imagingbasics MPSF educator packet This packet contains illustrations and figures from the Molecular Probes School of Fluorescence website. They illustrate concepts from the basic physical properties that underlie fluorescence

More information

Imaging of endocrine organs

Imaging of endocrine organs Imaging of endocrine organs Helen Christian Department of Physiology, Anatomy & Genetics St Anne s College, University of Oxford Diabetesforum, Stockholm 2017 Islets of Langerhan Pituitary gland Renin

More information