Lecture 01 Administrative issues What is Genetics? Course outline

Size: px
Start display at page:

Download "Lecture 01 Administrative issues What is Genetics? Course outline"

Transcription

1 Lecture 01 Administrative issues What is Genetics? Course outline Lecture 02 Protein function Relationship to phenotype Specific binding and non-covalent forces Protein structure Amino acids Peptide bonds Secondary structure α-helix β-pleated sheet Tertiary structure R groups and forces Quaternary structure Lecture 03 Introduction to nucleic acid function DNA structure Deoxyribonucleotides Phosphodiester bonds Double helix Complementary base pairing Higher order structure RNA structure Ribonucleotides Stem and loop structures Higher order structure Complementary base pairing and function Lecture 04 Outline of gene expression The genetic code Introduction to transcription RNA polymerases Initiation, elongation, and termination Gene classes Transcription initiation in prokaryotes RNA polymerase σ subunits Promoters Regulatory proteins

2 Lecture 05 Transcription termination in prokaryotes ρ independant ρ dependant Transcription initiation in eukaryotes RNA polymerases I and III RNA polymerase II General transcription factors and core promoters Additional transcription factors, proximal promoters, and enhancers Regulation Transcription termination in eukaryotes RNA polymerases I and III RNA polymerase II Lecture 06 Processing in prokaryotes For rrna For trna For mrna Processing in eukaryotes For rrna For trna For mrna Capping Polyadenylation Splicing Alternative splicing Lecture 07 Introduction to translation trna function Ribosomes Initiation, elongation, and termination Translation in prokaryotes Ribosomes Initiation, elongation, and termination Translation factors Lecture 08 Translation in eukaryotes Ribosomes Initiation, elongation, and termination Translation factors

3 Lecture 09 Introduction to DNA replication Origins, semiconservative, bidirectional DNA polymerases 5 to 3 polymerase, 3 to 5 proofreading exonuclease, primers Replication in prokaryotes Initiation and elongation Replisomes Linking Okazaki fragments Replication in eukaryotes Initiation Elongation Lecture 10 Chromatin components DNA, proteins, RNA Histones 10nm fibre Nucleosome Domains and territories Scaffold/matrix and loops Interphase and M phase Chromosomes Unreplicated and replicated Telomeres and centromere Metacentric, acrocentric, and telocentric Lecture 11 Binary fission Cell cycle M, G1, S, G2 phases Mitotic cell division Mitosis and cytokinesis Overview, stages, functions Sexual reproduction Haploid, diploid, alleles, homologous pairs Meiotic cell division Overview, stages, functions Life cycles Typical haploid, typical diploid

4 Lecture 12 Single gene cross, haploid adult Worked example based on meiosis Single gene cross, diploid adult Homozygous and heterozygous Allele interactions Dominant and recessive Incompletely dominant Codominant Molecular basis for above interactions Worked examples based on meiosis Homozygous dominant x homozygous recessive Heterozygous x heterozygous Lecture 13 Monohybrid crosses Gene and allele symbols, slash notation Extensions to monohybrid crosses Multiple alleles Examples Recessive lethals No pure breeding lines, ratios Sex linkage Sex chromosomes, homogametic and heterogametic sexes Inheritance patterns for X-linked genes Hemizygosity, dosage compensation Alternative mechanisms for sex determination Lecture 14 Dihybrid crosses Unlinked and linked Crosses with unlinked loci Gametes depend on chromosome alignment Parental and recombinant type gametes 50% parental, 50% recombinant Forked-line method Interactions between loci Dominant epistasis Recessive epistasis Others

5 Lecture 15 Gamete formation with linked loci Gametes depend on crossing over If no crossing over occurs between loci in a meiosis 100% parental, 0% recombinant If crossing over occurs between loci in a meiosis 50% parental, 50% recombinant Frequency of meioses with crossing over determines recombinant percentage What determines frequency of meioses with crossing over between loci? Physical distance between loci Large distance, high frequency of crossing over Small distance, low frequency of crossing over Lecture 16 Genetic mapping Use percentage of recombinant gametes to map gene loci Test crosses Double heterozygote crossed with double homozygous recessive Progeny phenotypes reflect gamete genotypes from double heterozygote Double homozygous recessive is unimportant Gene nomenclature (fruit flies) Gene named after abnormal phenotype Abnormal phenotype dominant: gene name, symbol begin with upper case Abnormal phenotype recessive: gene name, symbol begin with lower case Normal (wild type) allele is given a superscript plus Abnormal allele is not Lecture 17 Example test cross Percentage recombinants is the map distance Coupling and repulsion Errors result in map distances above 50% More than one crossover between loci Two, three, and four strand double crossovers Average out at 50% recombinants Hence one or more crossovers gives 50% recombinants Mapping function As separation increases, measured map distance approaches 50% Short distances add up, long distances do not Use of χ 2 test to distinguish unlinked and linked loci

6 Lecture 18 Mutation Gene and chromosome Types of gene mutation Substitutions Transitions and transversions Indels Causes of gene mutation Spontaneous Tautomers, deamination, depurination, miss-paired repeats Induced Base analogues, base modifiers, intercalating agents Ultraviolet light, thymine, high energy radiation Lecture 19 Effects on gene function Coding regions Silent, missense, nonsense, frameshift Non-coding regions Reversions and suppressors Exact and equivalent reversions Intragenic and extragenic suppressors Frame shift and nonsense Organismal effects Morphological, behavioral, lethal, nutritional, conditional Penetrance and expressivity Complementation test Lecture 20 Chromosome identification Deletions Recessive lethal, hemizygosity, suppressed recombination Duplications Inversions Paracentric and pericentric Altered linkage map (homozygous), suppressed recombination (heterozygous) Reciprocal translocations Cross shapes (heterozygous), altered linkage maps, reduced fertility (heterozygous) Abnormal euploidy Even n fertile, odd n sterile Aneuploidy

7 Lecture 21 Continuous variation Genetic basis for continuous variation Multiple alleles Polygenic inheritance Environmental effects Identifying loci QTL mapping GWA studies Uses Medical applications Lecture 22 Definitions Population, gene pool Describing the gene pool Genotype frequency, allele frequency Does sexual reproduction alter the gene pool? Hardy-Weinberg equilibrium Assumptions: two alleles, random mating, infinite population Conclusions: gene pool unchanged, genotypes in fixed ratio Applications of Hardy-Weinberg equilibrium Determine allele frequencies in dominant-recessive situation Determine whether population is in Hardy-Weinberg equilibrium Lecture 23 Mechanisms that change the gene pool Mutation Creates and eliminates alleles Equilibrium reached slowly Selection Genotype affects probability of having offspring Fertility, survival, attractiveness Relative fitness Modified Hardy-Weinberg equation Frequency-independant selection Heterozygote has intermediate fitness, highest fitness, lowest fitness Frequency-dependant selection

8 Lecture 24 Mechanisms that change the gene pool (continued) Genetic drift Random events may affect finite populations Most relevant in small populations Bottleneck and founder effects Gene flow Mating between populations Depends on amount of mating and difference in gene pools Sources of Variation Quantifying variation Percentage of polymorphic loci Average heterozygosity Lecture 25 Use of nutritional mutations Methods for making partial diploids Transformation Uses DNA Fate of DNA: recombination or degradation Plasmids Mapping by cotransformation Conjugation F factor Integration and excision F-, F+, Hfr, and F' states Rolling circle replication

9 Lecture 26 Methods for making partial diploids (continued) Conjugation (continued) Transfer using F+, Hfr, and F' donors Frequency of host gene and F factor transfer Mapping by time of gene transfer Transduction Bacteriophage structure Lytic life cycle Lysogenic life cycle Virulent and temperate bacteriophage Generalized transduction Specialized transduction Lecture 27 Applications of recombinant DNA technology Principles of recombinant DNA technology Complementary base pairing Use of enzymes of DNA metabolism DNA polymerases Restriction enzymes DNA ligases Reverse transcriptases Chemical synthesis Uses DNA detection PCR DNA sequencing Dideoxy method and massively parallel sequencing Lecture 28 Uses (continued) Characterization of genes Gene structure and transcript variants RT-PCR Reporter genes Transfer of specific sequences Cloning Manipulation of genes and gene expression RNAi Ectopic expression in vitro mutagenesis CRISPR and homology directed repair Gene therapy

10 Lecture 29 Examples Cloning of human insulin gene Gene assembly from oligonucleotides Directional cloning Modelling cancer and cancer therapies Gene activation by Cre recombinase Gene activation by doxycycline Evolution of limblessness in snakes CRISPR editing of ZRS enhancer Environmental DNA and fisheries management edna Comparison with electrofishing Lecture 30 Definition of genomics Functional genomics Comparative genomics Repeated sequences Dispersed Retrotransposons, DNA transposons Tandem array Telomeres, centromeres, rdna Unique sequences Coding sequences mrna (exons vs introns), small RNAs Minimum genome size Ape vs human comparisons Lecture 31 Reasons for gene regulation Efficient use of resources, tissue-specific expression Levels of gene regulation Transcription, processing, translation Regulation at transcription (prokaryotes) Alternate sigma subunits Activators and repressors Structure of Lac operon Polycistronic RNA, coordinate regulation Roles of Lac repressor, CRP Mutations in lac Z, Y, A, promoter, operator Partial diploids: cis-acting mutations

11 Lecture 32 Regulation at transcription (continued) Mutations in laci Partial diploids: trans-acting mutations Regulation at translation (prokaryotes) Regulation at transcription (eukaryotes) Transcription factors, enhancers, etc. Chromatin structure Open vs closed, DNA methylation, histone modification Lecture 33 Regulation at processing (eukaryotes) Alternate splicing Regulation at translation (eukaryotes) mirnas Synthesis and function

Course Competencies Template - Form 112

Course Competencies Template - Form 112 Course Competencies Template - Form 112 GENERAL INFORMATION Name: Drs. Susan Neimand and Edwin Ginés- Candelaria Course Prefix/Number: PCB 3060 Number of Credits: 3 Degree Type Phone #: (305) 237-6152,

More information

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION

M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION M I C R O B I O L O G Y WITH DISEASES BY TAXONOMY, THIRD EDITION Chapter 7 Microbial Genetics Lecture prepared by Mindy Miller-Kittrell, University of Tennessee, Knoxville The Structure and Replication

More information

CHAPTER 5 Principle of Genetics Review

CHAPTER 5 Principle of Genetics Review CHAPTER 5 Principle of Genetics Review I. Mendel s Investigations Gregor Johann Mendel Hybridized peas 1856-1864 Formulated Principles of Heredity published in 1866 II. Chromosomal Basis of Inheritance

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 DNA transcription and regulation We ve seen how the principles

More information

Introduction Genetics in Human Society The Universality of Genetic Principles Model Organisms Organizing the Study of Genetics The Concept of the

Introduction Genetics in Human Society The Universality of Genetic Principles Model Organisms Organizing the Study of Genetics The Concept of the Introduction Genetics in Human Society The Universality of Genetic Principles Model Organisms Organizing the Study of Genetics The Concept of the Gene Genetic Analysis Molecular Foundations of Genetics

More information

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Genetics. Chapter 9 - Microbial Genetics. Chromosome. Genes. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 - Microbial Genetics Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Genetics Genome (The sum total of genetic material of a cell is referred to as the genome.) Chromosome

More information

Chapter 2. An Introduction to Genes and Genomes

Chapter 2. An Introduction to Genes and Genomes PowerPoint Lectures for Introduction to Biotechnology, Second Edition William J.Thieman and Michael A.Palladino Chapter 2 An Introduction to Genes and Genomes Lectures by Lara Dowland Chapter Contents

More information

BIOLOGY 205 Midterm II - 19 February Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT?

BIOLOGY 205 Midterm II - 19 February Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT? BIOLOGY 205 Midterm II - 19 February 1999 Name Multiple choice questions 4 points each (Best 12 out of 13). 1. Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT?

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 16 The Molecular Basis of Inheritance Unit 6: Molecular Genetics

More information

Review Quizzes Chapters 11-16

Review Quizzes Chapters 11-16 Review Quizzes Chapters 11-16 1. In pea plants, the allele for smooth seeds (S) is dominant over the allele for wrinkled seeds (s). In an experiment, when two hybrids are crossed, what percent of the offspring

More information

Genetics Review. 5. Prokaryotic Inheritance a. Conjugation b. Plasmids

Genetics Review. 5. Prokaryotic Inheritance a. Conjugation b. Plasmids Genetics Review A. Top 10 If you learned anything from this unit, you should have learned: 1. Different versions of same gene are called alleles a. dominant vs. recessive b. homozygous vs. heterozygous

More information

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination 1 Flow of Genetics NA replication (DNA => DNA; RNA => RNA) Replication Reverse transcription (RNA => DNA) Gene Expression

More information

MUTANT: A mutant is a strain that has suffered a mutation and exhibits a different phenotype from the parental strain.

MUTANT: A mutant is a strain that has suffered a mutation and exhibits a different phenotype from the parental strain. OUTLINE OF GENETICS LECTURE #1 A. TERMS PHENOTYPE: Phenotype refers to the observable properties of an organism, such as morphology, growth rate, ability to grow under different conditions or media. For

More information

Ch 8. Microbial Genetics

Ch 8. Microbial Genetics Ch 8 Microbial Genetics SLOs Define the terms genome and gene, and differentiate between genotype and phenotype. Draw a detailed segment of DNA. Summarize the steps of bacterial DNA replication, and identify

More information

Genetics and Genes. Genetics the study of heredity

Genetics and Genes. Genetics the study of heredity Microbial Genetics Genetics and Genes Genetics the study of heredity The science of genetics explores: 1. Transmission of biological traits from parent to offspring 2. Expression and variation of those

More information

Bio 311 Learning Objectives

Bio 311 Learning Objectives Bio 311 Learning Objectives This document outlines the learning objectives for Biol 311 (Principles of Genetics). Biol 311 is part of the BioCore within the Department of Biological Sciences; therefore,

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

Tala Saleh. Tamer Barakat ... Anas Abu. Humaidan

Tala Saleh. Tamer Barakat ... Anas Abu. Humaidan 7 Tala Saleh Tamer Barakat... Anas Abu. Humaidan Some Information in this lecture may not be mentioned by the Dr. as thoroughly as this sheet. But they cannot be overlooked for a better understanding,

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 DNA transcription and gene regulation We ve seen how the

More information

4/3/2013. DNA Synthesis Replication of Bacterial DNA Replication of Bacterial DNA

4/3/2013. DNA Synthesis Replication of Bacterial DNA Replication of Bacterial DNA 4/3/03 3 4 5 6 7 8 9 0 Chapter 8 Microbial Genetics Terminology Genetics: The study of what genes are, how they carry information, how information is expressed, and how genes are replicated Gene: A segment

More information

Please sign below if you wish to have your grades posted by the last five digits of your SSN

Please sign below if you wish to have your grades posted by the last five digits of your SSN BIO 226R EXAM III (Sample) PRINT YOUR NAME Please sign below if you wish to have your grades posted by the last five digits of your Signature BIO 226R Exam III has 8 pages, and 26 questions. There are

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

Genetics BOE approved April 15, 2010

Genetics BOE approved April 15, 2010 Genetics BOE approved April 15, 2010 Learner Objective: Cells go through a natural progression of events to produce new cells. A. Cellular organelles work together to perform a specific function. B. The

More information

Bio 121 Practice Exam 3

Bio 121 Practice Exam 3 The material covered on Exam 3 includes lecture since the last exam and text chapters 13-21. Be sure that you read chapter 19, which was not represented in the notes. 1. Which of the following is an enveloped

More information

Module 6 Microbial Genetics. Chapter 8

Module 6 Microbial Genetics. Chapter 8 Module 6 Microbial Genetics Chapter 8 Structure and function of the genetic material Genetics science of o Study of what genes are, how they determine the characteristics of an organism, how they carry

More information

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell.

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell. Regulation of gene expression a. Expression of most genes can be turned off and on, usually by controlling the initiation of transcription. b. Lactose degradation in E. coli (Negative Control) Lac Operon

More information

Chapter 8. Microbial Genetics. Lectures prepared by Christine L. Case. Copyright 2010 Pearson Education, Inc.

Chapter 8. Microbial Genetics. Lectures prepared by Christine L. Case. Copyright 2010 Pearson Education, Inc. Chapter 8 Microbial Genetics Lectures prepared by Christine L. Case Structure and Function of Genetic Material Learning Objectives 8-1 Define genetics, genome, chromosome, gene, genetic code, genotype,

More information

Degenerate site - twofold degenerate site - fourfold degenerate site

Degenerate site - twofold degenerate site - fourfold degenerate site Genetic code Codon: triple base pairs defining each amino acid. Why genetic code is triple? double code represents 4 2 = 16 different information triple code: 4 3 = 64 (two much to represent 20 amino acids)

More information

Winter Quarter Midterm Exam

Winter Quarter Midterm Exam 1. For a science fair project, two students decided to repeat the Hershey and Chase experiment, with modifications. They decided to label the nitrogen of the DNA, rather than the phosphate. They reasoned

More information

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes

Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes Higher Human Biology Unit 1: Human Cells Pupils Learning Outcomes 1.1 Division and Differentiation in Human Cells I can state that cellular differentiation is the process by which a cell develops more

More information

Biology Evolution Dr. Kilburn, page 1 Mutation and genetic variation

Biology Evolution Dr. Kilburn, page 1 Mutation and genetic variation Biology 203 - Evolution Dr. Kilburn, page 1 In this unit, we will look at the mechanisms of evolution, largely at the population scale. Our primary focus will be on natural selection, but we will also

More information

Biology Lecture 2 Genes

Biology Lecture 2 Genes Genes Definitions o Gene: DNA that codes for a single polypeptide/mrna/rrna/trna o Euchromatin: region of DNA containing genes being actively transcribed o Heterochromatin: region of DNA containing genes

More information

Protein Synthesis

Protein Synthesis HEBISD Student Expectations: Identify that RNA Is a nucleic acid with a single strand of nucleotides Contains the 5-carbon sugar ribose Contains the nitrogen bases A, G, C and U instead of T. The U is

More information

Enzyme that uses RNA as a template to synthesize a complementary DNA

Enzyme that uses RNA as a template to synthesize a complementary DNA Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Comparison of two or more protein or DNA sequence to ascertain similarities in sequences. If two genes have

More information

Genetic variation and change the short version

Genetic variation and change the short version Part 1: Biodiversity and variation Genetic variation and change the short version Define biodiversity and describe its advantages. Why is variation important to a species? What is DNA? A chromosome? A

More information

DNA & RNA. Chapter Twelve and Thirteen Biology One

DNA & RNA. Chapter Twelve and Thirteen Biology One DNA & RNA Chapter Twelve and Thirteen Biology One I. DNA Structure A. DNA monomers = nucleotides *1. sugar bonded to PO4 & one of four possible nitrogen bases 2. bases = Adenine, Guanine, Cytosine, Thymine

More information

(A) Extrachromosomal DNA (B) RNA found in bacterial cells (C) Is part of the bacterial chromosome (D) Is part of the eukaryote chromosome

(A) Extrachromosomal DNA (B) RNA found in bacterial cells (C) Is part of the bacterial chromosome (D) Is part of the eukaryote chromosome Microbiology - Problem Drill 07: Microbial Genetics and Biotechnology No. 1 of 10 1. A plasmid is? (A) Extrachromosomal DNA (B) RNA found in bacterial cells (C) Is part of the bacterial chromosome (D)

More information

Unit 1 Human cells. 1. Division and differentiation in human cells

Unit 1 Human cells. 1. Division and differentiation in human cells Unit 1 Human cells 1. Division and differentiation in human cells Stem cells Describe the process of differentiation. Explain how differentiation is brought about with reference to genes. Name the two

More information

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library

Biology 105: Introduction to Genetics PRACTICE FINAL EXAM Part I: Definitions. Homology: Reverse transcriptase. Allostery: cdna library Biology 105: Introduction to Genetics PRACTICE FINAL EXAM 2006 Part I: Definitions Homology: Reverse transcriptase Allostery: cdna library Transformation Part II Short Answer 1. Describe the reasons for

More information

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! Page 1 of 5 Exam 2 Key - Spring 2008 A#: Please see us if you have any questions! 1. A mutation in which parts of two nonhomologous chromosomes change places is called a(n) A. translocation. B. transition.

More information

Central Dogma of genetics: DNA -> Transcription -> RNA -> Translation > Protein

Central Dogma of genetics: DNA -> Transcription -> RNA -> Translation > Protein Genetics Midterm 1 Chapter 1: Purines: Adenine (double bond), Guanine (Triple Bond) Pyrimidines: Thymine (double bond), Cytosine (Triple Bond), Uracil Central Dogma of genetics: DNA -> Transcription ->

More information

Overview of Human Genetics

Overview of Human Genetics Overview of Human Genetics 1 Structure and function of nucleic acids. 2 Structure and composition of the human genome. 3 Mendelian genetics. Lander et al. (Nature, 2001) MAT 394 (ASU) Human Genetics Spring

More information

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Name: Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL Part A: Multiple Choice (15 marks) Circle the letter of choice that best completes the statement or answers the question. One mark for each correct

More information

CIE Biology A-level Topic 16: Inherited change

CIE Biology A-level Topic 16: Inherited change CIE Biology A-level Topic 16: Inherited change Notes Meiosis is a form of cell division that gives rise to genetic variation. The main role of meiosis is production of haploid gametes as cells produced

More information

What would this eye color phenomenon be called?

What would this eye color phenomenon be called? Name: School: Total Score: / 50 1 1. Which nitrogenous bases present in DNA are purines, and which are pyrimidines? What is the main difference between a purine and a pyrimidine? (2 points) 2. To the right

More information

Cell and Molecular Biology -- Biology 20A

Cell and Molecular Biology -- Biology 20A Cell and Molecular Biology -- Biology 20A Bio 20A Final 7-31-98 Name Each numbered question has equal value. Please read each question carefully. 1. In what phase of meiosis do chromosomes do most of their

More information

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a

GENETICS. I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide chains wrap around each other to form a GENETICS I. Review of DNA/RNA A. Basic Structure DNA 3 parts that make up a nucleotide 1. 2. 3. chains wrap around each other to form a Chains run in opposite direction known as Type of bond between the

More information

BIO 304 Fall 2000 Exam II Name: ID #: 1. Fill in the blank with the best answer from the provided word bank. (2 pts each)

BIO 304 Fall 2000 Exam II Name: ID #: 1. Fill in the blank with the best answer from the provided word bank. (2 pts each) 1. Fill in the blank with the best answer from the provided word bank. (2 pts each) incomplete dominance conditional mutation penetrance expressivity pleiotropy Southern blotting hybridization epistasis

More information

8/21/2014. From Gene to Protein

8/21/2014. From Gene to Protein From Gene to Protein Chapter 17 Objectives Describe the contributions made by Garrod, Beadle, and Tatum to our understanding of the relationship between genes and enzymes Briefly explain how information

More information

BIO303, Genetics Study Guide II for Spring 2007 Semester

BIO303, Genetics Study Guide II for Spring 2007 Semester BIO303, Genetics Study Guide II for Spring 2007 Semester 1 Questions from F05 1. Tryptophan (Trp) is encoded by the codon UGG. Suppose that a cell was treated with high levels of 5- Bromouracil such that

More information

Principle 2. Overview of Central. 3. Nucleic Acid Structure 4. The Organization of

Principle 2. Overview of Central. 3. Nucleic Acid Structure 4. The Organization of Central dogma I and II the flow of genetic information 1. The Transforming Principle 2. Overview of Central Dogma 3. Nucleic Acid Structure 4. The Organization of DNA in Cells 5. DNA Replication 6. Gene

More information

d. reading a DNA strand and making a complementary messenger RNA

d. reading a DNA strand and making a complementary messenger RNA Biol/ MBios 301 (General Genetics) Spring 2003 Second Midterm Examination A (100 points possible) Key April 1, 2003 10 Multiple Choice Questions-4 pts. each (Choose the best answer) 1. Transcription involves:

More information

Bundle 5 Test Review

Bundle 5 Test Review Bundle 5 Test Review DNA vs. RNA DNA Replication Gene Mutations- Protein Synthesis 1. Label the different components and complete the complimentary base pairing. What is this molecule called? _Nucleic

More information

Bacterial Genetics. Stijn van der Veen

Bacterial Genetics. Stijn van der Veen Bacterial Genetics Stijn van der Veen Differentiating bacterial species Morphology (shape) Composition (cell envelope and other structures) Metabolism & growth characteristics Genetics Differentiating

More information

College- and Career Readiness Standards for Science Genetics

College- and Career Readiness Standards for Science Genetics College- and Career Readiness Genetics Mississippi 2018 GEN.1 Structure and Function of DNA GEN.1A Students will demonstrate that all cells contain genetic material in the form of DNA. GEN.1A.1 Model the

More information

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination

Chapter 9. Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination Chapter 9 Topics - Genetics - Flow of Genetics - Regulation - Mutation - Recombination 1 Genetics Genome Chromosome Gene Protein Genotype Phenotype 2 Terms and concepts gene Fundamental unit of heredity

More information

CHapter 14. From DNA to Protein

CHapter 14. From DNA to Protein CHapter 14 From DNA to Protein How? DNA to RNA to Protein to Trait Types of RNA 1. Messenger RNA: carries protein code or transcript 2. Ribosomal RNA: part of ribosomes 3. Transfer RNA: delivers amino

More information

Wake Acceleration Academy - Biology Note Guide Unit 5: Molecular Genetics

Wake Acceleration Academy - Biology Note Guide Unit 5: Molecular Genetics Wake Acceleration Academy - Biology Note Guide Unit 5: Molecular Genetics Extra Resources Website: http://waa-science.weebly.com Module 1: Overview of DNA Vocabulary Term Definition (You may use an Internet

More information

E. Incorrect! The four different DNA nucleotides follow a strict base pairing arrangement:

E. Incorrect! The four different DNA nucleotides follow a strict base pairing arrangement: AP Biology - Problem Drill 10: Molecular and Human Genetics Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as 1. Which of the following

More information

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression Unit 1: DNA and the Genome Sub-Topic (1.3) Gene Expression On completion of this subtopic I will be able to State the meanings of the terms genotype,

More information

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total)

Unit 6: Molecular Genetics & DNA Technology Guided Reading Questions (100 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Chapter 16 The Molecular Basis of Inheritance Concept 16.1 DNA is the

More information

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments.

Fundamentals of Genetics. 4. Name the 7 characteristics, giving both dominant and recessive forms of the pea plants, in Mendel s experiments. Fundamentals of Genetics 1. What scientist is responsible for our study of heredity? 2. Define heredity. 3. What plant did Mendel use for his hereditary experiments? 4. Name the 7 characteristics, giving

More information

More Tutorial at MULTIPLE CHOICE (5 points each) CIRCLE LETTER BY BEST ANSWER.

More Tutorial at MULTIPLE CHOICE (5 points each) CIRCLE LETTER BY BEST ANSWER. More Tutorial at www.dumblittledoctor.com MULTIPLE CHOICE (5 points each) CIRCLE LETTER BY BEST ANSWER. 401. A kind of regulatory element that acts far from its target gene by making a diffusable protein

More information

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16

The Nature of Genes. The Nature of Genes. Genes and How They Work. Chapter 15/16 Genes and How They Work Chapter 15/16 The Nature of Genes Beadle and Tatum proposed the one gene one enzyme hypothesis. Today we know this as the one gene one polypeptide hypothesis. 2 The Nature of Genes

More information

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7)

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7) I. General Principles (Chapter 7 introduction) a. Morse code distinct series of dots and dashes encode the 26 letters of the

More information

Keystone Biology Remediation B2: Genetics

Keystone Biology Remediation B2: Genetics Keystone Biology Remediation B2: Genetics Assessment Anchors: to describe and/or predict observed patterns of inheritance (i.e. dominant, recessive, codominance, incomplete dominance, sex-linked, polygenic,

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

Chapter 9 Preview - DNA

Chapter 9 Preview - DNA Chapter 9 Preview - DNA Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In order to show that DNA in cell extracts is responsible for genetic transformation

More information

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work

The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Nature of Genes. The Genetic Code. Genes and How They Work Genes and How They Work Chapter 15 Early ideas to explain how genes work came from studying human diseases. Archibald Garrod studied alkaptonuria, 1902 Garrod recognized that the disease is inherited via

More information

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons, From Gene to Protein I. Transcription and translation are the two main processes linking gene to protein. A. RNA is chemically similar to DNA, except that it contains ribose as its sugar and substitutes

More information

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test DNA is the genetic material Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test Dr. Amy Rogers Bio 139 General Microbiology Hereditary information is carried by DNA Griffith/Avery

More information

Genes found in the genome include protein-coding genes and non-coding RNA genes. Which nucleotide is not normally found in non-coding RNA genes?

Genes found in the genome include protein-coding genes and non-coding RNA genes. Which nucleotide is not normally found in non-coding RNA genes? Midterm Q Genes found in the genome include protein-coding genes and non-coding RNA genes Which nucleotide is not normally found in non-coding RNA genes? G T 3 A 4 C 5 U 00% Midterm Q Which of the following

More information

Big Idea 3C Basic Review

Big Idea 3C Basic Review Big Idea 3C Basic Review 1. A gene is a. A sequence of DNA that codes for a protein. b. A sequence of amino acids that codes for a protein. c. A sequence of codons that code for nucleic acids. d. The end

More information

Department. Zoology & Biotechnology QUESTION BANK BIOTECHNOLOGY SEMESTER-V

Department. Zoology & Biotechnology QUESTION BANK BIOTECHNOLOGY SEMESTER-V Department of Zoology & Biotechnology QUESTION BANK BIOTECHNOLOGY SEMESTER-V Unit-1 Genetic Material Different forms of DNA(DNA topology):- B-form, Z-form, D-form; Gene structure-introns,exaons and pseudogenes:

More information

Gene Mutation, DNA Repair, and Transposition

Gene Mutation, DNA Repair, and Transposition Gene Mutation, DNA Repair, and Transposition Mutations Are Classified in Various Ways Spontaneous mutations happen naturally and randomly and are usually linked to normal biological or chemical processes

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

PBG 430/530 Exam

PBG 430/530 Exam 1 PBG 430/530 Exam 2 2013 1. In a deoxyribonucleotide, 5 and 3 refer to the a. start site for transcription. b. start site for translation. c. carbons where (respectively) the phosphate and hydroxyl groups

More information

BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN

BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN BIO 304 Genetics (Fall 2003) Exam #2 Name KEY SSN transformation conditional mutation penetrance expressivity Southern blotting hybridization epistasis co-dominance nonsense mutation translocation amplification

More information

Semester 2: Unit 1: Molecular Genetics

Semester 2: Unit 1: Molecular Genetics Semester 2: Unit 1: Molecular Genetics Information Overload : Cells store information in DNA. Information is used to build molecules needed for cell growth. As cell size increases, the demands on that

More information

Lecture for Wednesday. Dr. Prince BIOL 1408

Lecture for Wednesday. Dr. Prince BIOL 1408 Lecture for Wednesday Dr. Prince BIOL 1408 THE FLOW OF GENETIC INFORMATION FROM DNA TO RNA TO PROTEIN Copyright 2009 Pearson Education, Inc. Genes are expressed as proteins A gene is a segment of DNA that

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 11 MICROBIAL GENETICS AND INFECTIOUS DISEASE WHY IS THIS IMPORTANT? Understanding genetic mechanisms lets us study how microorganisms can mutate and change in ways that allow them to defeat host

More information

Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless

Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless Honors Biology Reading Guide Chapter 10 v Fredrick Griffith Ø When he killed bacteria and then mixed the bacteria remains with living harmless bacteria some living bacteria cells converted to disease causing

More information

BS1940 Course Topics Fall 2001 Drs. Hatfull and Arndt

BS1940 Course Topics Fall 2001 Drs. Hatfull and Arndt BS1940 Course Topics Fall 2001 Drs. Hatfull and Arndt Introduction to molecular biology Combining genetics, biochemistry, structural chemistry Information flow in biological systems: The Central Dogma

More information

Genetics and Genomics in Medicine Chapter 1. Questions & Answers

Genetics and Genomics in Medicine Chapter 1. Questions & Answers Genetics and Genomics in Medicine Chapter 1 Multiple Choice Questions Questions & Answers Question 1.1 In a DNA double helix each type of base forms a stable base pair with only one type of base. When

More information

General Biology 115, Summer 2014 Exam II: Form B June 23, Name Student Number

General Biology 115, Summer 2014 Exam II: Form B June 23, Name Student Number General Biology 115, Summer 2014 Exam II: Form B June 23, 2014 Name Student Number For questions 1 2, use the following information. A particular plasmid (pbr322) has two unique gene sequences that confer

More information

General Biology 115, Summer 2014 Exam II: Form A June 23, Name Student Number

General Biology 115, Summer 2014 Exam II: Form A June 23, Name Student Number General Biology 115, Summer 2014 Exam II: Form A June 23, 2014 Name Student Number 1. Of the following, which best describes how the free energy generated during the reactions of Photosystem I is utilized?

More information

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information?

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information? DNA Essential Question: How does the structure of the DNA molecule allow it to carry information? Fun Website to Explore! http://learn.genetics.utah.edu/content/molecules/ DNA History Griffith Experimented

More information

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein

CHAPTER 17 FROM GENE TO PROTEIN. Section C: The Synthesis of Protein CHAPTER 17 FROM GENE TO PROTEIN Section C: The Synthesis of Protein 1. Translation is the RNA-directed synthesis of a polypeptide: a closer look 2. Signal peptides target some eukaryotic polypeptides to

More information

GENETICS - CLUTCH CH.17 MUTATION, REPAIR, AND RECOMBINATION

GENETICS - CLUTCH CH.17 MUTATION, REPAIR, AND RECOMBINATION !! www.clutchprep.com CONCEPT: TYPES OF MUTATIONS There are many different types of The first way to classify mutations is to describe how they arise - Spontaneous mutations are changes that randomly occur

More information

Chapter 8- Microbial Genetics

Chapter 8- Microbial Genetics Chapter 8- Microbial Genetics Chapter 2 Preview p. 47-49 I. Nucleic acids- DNA and RNA fig 2.16 A. Nucleotides- the building blocks of heredity molecules DNA and RNA (nucleic acids) a. Sugar- deoxyribose

More information

5. Which of the following enzymes catalyze the attachment of an amino acid to trna in the formation of aminoacyl trna?

5. Which of the following enzymes catalyze the attachment of an amino acid to trna in the formation of aminoacyl trna? Sample Examination Questions for Exam 3 Material Biology 3300 / Dr. Jerald Hendrix Warning! These questions are posted solely to provide examples of past test questions. There is no guarantee that any

More information

GENETICS. Chapter 1: Cell cycle. Thème 1 : La Terre dans l Univers A. Expression, stabilité et variation du patrimoine génétique.

GENETICS. Chapter 1: Cell cycle. Thème 1 : La Terre dans l Univers A. Expression, stabilité et variation du patrimoine génétique. Introduction: GENETICS 3M = first look at genetics (study of inheritance, discovery of chromosomes, genes, dominant and recessive alleles and the DNA molecule within chromosomes) 2D = not much in fact,

More information

I. Mechanism of Prokaryote Regulation of Enzyme Synthesis (Operons)

I. Mechanism of Prokaryote Regulation of Enzyme Synthesis (Operons) UN2005/UN2401 '17 -- Lecture 17 -- Edited 11/9/17, after PM lecture. Anything added is in blue. A few duplicate sections were deleted. (Problems to do are indicated in red bold.) (c) Copyright 2017 Mowshowitz

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins KEY CONCEPT Section 1 DNA was identified as the genetic material through a series of experiments. Griffith finds a transforming principle. Griffith experimented with the bacteria that cause pneumonia.

More information

Before starting, write your name on the top of each page Make sure you have all pages

Before starting, write your name on the top of each page Make sure you have all pages Biology 105: Introduction to Genetics Name Student ID Before starting, write your name on the top of each page Make sure you have all pages You can use the back-side of the pages for scratch, but we will

More information

Advanced Placement Biology Semester 1 Exam Review Name Date Per

Advanced Placement Biology Semester 1 Exam Review Name Date Per Advanced Placement Biology Semester 1 Exam Review Name Date Per Unit 1: Biochemistry What are the unique properties of water? What are monomers and polymer, and how are they formed? What are the types

More information

Hershey and Chase. The accumulation of evidence: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928)

Hershey and Chase. The accumulation of evidence: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928) Today: Key Experiments in the Discovery of DNA: Griffith s Transformation Experiment (1928) Reviewing Mitosis/ Exploring the Function of Taxol Structure and Function of DNA! What do we learn about the

More information

Genes and How They Work. Chapter 15

Genes and How They Work. Chapter 15 Genes and How They Work Chapter 15 The Nature of Genes They proposed the one gene one enzyme hypothesis. Today we know this as the one gene one polypeptide hypothesis. 2 The Nature of Genes The central

More information