World Energy Needs and Nuclear Power. (Updated December 2015)

Size: px
Start display at page:

Download "World Energy Needs and Nuclear Power. (Updated December 2015)"

Transcription

1 World Energy Needs and Nuclear Power (Updated December 2015) The world will need greatly increased energy supply in the next 20 years, especially cleanly-generated electricity. Electricity demand is increasing twice as fast as overall energy use and is likely to rise by more than two-thirds 2011 to In 2012, 42% of primary energy used was converted into electricity. Nuclear power provides about 11% of the world's electricity, and 21% of electricity in OECD countries. Nuclear power is the most environmentally benign way of producing electricity on a large scale. Renewable energy sources such as solar and wind are costly per unit of output and are intermittent but can be helpful at the margin in providing clean power. Primary energy and electricity outlook The annual World Energy Outlook from the OECD's International Energy Agency (IEA) sets out the present situation and also presents current policies*, new policies, and carbon reduction ( 450 ) scenarios. In World Energy Outlook 2013, from 2000 to 2010 total world primary energy demand grew by 26%, and to 2020 it was projected to grow less (by 20% under the Current Policies scenario, and less under other scenarios). Growth to 2035 is 45% under Current Policies, and 33% under a more restrained scenario. Electricity growth is about double this in each case. Electricity demand almost doubled from 1990 to 2011, and is projected to grow 81% from 2011 to 2035 (from 19,004 TWh to 34,454 TWh) in the Current Policies scenario, and 69% (to 32,150 TWh) in the central New Policies scenario. Increased electricity demand is most dramatic in Asia, projected to average 4.0% or 3.6% per year respectively to Currently some two billion people have no access to electricity, and it is a high priority to address this lack. Electricity Information annually from the same source gives the latest available data on world electricity generation and its fuels. * The Reference case describes what would happen if, among other things, governments were to take no new initiatives bearing on the energy sector, beyond those already adopted by mid It is thus a baseline, not a forecast. With the United Nations predicting world population growth from 6.7 billion in 2011 to 8.7 billion by 2035, demand for energy must increase substantially over that period. Both population growth and increasing standards of living for many people in developing countries will cause strong growth in energy demand, as outlined above. Over 70% of the increased energy demand is from developing countries, led by China and India China overtook the USA as top CO2 emitter in Superimposed on this, the UN Population Division projects an ongoing trend of urbanisation, from 52% in 2011 to 62% in 2035 and reaching 70% worldwide by 2050, enabling world population to stabilize at about 9 billion with better food supply, clean water, sanitation, health, education and communication facilities. Coal is not limited globally, but large amounts need to be moved from where it is plentiful to where it is needed, mainly for power generation. This has both economic and carbon emission implications (apart from actually burning it). Natural gas is abundant and increasingly traded over long distances, with supplies in several countries increasing due to technology enabling access to gas in shale beds. Oil is more limited, in 2012 global production increased to almost 76 million barrels per day (27 billion barrels/yr), and known reserves increased 8% to 1600 billion barrels. In the World Energy Outlook 2013 New Policies scenario, coal demand increases 0.7% per year from 2011 to 2035, gas increases 1.6% pa, and oil increases 1.1% pa to 2020 then 0.4% pa. For electricity, coal use increases 35% to 2035 thus reducing its share of generation from 41% to 33%, gas increases 72% so that its share remains at 22%, nuclear increases 66% pa to hold its 12% share, and renewables other than hydro increase nearly fivefold.

2 Nuclear Power for electricity in published scenarios Nuclear power generation is an established part of the world's electricity mix providing in 2012 some 11% of world electricity of 22,752 TWh (cf. coal 40.3%, oil 5%, natural gas 22.4%, hydro 16.5% and other 5%). It is especially suitable for large-scale, continuous electricity demand which requires reliability (i.e. baseload), and hence ideally matched to increasing urbanisation worldwide. OECD World Energy Outlook Annual editions of the World Energy Outlook from the OECD International Energy Agency make clear the increasing importance of nuclear power in meeting energy needs while achieving security of supply and minimising carbon dioxide emissions. The 2006 edition of this report warned that if policies remained unchanged, world energy demand to 2030 is forecast to increase by 53% accompanied by supply crises, giving a "dirty, insecure and expensive" energy future which would be unsustainable. The report showed that nuclear power could make a major contribution to reducing dependence on imported gas and curbing CO2 emissions in a cost-effective way, since its uranium fuel is abundant. However governments needed to play a stronger role in facilitating private investment, especially in liberalized electricity markets where the trade-off between security and low price had been a disincentive to investment in new plant and grid infrastructure. The World Energy Outlook 2009 report said that investment of US$ 25.6 trillion* would be required by 2030 under the reference scenario, and $10.5 trillion more under an alternative low-carbon energy scenario. Under this, nuclear capacity increases 378 GWe (86%) to 816 GWe rather than to 475 GWe in reference case, energy demand increases by 20% rather than 40% and CO2 emissions reduce to 26.4 Gt/yr from 28.8 Gt/yr in 2007.

3 * Of the $25.6 trillion amount, $13.7 trillion is for electricity: about half for generation and the rest for transmission and distribution. The World Energy Outlook 2010 report built on this and showed that removing fossil fuel consumption subsidies, which totaled $312 billion in 2009 (mostly in non-oecd countries), could make a big contribution to meeting energy security and environmental goals, including mitigating CO2 and other emissions. In the central New Policies scenario, based on recent policy advances, world primary energy demand increases by 36% between 2008 and 2035, or 1.2% per year average. This compares with 2% per year over the previous 27 year period, but is higher than the low-carbon scenario. In this scenario, non-oecd countries account for 93% of the primary energy demand growth. The report notes that while China's energy use was half that of the USA in 2000, it overtook the USA in In the WEO 2010 New Policies scenario electricity demand was expected to grow at 2.2% pa to 2035, almost double the rate of primary energy, and with 80% of the growth being in non-oecd countries. Globally, gross capacity additions, to replace obsolete capacity and to meet demand growth, amount to around 5900 GWe to % more than current installed capacity. Nuclear capacity increased by only 360 GWe, somewhat less than in the reduced carbon scenario. Support for renewable sources of electricity, estimated at $37 billion in 2009, is quadrupled. But per unit it drops from average 5.5 c/kwh to 2.3 cents, apart from costs of integrating them into the grid. CO2 emissions increase from 29 Gt/yr in 2008 to 34 Gt in 2020 and 35 Gt in 2035, all this being in non-oecd countries. In the low-carbon scenario they peak at 32 Gt about 2020 and drop to 22 Gt in 2035 with CO2 emission costs then being $ per tonne (all in 2009 dollars). In the '450' low-carbon scenario to 2035, the additional spending on low carbon energy technologies (business investment and consumer spending) amounts to $18 trillion more than in the Current Policies Scenario, and around $13.5 trillion more than in the New Policies Scenario. Following the Fukushima accident, World Energy Outlook 2011 New Policies scenario had a 60% increase in nuclear capacity to 2035, compared with about 90% the year before. "Although the prospects for nuclear power in the New Policies Scenario are weaker in some regions than in [WEO 2010] projections, nuclear power continues to play an important role, providing base-load electricity. Most non- OECD countries and many OECD countries are expected to press ahead with plans to install additional nuclear power plants, though there may be short-term delays as the safety standards of existing and new plants are reviewed. Globally, nuclear power capacity is projected to rise in the New Policies Scenario from 393 GW in 2009 to 630 GW in 2035, around 20 GW lower than projected last year." In this scenario the IEA expects the share of coal in total electricity to drop from 41% now to 33% in Electricity generation increases from 20 to 36 PWh. WEO 2011 also included a "Low Nuclear Case (which) examines the implications for global energy balances of a much smaller role for nuclear power. The lower nuclear component of electricity supply is not a forecast, post Fukushima, but an assumption adopted for the purpose of illustrating a global energy outlook in such a low nuclear world." "In the Low Nuclear Case, the total amount of nuclear power capacity falls from 393 GW at the end of 2010 to 335 GW in 2035, just over half the level in the New Policies Scenario. The share of nuclear power in total generation drops from 13% in 2010 to just 7% in 2035, with implications for energy security, diversity of the fuel mix, spending on energy imports and energy-related CO2 emissions." Its effect would be to "increase import bills, heighten energy security concerns and make it harder and more expensive to combat climate change." The New Policies scenario in World Energy Outlook 2012 showed that "several fundamental trends persist: energy demand and CO2 emissions rise even higher; energy market dynamics are increasingly determined by emerging economies; fossil fuels remain the dominant energy sources; and providing universal energy access to the world's poor countries continues to be an elusive goal." Electricity generation increases from 21.5 PWh in 2010 to 36.6 PWh in 2035, with average price increase of 15% in real terms. WEO 2012 further reduced nuclear capacity projections for 2035, to 580 GWe, about 10% less than that scenario the year before and only 55% more than today. That would produce 4.37 PWh, 12% of world total. Renewables are likely to "become the world's second-largest source of power generation by 2015", with share of electricity generation growing from 20% in 2010 (mostly hydro) to 31% by 2035, though this "hinges critically on continued subsidies" which impact electricity prices. The IEA

4 concluded that "taking all new developments and policies into account, the world is still failing to put the global energy system onto a more sustainable path." This is highlighted by a 28% increase in fossil fuel subsidies to $523 billion in 2011 (compared with $409 billion in 2010, and $44 billion in 2010 for renewables. Renewables subsidies are expected to reach $240 billion per year in 2035, for 31% of power). World Energy Outlook 2013 was very much in line with WEO 2012, and electricity generation increases from 22.1 PWh in 2011 to 37.1 PWh in Its New Policies scenario showed 66% increase in nuclear contribution , with its share steady at 12%. Nuclear capacity rises only 47% however, in line with WEO 2012, with the expansion being mainly policy-driven on energy security grounds. The largest gross capacity additions are in China, which adds 114 GWe during the projection period (38% of global new nuclear capacity). Cumulative global investment in the power sector to 2035 needs to be $17 trillion, an average of $740 billion per year. New plants account for 58% of this, the rest is transmission and distribution. Electricity prices by 2035 are expected to show significant regional differences, with those for industry in USA ($80/MWh) being a little over half those in the EU and 40% lower than China s, where network costs eclipse capital cost savings. Japan s electricity prices for industry, now shown as over $185/MWh, decrease below EU levels to about $145/MWh as fossil fuel imports diminish. World Energy Outlook 2014 had a special focus on nuclear power, and extends the scope of scenarios to In its New Policies scenario, installed nuclear capacity growth is 60% through 543 GWe in 2030 and to 624 GWe in 2040 out of a total of 10,700 GWe, with the increase concentrated heavily in China (46% of it), plus India, Korea and Russia (30% of it together) and the USA (16%), countered by a 10% drop in the EU. Despite this, the percentage share of nuclear power in the global power mix increases to only 12%, well below its historic peak. So-called Low Nuclear and High Nuclear cases give 366 and 767 GWe respectively in The 450 Scenario gives a cost-effective transition to limiting global warming assuming an effective international agreement in 2015, and this brings about more than doubling nuclear capacity to 862 GWe in 2040, while energy-related CO2 emissions peak before 2020 and then decline. In this scenario, almost all new generating capacity built after 2030 needs to be low-carbon. "Despite the challenges it currently faces, nuclear power has specific characteristics that underpin the commitment of some countries to maintain it as a future option," it said. "Nuclear plants can contribute to the reliability of the power system where they increase the diversity of power generation technologies in the system. For countries that import energy, it can reduce their dependence on foreign supplies and limit their exposure to fuel price movements in international markets." CO2 emissions from coal use level off after 2020 in the New Policies Scenario, though CCS is expected to be negligible before CO2 emissions from gas grow strongly to WEO 2014 expresses concern about subsidies to fossil fuels, which encourage wasteful consumption and totalled $548 billion in 2013, over half of this for oil. Ten countries account for almost three-quarters of the world total for fossil-fuel subsidies, five of them in Middle East (notably Iran and Saudi Arabia) or North Africa where much electricity is generated from oil, and where nuclear power plants and even renewables would be competitive, but for those subsidies. The report advocates ensuring that energy prices reflect their full economic value by introducing market pricing and removing price controls. Renewables subsides in 2013 are put at $121 billion and rising, $45 billion of this being solar PV. Geographically this is $69 billion for EU and $27 billion in USA. The report was unable to assign a figure for nuclear subsidies, which at present don t exist. The difficulty of reducing subsidies is discussed. In June 2015 the IEA s World Energy Outlook 2015 Special Report on Energy and Climate Change was published, which has the pragmatic purpose of arming COP21 negotiators with the energy sector material they need to achieve success in Paris in December It outlines a strategy to limit global warming to 2 C, but is very much focused on renewables. The report recommends a series of measures including increasing energy efficiency, reducing the use of inefficient coal-fired power plants, increasing investment in renewables, reducing methane emissions, and phasing out fossil fuels subsidies. Half of the additional emissions reductions in its '450' scenario come

5 from decarbonisation efforts in power supply, driven by high carbon price incentives. In this scenario, an additional 245 GWe of nuclear capacity is built by 2040 compared with a moderate Bridge option. The IEA acknowledges that nuclear power is the second-biggest source of low-carbon electricity worldwide after hydropower and that the use of nuclear energy has avoided the release of 56 billion tonnes of CO2 since 1971, equivalent to almost two years of global emissions at current rates. The report suggests that intended nationally determined contributions (INDCs) submitted by countries in advance of COP21 will have trivial effect, and its purpose is clearly to suggest more ambitious emission reduction targets in its Bridge scenario. While the report confirms that nuclear energy will play an important role in reducing greenhouse gas emissions, it projects nuclear capacity of only 542 GWe (38% increase) producing 4005 TWh in 2030 in its main Bridge scenario, with the share of nuclear energy in power generation increasing to 13% then, compared with about 11% today. Most of the new nuclear plants are expected to be built in countries with price-regulated markets or where government-owned entities build, own and operate the plants, or where governments act to facilitate private investment. In November 2015, the World Energy Outlook 2015 had a special focus on India. Its central New Policies Scenario to 2040 takes into account the policies and implementing measures affecting energy markets that had been adopted as of mid-2015, together with relevant declared policy intentions. Its Current Policies Scenario takes into account only policies enacted as of mid-2015, and the 450 Scenario depicts a pathway to the 2 C climate goal that can be achieved by the end of the century by fostering technologies that are close to becoming available at commercial scale, and relates to the June report described above. In all scenarios, electricity is the fastest-growing form of energy in final use, driven by increasing use in industries, the ongoing shift of people to urban centres, and rising living standards. In the New Policies scenario, electricity demand increases 70% by 2040, mostly in non-oecd countries in China it doubles, in India it more than triples. Installed power generation capacity reaches 10,570 GW in 2040, an increase of some 4,400 GW over the level in 2014 and one-third more than the increase in the previous 25 years. Worldwide, installed capacity more than doubles in non-oecd countries, led by China (where it doubles) and India (where it almost quadruples). In WEO2015 New Policies, the global power generation mix shifts away from coal, whose share falls from 41% today to 30% in 2040, after holding steady since The share of low carbon technologies in total generation increases from one-third in 2013 to 47% in 2040, due to the growth of non-hydro renewables and a stable share of nuclear and hydropower. Coal-fired generation increases most in India, more than in China or in the rest of the world combined, but the average efficiency of coal-fired plants climbs to 40%. Global power sector investment totals nearly $20 trillion over , split between 6,700 GW of new power plants ($11.3 trillion, 62% renewables) and 75 million km of transmission lines to deliver the power ($8.4 trillion). Nuclear power provides considerably more electricity by 2040 in all scenarios. From 2,478 TWh base in 2013, it increases to 4,606 TWh with New Policies, 3,974 under Current Policies, and 6,243 TWh in the 450 Scenario, then corresponding to 18% of supply. Under New Policies, 147 GWe is added by 2025, and another 218 GWe by 2040, both figures offset by retirements (62 & 86 GWe respectively). That scenario has much greater net addition for coal, gas, wind, solar and hydro, though it shows that the 2020 cost of electricity from non-hydro renewables is more than double that from nuclear, coal or hydro, though the difference diminishes by International Energy Agency The 2012 IEA Energy Technology Perspectives Study (ETP 2012) took the 450 ppm scenario in WEO 2011 and extended it out to 2050, calling it the two-degree scenario (2DS). This scenario is then compared with the status quo (six-degree scenario) and with a four-degree scenario in between. It then

6 goes a step further to see if a zero emissions energy system is possible by The study made the case that environment and energy development must go hand in hand. Some of the findings: A sustainable energy system is still within reach and can bring broad benefits. Technologies can and must play an integral role in transforming the energy system. Investing in clean energy makes economic sense every additional dollar invested can generate three dollars in future fuel savings by Energy security and climate change mitigation are allies. Despite technology s potential, progress in clean energy is too slow. Nine out of ten technologies that hold potential for energy and CO2 emissions savings are failing to meet the deployment objectives needed to achieve the necessary transition to a low-carbon future. Some of the technologies with the largest potential are showing the least progress. The share of energy-related investment in public research, development and demonstration (RD&D) has fallen by two-thirds since the 1980s. Fossil fuels remain dominant and demand continues to grow, locking in high-carbon infrastructure. It then goes on to focus on how energy policy must address the key issues and the role of government in formulating that, finally concluding with recommendations to energy ministers (assuming these recommendations were to be considered at Rio+20). The study focused on renewable technologies such as wind and solar, energy efficiency technologies to reduce demand, and carbon capture technologies to clean up the ever-expanding fossil infrastructure, though this is prime area where progress is obviously "too slow". Nuclear technology is also shown to be important although its suggested role in ETP 2012 is less than the others. The electricity generation mixes for each of the three scenarios in 2050 range from almost 50,000 TWh in 6DS down to 40,000 TWh in 2DS. Improved energy efficiencies is the most important source of clean generation, along with huge growth in renewables (wind, solar, hydro and biomass) and an increase in nuclear output to about 8,000 TWh in 2DS. Most of the remaining fossil generation, contributing 10,000 TWh, is assumed to have CCS installed. Looking at the needed capacity, due to the variability and low capacity factors of renewables such as wind and solar, capacity must increase even more than the output. This demonstrates the importance of nuclear as it has high capacity relative to other forms of generation. With less than 5% of the generating capacity (about 550 GWe), it produces about 20% of the electricity, indicating its importance in a lowcarbon electricity system. The main tool in achieving CO2 reduction targets for the 2DS is CO2 price, increasing from USD 40/tCO2 in 2020 to USD 150/tCO2 in This greatly increases the electricity generation costs of CO2-emitting technologies and thereby improves the relative cost-competitiveness of low-carbon power technologies. The report suggests that the only way to achieve a low-carbon world is to price carbon aggressively to force behavioural change; first by reducing demand and second through the implementation of higher cost low carbon technologies. This has a major impact on electricity prices, however, and the only mitigating factor is the relatively low cost of power from nuclear plants allowed to operate on a continuous full-power basis unrestrained by subsidised high-cost intermittent sources having dispatch preference. Hence the study continues to include a "high nuclear" sensitivity case for the 2DS scenario. In the 2DShiNuc case, nuclear generation is increased to 34% in Compared with the base 2DS, nuclear replaces fossil power plants with CCS and renewables, whose share in 2050 falls, in the case of CCS from 15% to 7%, and in the case of renewables from 57% to 49%. This scenario reflects a world with greater public acceptance of nuclear power. On the technical side, the average construction rate for nuclear power plants in the period 2011 to 2050 rises from 27 GW/yr in the base 2DS to 50 GW/yr. The cumulative investment costs of this case are only USD 200 billion higher than in the base 2DS and are more than offset by costs savings for fossil fuels in the order of USD 2000 billion (10 to 1).

7 A system with about one-third of the generation provided by nuclear is achievable if the industry can overcome the major issue of public acceptance. It raises the question of whether the public will prefer very high electricity costs with a large increase in renewable generation, or a greater role from nuclear power involving a relatively modest increase in the number of plants. The 2014 Energy Technology Perspectives developed the ETP 2012 scenarios. In the 2DS one which is the main focus, the share of fossil fuels in global primary energy supply drops by almost half from 80% in 2011 to just over 40% in 2050, and some 22 GWe of new nuclear generating capacity must be added annually by However, the IEA notes that global nuclear capacity "is stagnating at this time" and by 2025 will be 5% to 25% below needed levels, "demonstrating significant uncertainty." It suggests that the high capital and low running costs of nuclear create the need for policies that provide investor certainty. The IEA estimates that an additional $44 trillion in investment is needed in global electricity systems by However, it says that this represents only a small portion of global GDP and is offset by over $115 trillion in fuel savings. The new estimate compares with $36 trillion in ETP This increase, "partly shows something the IEA has said for some time: the longer we wait, the more expensive it becomes to transform our energy system." "While clean energy technology deployment in emerging economies has rallied over the past year making up for declines in the industrialized world the overall picture of progress remains bleak," according to the IEA. It claims that "Cost-effective, practical solutions can increase efficiency, moderate electricity demand and decarbonize almost all power generation by 2050." However, in order to attain this, "the decision-making process needs to be revised, abandoning the short-term, siloed attitudes of the past, and embracing a longer-term systems approach that identifies synergies within all sectors of the energy system. A significant change from ETP 2012 is much reduced forecast use of CCS by 2020, and one-fifth less by Launching the ETP 2014 report, the IEA executive director said: "Electricity is going to play a defining role in the first half of this century as the energy carrier that increasingly powers economic growth and development. While this offers opportunities, it does not solve our problems; indeed, it creates many new challenges." She added, "We must get it right, but we're on the wrong path at the moment. Growing use of coal globally is overshadowing progress in renewable energy deployment, and the emissions intensity of the electricity system has not changed in 20 years despite some progress in some regions. A radical change of course at the global level is long overdue." The 2015 Energy Technology Perspectives from IEA developed the earlier scenarios. In the main 2DS scenario, the share of fossil fuels in global primary energy supply drops by almost half from 80% in 2011 to just over 40% in Energy efficiency, renewables and CCS make the largest contributions to global emissions reductions under the scenario. The IEA says that nuclear, end-use fuel switching, and power generation efficiency and fuel switching are "essential" to reach the 2DS target cost-efficiently. Under the 2DS scenario, some 22 GWe of new nuclear generating capacity must be added annually by Launching the report the IEA said: "A concerted push for clean-energy innovation is the only way the world can meet its climate goals," and that governments should help boost or accelerate this transformation. The shift to clean energy is progressing at levels well short of those needed to limit the global increase in temperature to no more than 2 C. It called for policymakers to step up efforts to support the development and deployment of "new, ground-breaking energy technologies". "We cannot be complacent, we are settling ourselves environmental and energy access targets that rely on better technologies. Today's annual government spending on energy research and development is estimated to be $17 billion. Tripling this level, as we recommend, requires governments and the private sector to work closely together and shift their focus to low-carbon technologies." International Atomic Energy Agency The International Atomic Energy Agency (IAEA) in its annual Energy, Electricity and Nuclear Power Estimates for the Period to 2050 published in September 2012 revised downwards its projections for

8 2030, as it had done the previous year following the Fukushima accident. Its low projection showed a nuclear capacity increase from 370 GWe then to 456 GWe in 2030, the high one gave 740 GWe then, in line with forecast growth in all power generation. For 2050 it tentatively estimated 470 to 1337 GWe respectively. That IAEA publication in September 2013 again revised downward the projections for 2030, to 435 GWe in 2030 for the low projection and 722 GWe for the high one then. For 2050 the figures were 440 and 1113 GWe. The 2014 version again reduces 2030 projections to 401 GWe (low) and 699 GWe for the high projection. For 2050 the figures were 413 and 1092 GWe in The low figures assume significant declines in North America, Europe and the OECD Pacific, stagnation in Africa, some growth in Latin America, CIS and ASEAN and substantial expansion in the Middle East and non-oecd Asia (i.e. including China but excluding Japan and South Korea). OECD Nuclear Energy Agency The OECD's Nuclear Energy Agency published its first Nuclear Energy Outlook in October Apart from nuclear being virtually carbon-free, it points out that energy security is enhanced due to nuclear fuel's high energy density, which means that transport is less vulnerable and storage of large reserves is easy. In its high scenario, life extensions and plant upratings continue and present plans for new capacity are largely implemented to After that new build accelerates to bring over 50 GWe on line each year, giving 1400 GWe nuclear capacity in It identifies factors which would result in that outcome. In June 2010 this NEO was supplemented by the joint NEA-IEA Nuclear Technology Roadmap, with scenario for cutting energy-related CO2 emissions by 50% by This would see 1200 GWe of nuclear capacity on line then, providing 24% of electricity (world production having grown from 20,000 TWh in 2007 to 41,000 TWh then). Nuclear power would then be the single largest source of electricity. If constraints on building new nuclear capacity were overcome, nuclear could provide 38% of electricity by 2050, and in this case the power would be 11% cheaper then. The roadmap saw nuclear as a mature technology which required no major technological breakthrough to achieve the projected growth. However, global industrial capacity to construct nuclear power plants will need to double by 2020 if nuclear capacity is to grow in the 2020s and beyond as projected. The Roadmap estimates the investment in nuclear power needed by 2050 to be almost $4000 billion: including $893 billion in China, $883 billion in USA and Canada, $615 billion in OECD Pacific (including Japan & Korea), $389 billion in India, and $330 billion in centrally-planned economies. The 2015 edition of the joint NEA-IEA Nuclear Technology Roadmap asserts that current trends in energy supply and use are unsustainable, and the fundamental advantages provided by nuclear energy in terms of reduction of GHG emissions, competitiveness of electricity production and security of supply still apply (from 2010). It puts forward a 2050 carbon-limited energy mix scenario providing about 40,000 TWh in which 930 GWe of nuclear capacity supplies 17% of electricity but plays an important role beyond that. "The contributions of nuclear energy providing valuable base-load electricity, supplying important ancillary services to the grid and contributing to the security of energy supply must be fully acknowledged." Governments should "review arrangements in the electricity market so as to... allow nuclear power plants to operate effectively." "Clearer policies are needed to encourage operators to invest in both long-term operation and new build so as to replace retiring units," said the report. "Governments should ensure price transparency and the stable policies required for investment in large capital-intensive and long-lived base-load power. Policies should support a level playing field for all sources of low-carbon power projects." This is particularly important to OECD countries, where nuclear power is the largest source of low-carbon electricity, providing 18% of their total electricity. Even though the use of electricity grows over the timeframe to 2050, the increase of nuclear power from 377 GWe today would contribute 13% of the emissions reduction needed to limit global warming. In the near term, small modular reactors "could extend the market for nuclear energy" and even replace coal boilers forced into closure in order to improve air quality. "Governments and industry should work together to accelerate the development of SMR prototypes and the launch of construction projects (about five projects per design) needed to demonstrate the benefits of modular design and factory assembly." In

9 the longer term the IEA wants so-called Generation IV reactor and fuel cycle designs to be ready for deployment in US Energy Information Administration The US Energy Information Administration (EIA) has also revised upwards its normally low projections for nuclear in recent editions of its annual International Energy Outlook (IEO). In 2010 it projected 558 GWe nuclear capacity in 2030 and 593 GWe in The 2030 figure is 53% higher than its 2030 projection published seven years earlier. The reference case for 2035 includes 66 GWe added in China, 23 GWe in India, 25 GWe in Russia and 12 GWe in the USA. It projected 4200 TWh from nuclear in 2030 and 4510 TWh in In 2013 these projections had increased to 4755 TWh in 2030, 5135 TWh in 2035 and 5492 TWh in 2040 (from 2438 TWh in 2012). In the EIA International Energy Outlook 2013, nuclear power and renewable energy are forecast to be the world's fastest-growing energy sources from 2010 to 2040, increasing by 2.5% each year, driven by concerns about energy security and greenhouse gas emissions which support the development of new nuclear generating capacity. "Factors underlying the IEO2013 nuclear power projections are mixed. They include the consequences of the March 2011 disaster at Fukushima, planned retirements of nuclear capacity in OECD Europe under current policies, and continued strong growth of nuclear power in non- OECD Asia." (The 2014 edition focuses simply on trends in liquid fuel markets.) In November 2011 the World Energy Council (WEC) published a report: Policies for the future: 2011 Assessment of country energy and climate policies, which ranked country performance according to an energy sustainability index, meaning how well each country performs on "three pillars" of energy policy energy security, social equity, and environmental impact mitigation (particularly low carbon emissions), or simply environmental sustainability. The five countries with the "most coherent and robust" energy policies included large shares of nuclear energy in their electricity fuel mix. The best performers, according to the report, are: Switzerland (40% nuclear), Sweden (40% nuclear), France (75% nuclear), Germany (30% nuclear prior to reactor shutdowns earlier 2011), and Canada (15% nuclear). The report said that countries wanting to reduce reliance on nuclear power must work out how to do so without compromising energy sustainability. In Germany this would be a particular challenge without increasing the reliance on carbon-based power generation "since the renewable infrastructure currently does not have the capability to do so." World Energy Council The 2013 version of this WEC World Energy Trilemma report gave top rating to Switzerland, Denmark, Sweden, the United Kingdom and Spain as being the only countries that historically demonstrate their ability to manage the trade-offs among the three competing energy policy dimensions coherently. These all have, or depend upon, a high level of nuclear contribution. Germany had notably dropped down the list on energy security and sustainability criteria, as had France on energy security. Canada plunged from 2011 due to environmental sustainability, though at top on the other two. In the 2014 edition, WEC gave top honours to Switzerland, Sweden and Norway. Germany, Spain and Japan dropped down the rankings. European Commission In December 2011 the European Commission (EC) published its Energy 2050 Roadmap, a policy paper. This was very positive regarding nuclear power and said that nuclear energy can make "a significant contribution to the energy transformation process" and is "a key source of low-carbon electricity generation" that will keep system costs and electricity prices lower. "As a large scale low-carbon option, nuclear energy will remain in the EU power generation mix." The paper analysed five possible scenarios

10 leading to the EU low-carbon energy economy goal by 2050 (80% reduction of CO2 emissions), based on energy efficiency, renewables, nuclear power and carbon capture and storage (CCS). All scenarios show electricity will have to play a much greater role than now, almost doubling its share in final energy demand to 36%-39% in The EC high-efficiency scenario would reduce energy demand by 41% by 2050 (compared with 2005); the diversified supply technologies scenario would have a combination of high carbon prices, nuclear energy and introduction of CCS technologies; a high-renewables scenario suggests they might supply 75% of total energy supply by 2050; a "delayed CCS" scenario has nuclear power would playing a major role; and a low-nuclear power scenario had coal plants with CCS providing 32% of total energy (ie 82-89% of EU electricity). The highest percentage of nuclear energy would be in the delayed CCS and diversified supply technologies scenarios, in which it would account for 18% and 15% shares of primary energy supply respectively, ie 38-50% of EU electricity. Those scenarios also had the lowest total energy costs. Others In January 2014 BP published its Energy Outlook 2035, which showed growth in primary energy demand to then at 2.0% per year to 2020 then 1.2% pa, but electricity demand growth is much higher and by 2035 accounts for 46% of primary energy. Nuclear energy output is expected to rise to 2035 at around 1.9% a year. China, India and Russia will together account for 96% of the global growth in nuclear power, while nuclear output in the USA and EU declines due to expected plant closures. Renewables are expected to continue to be the fastest growing class of energy, gaining market share from a small base as they rise at an average of 6.4% a year to Renewables' share of global electricity production is expected to grow from 5% to 14% by Including biofuels, renewables are expected to have a higher share of primary energy than nuclear by Electricite de France (EdF) in about 2008 published forecast world figures for the period to These show 140 GWe of new capacity being built and 10 GWe decommissioned to give 480 GWe in Of the 140 GWe new build, almost 30% is in China, 15% is in India and 15% other Asia. Europe, Americas and Russia have about 12% each. A World Nuclear Association report early in 2013, Inside the Black Box Exploring the Assumptions within Nuclear Power Forecasting, examines several scenarios for electricity and for nuclear power supply and their basis. A 2014 comparison among several sets of projections from IEA (WEO 2013) and EIA (Outlook 2013) showed 2035 nuclear capacity figures ranging from 527 to 792 GWe, compared with 381 GWe in 2010 base year. The World Energy Council s higher scenario was 751 GWe. Exxon Mobil and Shell projections for 2040 were comparable with those from EIA. On the basis of these, a doubling of nuclear capacity by 2040 emerges as being likely. Generation options In electricity demand, the need for low-cost continuous, reliable supply can be distinguished from peak demand occurring over a few hours daily and able to command higher prices. Supply needs to match demand instantly and reliably over time. There are number of characteristics of nuclear power which make it particularly valuable apart from its actual generation cost per unit MWh or kwh. Fuel is a low proportion of power cost, giving power price stability, its fuel is on site (not depending on continuous delivery), it is dispatchable on demand, it has fairly quick ramp-up, it contributes to clean air and low-co2 objectives, it gives good voltage support for grid stability. These attributes are mostly not monetised in merchant markets, but have great value which is increasingly recognised where dependence on intermittent sources has grown, and governments address long-term reliability and security of supply. The renewable energy sources for electricity constitute a diverse group, from wind, solar, tidal and wave energy to hydro, geothermal and biomass-based power generation. Apart from hydro power in the few places where it is very plentiful, none of these is suitable, intrinsically or economically, for large-scale power generation where continuous, reliable supply is needed. Growing use will however be made of the renewable energy sources in the years ahead, although their role is limited by their intermittent nature. Their economic attractiveness is still an issue also. Renewables

11 will have most appeal where demand is for small-scale, intermittent supply of electricity. In the OECD about 8% of electricity was from renewables other than hydro in 2013, and the world figure was 5.7%. This diagram shows that much of the electricity demand is in fact for continuous 24/7 supply (base-load), while some is for a lesser amount of predictable supply for about three quarters of the day, and less still for variable peak demand up to half of the time. Apart from nuclear power the world relies almost entirely on fossil fuels, especially coal, to meet demand for base-load electricity production. Most of the demand is for continuous, reliable supply on a large scale and there is little scope for changing this. Natural gas is increasingly used as fuel for electricity generation in many countries, but transport over long distances and storage present some challenges. Much storage is underground, in depleted oilfields, especially in the USA. However, this can be dangerous. In 2015 the Aliso Canyon storage field in California leaked for some months at about 66 tonnes of methane per hour, causing widespread evacuation and neutralising the state s efforts to curb CO2 emissions (methane having 25 times the global warming potential). There is much made of comparisons with renewables. Aside from the obvious intermittency and nondispatchability of renewables, the following comparisons of plant materials is interesting. Per MWe of installed capacity (disregarding capacity factors): Solar PV: 40 t steel, 19 t aluminium, 76 t concrete, 85 t glass, 13 t silicon. Wind: 118 t steel, 298 t concrete Nuclear (1970s plant): t steel, m 3 concrete.*

12 * Wind data from Vestas, Jan 2011, Life Cycle Assessment of electricity production from V112 wind turbine; solar PV: A Review of Risks in the Solar Electric Life-Cycle, by V.M. Fthenakis and H.C. Kim of Brookhaven National Laboratory; Per F. Peterson, Haihua Zhao, and Robert Petroski, "Metal And Concrete Inputs For Several Nuclear Power Plants," University of California, Berkeley. Implications of Electric Vehicles Future widespread use of electric vehicles, both pure electric and plug-in hybrids, will increase electricity demand modestly perhaps up to 15% in terms of kilowatt-hours. But this increase will mostly come overnight, in off-peak demand, so will not much increase the system's peak capacity requirement in gigawatts. Overnight charging of vehicles will however greatly increase the proportion of that system capacity to be covered by base-load power generation either nuclear or coal. In a typical system this might increase from about 50-60% to 70-80% of the total, as shown in the Figures below. This then has significant implications for the cost of electricity. Base-load power is generated much more cheaply than intermediate- and peak-load power, so the average cost of electricity will be lower than with the present pattern of use. And any such major increase in base-load capacity requirement will have a major upside potential for nuclear power if there are constraints on carbon emissions. So potentially the whole power supply gets a little cheaper and cleaner, and many fossil fuel emissions from road transport are avoided at the same time.

13 Drivers for increased nuclear capacity The first generation of nuclear plants were justified by the need to alleviate urban smog caused by coalfired power plants. Nuclear was also seen as an economic source of base-load electricity which reduced dependence on overseas imports of fossil fuels. Today's drivers for nuclear build have evolved: Increasing energy demand Global population growth in combination with industrial development will lead to a doubling of electricity consumption by Besides this incremental growth, there will be a need to renew a lot of generating stock in the USA and the EU over the same period. An increasing shortage of fresh water calls for energy-intensive desalination plants, and in the longer term hydrogen production for transport purposes will need large amounts of electricity and/or high temperature heat. See first section above for recent projections. Climate change Increased awareness of the dangers and effects of global warming and climate change has led decision makers, media and the public to realize that the use of fossil fuels must be reduced and replaced by lowemission sources of energy, such as nuclear power, the only readily available large-scale alternative to fossil fuels for production of continuous, reliable supply of electricity. Security of Supply A major topic on many political agendas is security of supply, as countries realize how vulnerable they are to interrupted deliveries of oil and gas. The abundance of naturally occurring uranium makes nuclear power attractive from an energy security standpoint.

14 Economics Increasing fossil fuel prices have greatly improved the economics of nuclear power for electricity now. Several studies show that nuclear energy is the most cost-effective of the available base-load technologies. In addition, as carbon emission reductions are encouraged through various forms of government incentives and trading schemes, the economic benefits of nuclear power will increase further. Insurance against future price exposure A longer-term advantage of uranium over fossil fuels is the low impact that increased fuel prices will have on the final electricity production costs, since a large proportion of those costs is in the capital cost of the plant. This insensitivity to fuel price fluctuations offers a way to stabilize power prices in deregulated markets. As the nuclear industry is moving away from small national programmes towards global cooperative schemes, serial production of new plants will drive construction costs down and further increase the competitiveness of nuclear energy. In practice, is a rapid expansion of nuclear power capacity possible? Most reactors today are built in under five years (first concrete to first power), with four years being state of the art and three years being the aim with prefabrication. Several years are required for preliminary approvals before construction. It is noteworthy that in the 1980s, 218 power reactors started up, an average of one every 17 days. These included 47 in USA, 42 in France and 18 in Japan. The average power was MWe. So it is not hard to imagine a similar number being commissioned in a decade after about But with China and India getting up to speed with nuclear energy and a world energy demand double the 1980 level in 2015, a realistic estimate of what is possible might be the equivalent of one 1000 MWe unit worldwide every five days. A relevant historical benchmark is that from 1941 to 1945, 18 US shipyards built over 2700 Liberty Ships. These were standardised 10,800 dwt cargo ships of a very basic British design but they became symbolic of US industrial wartime productivity and were vital to the war effort. Average construction time was 42 days in the shipyard, often using prefabricated modules. In 1943, three were being completed every day. They were 135 metres long and could carry 9100 tonnes of cargo. See also the paper in this series: Heavy Manufacturing of Power Plants. Clean Air and Greenhouse Gases On a global scale nuclear power currently reduces carbon dioxide emissions by some 2.5 billion tonnes per year (relative to the main alternative of coal-fired generation, about 2 billion tonnes relative to the present fuel mix). Carbon dioxide accounts for half of the human-contributed portion of the global warming effect of the atmosphere. The UN Intergovernmental Panel on Climate Change (IPCC) has comprehensively reviewed global warming and has reached a consensus that the phenomenon is real and does pose a significant environmental threat during the next century if fossil fuel use continues even at present global levels. See also Climate Change science paper. The 2007 IPCC report on mitigation of climate change says that the most cost-effective option for restricting the temperature rise to under 3 C will require an increase in non-carbon electricity generation from 34% (nuclear plus hydro) then to 48-53% by 2030, along with other measures. With a doubling of overall electricity demand by then, and a carbon emission cost of US$ 50 per tonne of CO2, nuclear's share of electricity generation was projected by IPCC to grow from 16% now to 18% of the increased

World Energy Outlook 2010

World Energy Outlook 2010 World Energy Outlook 2010 Nobuo Tanaka Executive Director International Energy Agency Cancun, 7 December 2010, IEA day The context: A time of unprecedented uncertainty The worst of the global economic

More information

Politique et sécurité énergétique dans le contexte des nouvelles énergies

Politique et sécurité énergétique dans le contexte des nouvelles énergies Politique et sécurité énergétique dans le contexte des nouvelles énergies Didier Houssin Director, Energy Markets and Security International Energy Agency Colloque L Energie : enjeux socio-économiques

More information

Global Energy & CO2 Status Report 2017

Global Energy & CO2 Status Report 2017 Global Energy & CO2 Status Report 2017 March 2018 Key findings Energy: Global energy demand increased by 2.1% in 2017, compared with 0.9% the previous year and 0.9% on average over the previous five years.

More information

GE OIL & GAS ANNUAL MEETING 2016 Florence, Italy, 1-2 February

GE OIL & GAS ANNUAL MEETING 2016 Florence, Italy, 1-2 February Navigating energy transition Keisuke Sadamori Director for Energy Markets and Security IEA GE OIL & GAS ANNUAL MEETING 2016 Florence, Italy, 1-2 February 2016 General Electric Company - All rights reserved

More information

The challenges of a changing energy landscape

The challenges of a changing energy landscape The challenges of a changing energy landscape October 26 th 2016 Maria Pedroso Ferreira EDP Energy Planning maria.pedrosoferreira@edp.pt Agenda 1 A changing energy landscape 2 Challenges and opportunities

More information

Climate Change and Energy Sector Transformation: Implications for Asia-Pacific Including Japan

Climate Change and Energy Sector Transformation: Implications for Asia-Pacific Including Japan Climate Change and Energy Sector Transformation: Implications for Asia-Pacific Including Japan Aligning Policies for the Transition to a Low-carbon Economy: OECD Recommendations and Implications for Asia-Pacific

More information

Medium Term Renewable Energy Market Report 2016

Medium Term Renewable Energy Market Report 2016 Medium Term Renewable Energy Market Report 2016 Clean Energy Investment and Trends IETA Pavilion COP22, Marrakech November 10, 2016 Liwayway Adkins Environment and Climate Change Unit International Energy

More information

Harmony the Role of Nuclear Energy to meet electricity needs in the 2 degree scenario

Harmony the Role of Nuclear Energy to meet electricity needs in the 2 degree scenario Harmony the Role of Nuclear Energy to meet electricity needs in the 2 degree scenario Agneta Rising Director General Harmony London March 2016 THE CURRENT STATUS OF NUCLEAR ENERGY 2 Accelerating rise in

More information

Medium Term Renewable Energy Market Report Michael Waldron Senior Energy Market Analyst Renewable Energy Division International Energy Agency

Medium Term Renewable Energy Market Report Michael Waldron Senior Energy Market Analyst Renewable Energy Division International Energy Agency Medium Term Renewable Energy Market Report 13 Michael Waldron Senior Energy Market Analyst Renewable Energy Division International Energy Agency OECD/IEA 13 Methodology and Scope OECD/IEA 13 Analysis of

More information

Emissions Intensity CHAPTER 5 EMISSIONS INTENSITY 25

Emissions Intensity CHAPTER 5 EMISSIONS INTENSITY 25 C H A P T E R 5 Emissions Intensity Emissions intensity is the level of GHG emissions per unit of economic activity, usually measured at the national level as GDP. 25 Intensities vary widely across countries,

More information

INTERNATIONAL ENERGY AGENCY. In support of the G8 Plan of Action TOWARD A CLEAN, CLEVER & COMPETITIVE ENERGY FUTURE

INTERNATIONAL ENERGY AGENCY. In support of the G8 Plan of Action TOWARD A CLEAN, CLEVER & COMPETITIVE ENERGY FUTURE INTERNATIONAL ENERGY AGENCY In support of the G8 Plan of Action TOWARD A CLEAN, CLEVER & COMPETITIVE ENERGY FUTURE 2007 REPORT TO THE G8 SUMMIT in Heiligendamm, Germany The International Energy Agency,

More information

Role of clean energy in the context of Paris Agreement

Role of clean energy in the context of Paris Agreement Role of clean energy in the context of Paris Agreement Peter Janoska, Energy Analyst, IEA COP 23, Bonn, 15 November 2017 IEA The IEA works around the world to support an accelerated clean energy transitions

More information

Center on Global Energy Policy Columbia University New York NY, October 15, Philippe Benoit Head, Energy Efficiency and Environment Division

Center on Global Energy Policy Columbia University New York NY, October 15, Philippe Benoit Head, Energy Efficiency and Environment Division Center on Global Energy Policy Columbia University New York NY, October 15, 2015 Philippe Benoit Head, Energy Efficiency and Environment Division Prologue Changing oil & gas prices 25 140 20 120 100 15

More information

Renewables for Africa and for the World

Renewables for Africa and for the World RENEWABLE ENERGY Renewables for Africa and for the World Paul Simons Deputy Executive Director International Energy Agency SAIREC, Cape Town, 5 October 2015 Profound changes underway in energy markets

More information

Nuclear is part of the solution for fighting climate change

Nuclear is part of the solution for fighting climate change Nuclear is part of the solution for fighting climate change Nuclear for Climate November, 2016 2 Nuclear for Climate recognize the conclusions of Working Group I of the IPCC (Intergovernmental Panel on

More information

WIND ENERGY - THE FACTS PART VI SCENARIOS AND TARGETS

WIND ENERGY - THE FACTS PART VI SCENARIOS AND TARGETS WIND ENERGY - THE FACTS PART VI SCENARIOS AND TARGETS Acknowledgements Part VI was compiled by Arthouros Zervos of the National Technical University of Athens, Greece (www. ntua.gr), and Christian Kjaer

More information

The Commission's Energy Roadmap 2050

The Commission's Energy Roadmap 2050 MEMO/11/914 Brussels, 15 December 2011 The Commission's Energy Roadmap 2050 Why is there a need for the Roadmap 2050? The EU has set itself the goal to reduce greenhouse gas emissions to 80%-95% below

More information

CONTENTS TABLE OF PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY OECD/IEA, 2016 ANNEXES

CONTENTS TABLE OF PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY OECD/IEA, 2016 ANNEXES TABLE OF CONTENTS PART A GLOBAL ENERGY TRENDS PART B SPECIAL FOCUS ON RENEWABLE ENERGY ANNEXES INTRODUCTION AND SCOPE 1 OVERVIEW 2 OIL MARKET OUTLOOK 3 NATURAL GAS MARKET OUTLOOK 4 COAL MARKET OUTLOOK

More information

AFFORDABLE AND CLEAN ENERGY

AFFORDABLE AND CLEAN ENERGY 7 AFFORDABLE AND CLEAN ENERGY Ensure access to affordable, reliable, sustainable and modern energy for all I. SUMMARY Asia-Pacific countries are progressing across the three main pillars of sustainable

More information

CHAPTER 6 GLOBAL PROSPECTS FOR SDG 7

CHAPTER 6 GLOBAL PROSPECTS FOR SDG 7 CHAPTER 6 GLOBAL PROSPECTS FOR SDG 7 Photo: Supriya Biswas /Irena MAIN MESSAGES The world fails to achieve all Sustainable Development Goal (SDG) 7 targets under current levels of ambition. The New Policies

More information

Coal After the Paris Agreement

Coal After the Paris Agreement Coal After the Paris Agreement The Challenges of Dirty Fuel By Tim Boersma and Stacy D. VanDeveer, June 6, 2016, FOREIGN AFFAIRS On December 12, 2015, 195 countries adopted the Paris Agreement, the most

More information

G7 Kitakyushu Energy Ministerial Meeting Kitakyushu Initiative on Energy Security for Global Growth Joint Statement

G7 Kitakyushu Energy Ministerial Meeting Kitakyushu Initiative on Energy Security for Global Growth Joint Statement G7 Kitakyushu Energy Ministerial Meeting Kitakyushu Initiative on Energy Security for Global Growth Joint Statement We, the Energy Ministers of Canada, France, Germany, Italy, Japan, the United Kingdom,

More information

EXECUTIVE SUMMARY. Energy Security in a Dangerous World

EXECUTIVE SUMMARY. Energy Security in a Dangerous World EXECUTIVE SUMMARY Energy Security in a Dangerous World World Energy Outlook 2004 paints a sobering picture of how the global energy system is likely to evolve from now to 2030. If governments stick with

More information

STRATEGIC PLAN OF THE WORKING PARTY ON RENEWABLE ENERGY TECHNOLOGIES FOR THE PERIOD OF 1 JULY 2016 TO 30 JUNE 2019

STRATEGIC PLAN OF THE WORKING PARTY ON RENEWABLE ENERGY TECHNOLOGIES FOR THE PERIOD OF 1 JULY 2016 TO 30 JUNE 2019 STRATEGIC PLAN OF THE WORKING PARTY ON RENEWABLE ENERGY TECHNOLOGIES FOR THE PERIOD OF 1 JULY 2016 TO 30 JUNE 2019 1. Background a) Renewable Energy in the World Energy Context 1. The world energy system

More information

Analyses market and policy trends for electricity, heat and transport Investigates the strategic drivers for RE deployment Benchmarks the impact and c

Analyses market and policy trends for electricity, heat and transport Investigates the strategic drivers for RE deployment Benchmarks the impact and c Paolo Frankl Head Renewable Energy Division International Energy Agency Institute of Energy Economics, Japan (IEEJ) Energy Seminar Tokyo, 7 March 2012 OECD/IEA 2011 Analyses market and policy trends for

More information

RENEWABLE POWER GENERATION COSTS IN 2014

RENEWABLE POWER GENERATION COSTS IN 2014 RENEWABLE POWER GENERATION COSTS IN Executive Summary The competiveness of renewable power generation technologies continued improving in 2013 and. The cost-competitiveness of renewable power generation

More information

WORLD ENERGY OUTLOOK Dr. Fatih Birol Chief Economist Head, Economic Analysis Division

WORLD ENERGY OUTLOOK Dr. Fatih Birol Chief Economist Head, Economic Analysis Division WORLD ENERGY OUTLOOK 2002 Dr. Fatih Birol Chief Economist Head, Economic Analysis Division World Energy Outlook Series World Energy Outlook 1998 World Energy Outlook - 1999 Insights: Looking at Energy

More information

Sectoral Approaches in Electricity

Sectoral Approaches in Electricity INTERNATIONAL ENERGY AGENCY Delivering a broader carbon market after Copenhagen Richard Baron Head of climate change unit, IEA Objective: delivering CO 2 mitigation in power generation globally Identifying

More information

CHINA 2050 HIGH RENEWABLE ENERGY PENETRATION SCENARIO AND ROADMAP STUDY. Energy Research Institute National Development and Reform Commission

CHINA 2050 HIGH RENEWABLE ENERGY PENETRATION SCENARIO AND ROADMAP STUDY. Energy Research Institute National Development and Reform Commission CHINA 2050 HIGH RENEWABLE ENERGY PENETRATION SCENARIO AND ROADMAP STUDY Energy Research Institute National Development and Reform Commission ENERGY RESEARCH INSTITUTE NATIONAL DEVELOPMENT AND REFORM COMMISSION

More information

IFIEC Position Paper on Nuclear Power

IFIEC Position Paper on Nuclear Power Securing competitive energy for industry IFIEC Position Paper on Nuclear Power Introduction and highlights 1. IFIEC represents the interests of industrial energy consumers in Europe for whom energy is

More information

ENERGY AND CO 2 EMISSIONS SCENARIOS OF POLAND

ENERGY AND CO 2 EMISSIONS SCENARIOS OF POLAND d ENERGY AND CO 2 EMISSIONS SCENARIOS OF POLAND This report was prepared under the direction of Dr. Fatih Birol, Chief Economist of the International Energy Agency (IEA). The principal authors are IEA

More information

Power Perspectives 2030

Power Perspectives 2030 Executive Summary A contributing study to Roadmap 2050: a practical guide to a prosperous, low-carbon europe EXECUTIVE SUMMARY A. CONTEXT In October 2009, the European Council set an economy-wide greenhouse

More information

Roadmap for Solar PV. Michael Waldron Renewable Energy Division International Energy Agency

Roadmap for Solar PV. Michael Waldron Renewable Energy Division International Energy Agency Roadmap for Solar PV Michael Waldron Renewable Energy Division International Energy Agency OECD/IEA 2014 IEA work on renewables IEA renewables website: http://www.iea.org/topics/renewables/ Renewable Policies

More information

Plenary session 2: Sustainable and Inclusive Growth: Energy Access and Affordability. Background Paper

Plenary session 2: Sustainable and Inclusive Growth: Energy Access and Affordability. Background Paper India Plenary session 2: Sustainable and Inclusive Growth: Energy Access and Affordability New Delhi Background Paper Disclaimer The observations presented herein are meant as background for the dialogue

More information

Implications of Abundant Natural Gas

Implications of Abundant Natural Gas Implications of Abundant Natural Gas JAE EDMONDS AND HAEWON MCJEON APRIL 213 April 29, 213 1 Gas and the Global Energy System Gas is has been a growing component of the global energy system for some time.

More information

Energy Technology Perspectives

Energy Technology Perspectives ENERGY TECHNOLOGY PERSPECTIVES 2 0 0 6 Energy Technology Perspectives Scenarios and Strategies to 2050 Scenarios & Strategies to 2050 NIES Workshop Developing Visions for a Low Carbon Society through Sustainable

More information

Overview of IEA Hydropower Implementing Agreement (IEA Hydro)

Overview of IEA Hydropower Implementing Agreement (IEA Hydro) IEA Implementing Agreement For Hydropower Technologies & Programmes Overview of IEA Hydropower Implementing Agreement (IEA Hydro) Promoting Flexible Use of Hydropower, Tokyo, Japan 4 th February, 2013

More information

Energy Perspectives for Asia

Energy Perspectives for Asia Energy Perspectives for Asia By Rajiv Ranjan Mishra Nov 21, 2017 Energy Asia Population Asia 4.06 billion 55% of World 8X of EU Expected to be 8.5 billion by 2030 Source: World Bank, 2016; UN GDP Per Capita

More information

International Energy Outlook 2011

International Energy Outlook 2011 International Energy Outlook 211 Center for Strategic and International Studies, Acting Administrator September 19, 211 Washington, DC U.S. Energy Information Administration Independent Statistics & Analysis

More information

Agenda Short and medium term impact of the German moratorium Longer term challanges: maintaining supply security during decarbonization

Agenda Short and medium term impact of the German moratorium Longer term challanges: maintaining supply security during decarbonization Challenges in electricity a focus on Europe Agenda Short and medium term impact of the German moratorium Longer term challanges: maintaining supply security during decarbonization Germany: Moderate, 10%

More information

Role of Nuclear Cogeneration in a Low Carbon Energy Future?

Role of Nuclear Cogeneration in a Low Carbon Energy Future? Role of Nuclear Cogeneration in a Low Carbon Energy Future? Dr. Henri PAILLERE Senior Nuclear Analyst, Nuclear Development Division henri.paillere@oecd.org NC2I Conference, Brussels, 14-15 September 2015

More information

GHG emissions per capita. (tco 2. e/cap) Source: UNDP, data for 2015 Source: World Bank Indicators, data for 2012 Source: IEA, data for 2013

GHG emissions per capita. (tco 2. e/cap) Source: UNDP, data for 2015 Source: World Bank Indicators, data for 2012 Source: IEA, data for 2013 CLIMATE ACTION TRACKER BROWN TO GREEN: G2 TRANSITION TO A LOW CARBON ECONOMY Saudi Arabia This country profile assesses Saudi Arabia s past, present and indications of future performance towards a low-carbon

More information

WWF IPCC WG3 Key Findings

WWF IPCC WG3 Key Findings WWF IPCC WG3 Key Findings April 2014 The world should more than triple investments in sustainable, safe lowcarbon energy sources (like renewable energy) as the main measure to mitigate climate change WWF

More information

CURRENT AND FUTURE ENERGY SOURCES OF THE WORLD

CURRENT AND FUTURE ENERGY SOURCES OF THE WORLD CURRENT AND FUTURE ENERGY SOURCES OF THE WORLD The World s energy supply sources The World s energy supply sources for the year 2008 and projected supply for the year 2035 are shown in the figures below.

More information

Special Report WORLD ENERGY INVESTMENT OUTLOOK EXECUTIVE SUMMARY

Special Report WORLD ENERGY INVESTMENT OUTLOOK EXECUTIVE SUMMARY Special Report WORLD ENERGY INVESTMENT OUTLOOK EXECUTIVE SUMMARY INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA), an autonomous agency, was established in November 1974. Its primary mandate

More information

Stop and Switch Suicidal Subsidies and The Climate Solution

Stop and Switch Suicidal Subsidies and The Climate Solution Stop and Switch Suicidal Subsidies and The Climate Solution Introduction: the big missing climate solution Today, we are fixed on a world energy economic scenario that will lead to a global temperature

More information

BP Energy Outlook 2017 edition

BP Energy Outlook 2017 edition BP Energy Outlook 2017 edition Bob Dudley Group chief executive bp.com/energyoutlook #BPstats BP Energy Outlook 2017 edition Spencer Dale Group chief economist bp.com/energyoutlook #BPstats Economic backdrop

More information

Finding an Optimal Path to 2050 Decarbonization Goals

Finding an Optimal Path to 2050 Decarbonization Goals Finding an Optimal Path to 2050 Decarbonization Goals John Bistline, Ph.D. Technical Leader 3 rd IEA-EPRI Workshop Paris October 17, 2016 Substantial Effort Beyond NDCs Will Be Required Billion tonnes

More information

Nuclear Energy and Greenhouse Gas Emissions Avoidance in the EU

Nuclear Energy and Greenhouse Gas Emissions Avoidance in the EU Position Paper Nuclear Energy and Greenhouse Gas Emissions Avoidance in the EU The European Atomic Forum (FORATOM) is the Brussels-based trade association for the nuclear energy industry in Europe. The

More information

Evaluations on the emission reduction efforts of Nationally Determined Contributions (NDCs) in cost metrics

Evaluations on the emission reduction efforts of Nationally Determined Contributions (NDCs) in cost metrics November 15, 2016 Japan Pavilion COP22, Marrakech Evaluations on the emission reduction efforts of Nationally Determined Contributions (NDCs) in cost metrics Keigo Akimoto Systems Analysis Group Research

More information

RENEWABLE ENERGY: A KEY CLIMATE SOLUTION

RENEWABLE ENERGY: A KEY CLIMATE SOLUTION RENEWABLE ENERGY: A KEY CLIMATE SOLUTION Photograph: Shutterstock Energy decarbonisation is vital to keep the rise in global temperatures well below 2 C, in line with the aims of the Paris Agreement. This

More information

2018 BP Energy Outlook

2018 BP Energy Outlook BP Energy Outlook 2018 edition The Energy Outlook explores the forces shaping the global energy transition out to 2040 and the key uncertainties surrounding that transition. The Outlook considers a number

More information

Engaging consumers in a decarbonized world with the right pricing

Engaging consumers in a decarbonized world with the right pricing Engaging consumers in a decarbonized world with the right pricing BEHAVE 2016 Coimbra, 9 th of September of 2016 Ana Quelhas Director of Energy Planning Department ana.quelhas@edp.pt Agenda Achieving decarbonization

More information

INDIA S ENERGY BASKET ANALYSIS: Dr. DC Patra Bharat Petroleum

INDIA S ENERGY BASKET ANALYSIS: Dr. DC Patra Bharat Petroleum INDIA S ENERGY BASKET ANALYSIS: TAKING INTO ACCOUNT TRANSITION FACTORING COP -21 Dr. DC Patra Bharat Petroleum Linear What will we see in the presentation? Disruptive Sustainable Indian Energy Scene Historical

More information

WIND POWER TARGETS FOR EUROPE: 75,000 MW by 2010

WIND POWER TARGETS FOR EUROPE: 75,000 MW by 2010 About EWEA EWEA is the voice of the wind industry actively promoting the utilisation of wind power in Europe and worldwide. EWEA members from over 4 countries include 2 companies, organisations, and research

More information

Wind Power in Context A clean Revolution in the Energy Sector

Wind Power in Context A clean Revolution in the Energy Sector Supported by Ludwig Bölkow Stiftung Embargo: January 9, 2009 Wind Power in Context A clean Revolution in the Energy Sector Presentation by Dr. Rudolf Rechsteiner January 9-2009 press conference of Energy

More information

BP Energy Outlook 2016 edition

BP Energy Outlook 2016 edition BP Energy Outlook 216 edition Mark Finley 14th February 216 Outlook to 235 bp.com/energyoutlook #BPstats Economic backdrop Trillion, $21 25 Other 2 India Africa 15 China 1 OECD 5 OECD 1965 2 235 GDP 2

More information

Medium voltage products. Technical Application Papers No. 17 Smart grids 1. Introduction

Medium voltage products. Technical Application Papers No. 17 Smart grids 1. Introduction Medium voltage products Technical Application Papers No. 17 Smart grids 1. Introduction Contents 2 1. Introduction 8 2 The different components and functions of a smart grid 8 2.1 Integration of distributed

More information

Transport, Energy and CO2: Moving Toward Sustainability

Transport, Energy and CO2: Moving Toward Sustainability INTERNATIONAL AGENCY Transport, Energy and CO2: François Cuenot, IEA Expert Group Meeting on Transport for Sustainable Development, 27 August 2009 Index Transport Sector in the big picture Oil demand,

More information

World Energy Outlook 2007: China and India Insights

World Energy Outlook 2007: China and India Insights World Energy Outlook 2007: China and India Insights William C. Ramsay Deputy Executive Director International Energy Agency Singapore, 9 November 2007 Approach Co-operation with China s NDRC & ERI, India

More information

China's Green Growth Strategy: Industry Policy or Green Environment Policy?

China's Green Growth Strategy: Industry Policy or Green Environment Policy? China's Green Growth Strategy: Industry Policy or Green Environment Policy? Conférence internationale Débattre de l innovation responsable dans les énergies renouvelables et l architecture» 16 novembre

More information

2 ENERGY TECHNOLOGY RD&D BUDGETS: OVERVIEW (2017 edition) Released in October 2017. The IEA energy RD&D data collection and the analysis presented in this paper were performed by Remi Gigoux under the

More information

NRRI Webinar January 10, 2018 What Does the Future Hold for Natural Gas?

NRRI Webinar January 10, 2018 What Does the Future Hold for Natural Gas? NRRI Webinar January 10, 2018 What Does the Future Hold for Natural Gas? Ken Costello Principal Researcher National Regulatory Research Institute kcostello@nrri.org Consensus on the Benefits of Natural

More information

Accelerating energy innovation to achieve a sustainable future

Accelerating energy innovation to achieve a sustainable future Accelerating energy innovation to achieve a sustainable future Tom Kerr OECD Green Technology and Innovation Workshop Paris,25 October 2010 IEA energy technology activities Where are we today? Global Gaps

More information

World Energy Investment 2017

World Energy Investment 2017 World Energy Investment 2017 Dr. Fatih Birol Executive Director 11 July 2017 IEA OECD/IEA 2017 Global energy investment fell 12% in 2016, a second consecutive year of decline Global energy investment 2016

More information

The Outlook for Energy: A View to 2040

The Outlook for Energy: A View to 2040 Public Lecture: The Outlook for Energy: A View to 2040 By Lynne Taschner, Energy Advisor Corporate Strategic Planning Department, ExxonMobil on March 16, 2018 (13:30-15:30) PTT Auditorium, 2nd Floor, PTT

More information

Energy policy at the crossroads. Finding the road to a competitive, low carbon and energy efficient Europe

Energy policy at the crossroads. Finding the road to a competitive, low carbon and energy efficient Europe Energy policy at the crossroads Finding the road to a competitive, low carbon and energy efficient Europe The European chemical industry is a primary process industry, comprising some 29,000 companies,

More information

LNG. Liquefied Natural Gas A Strategy for B.C. s Newest Industry

LNG. Liquefied Natural Gas A Strategy for B.C. s Newest Industry LNG Liquefied Natural Gas A Strategy for B.C. s Newest Industry LIQUEFIED NATURAL GAS Message from the Premier The BC Jobs Plan released in September is all about leveraging our competitive advantages

More information

OECD/IEA Dr. Johannes Trüby, IEA IGU Diplomatic Gas Forum Oslo 5 December 2017

OECD/IEA Dr. Johannes Trüby, IEA IGU Diplomatic Gas Forum Oslo 5 December 2017 Dr. Johannes Trüby, IEA IGU Diplomatic Gas Forum Oslo 5 December 2017 Tipping the energy world off its axis Four large-scale upheavals in global energy set the scene for the new Outlook: The United States

More information

SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, NOVEMBER, 2011

SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, NOVEMBER, 2011 SUSTAINABLE USE OF OCEANS IN THE CONTEXT OF THE GREEN ECONOMY AND THE ERADICATION OF POVERTY, PRINCIPALITY OF MONACO, 28 30 NOVEMBER, 2011 Implementation of Offshore Wind Power & Potential of Tidal, Wave

More information

The renewable revolution

The renewable revolution For Investment Professionals Follow us @LGIM #Fundamentals FUNDAMENTALS The renewable revolution A renewable revolution is taking place in the way we produce and consume energy and it presents an enormous

More information

LNG TRADE FLOWS. Hans Stinis Shell Upstream International

LNG TRADE FLOWS. Hans Stinis Shell Upstream International LNG TRADE FLOWS Hans Stinis Shell Upstream International ABSTRACT The LNG industry has witnessed a great deal of change recently, and indications are that this will only continue. Global gas demand is

More information

European Power sector s perspective on the role of the EU ETS

European Power sector s perspective on the role of the EU ETS European Power sector s perspective on the role of the EU ETS Brussels, 12 January 2016 The European Decarbonisation agenda brings a new reality to the power system Long term EU decarbonisation objectives

More information

IEA Roadmap Workshop Sustainable Biomass Supply for Bioenergy and Biofuels September 2010

IEA Roadmap Workshop Sustainable Biomass Supply for Bioenergy and Biofuels September 2010 IEA Roadmap Workshop Sustainable Biomass Supply for Bioenergy and Biofuels 15-16 September 2010 Adam Brown Anselm Eisentraut Renewable Energy Division We need a global 50% CO 2 cut by 2050 Gt CO2 60 55

More information

Energy Transition and Renewable Energy in Korea

Energy Transition and Renewable Energy in Korea Energy Transition and Renewable Energy in Korea 12 th December 2017 Sanghoon Lee Director, Green Energy Strategy Institute IEA - 2 Scenario Limiting the global mean temperature rise to below 2 would require

More information

Distributed Generation Technologies A Global Perspective

Distributed Generation Technologies A Global Perspective Distributed Generation Technologies A Global Perspective NSF Workshop on Sustainable Energy Systems Professor Saifur Rahman Director Alexandria Research Institute Virginia Tech November 2000 Nuclear Power

More information

Renewables London 04 October 2017

Renewables London 04 October 2017 Renewables 2017 London 04 October 2017 Context Policy support & technology progress continue to drive robust growth in renewables Solar PV broke new records in 2016, led by China Solar PV grew faster than

More information

Latest developments in Germany's -ongoing -Energiewende

Latest developments in Germany's -ongoing -Energiewende Latest developments in Germany's -ongoing -Energiewende Stefanie Pfahl Head of Wind Energy and Hydro Power Division, Federal Ministry for the Environment, Nature Conservation, Building and Nuclear I am

More information

POLICY BRIEF #25 BUILDING GLOBAL ENERGY INTERCONNECTION (GEI) TO PROMOTE 2030 AGENDA FOR SUSTAINABLE ENERGY DEVELOPMENT.

POLICY BRIEF #25 BUILDING GLOBAL ENERGY INTERCONNECTION (GEI) TO PROMOTE 2030 AGENDA FOR SUSTAINABLE ENERGY DEVELOPMENT. POLICY BRIEF #25 BUILDING GLOBAL ENERGY INTERCONNECTION (GEI) TO PROMOTE 2030 AGENDA FOR SUSTAINABLE ENERGY DEVELOPMENT Developed by: Global Energy Interconnection Development and Cooperation Organization,

More information

Equal Energy Access: The Power of Coal September 14, Gregory H. Boyce Chairman and Chief Executive Officer Peabody Energy

Equal Energy Access: The Power of Coal September 14, Gregory H. Boyce Chairman and Chief Executive Officer Peabody Energy Equal Energy Access: The Power of Coal September 14, 2010 Gregory H. Boyce Chairman and Chief Executive Officer Peabody Energy 1 Equal Energy Access: The Power of Coal Are We Setting the Right Global Priorities?

More information

GHG emissions per capita. (tco 2. e/cap) Source: UNDP, data for 2015 Source: World Bank Indicators, data for 2012 Source: IEA, data for 2013

GHG emissions per capita. (tco 2. e/cap) Source: UNDP, data for 2015 Source: World Bank Indicators, data for 2012 Source: IEA, data for 2013 CLIMATE ACTION TRACKER BROWN TO GREEN: G2 TRANSITION TO A LOW CARBON ECONOMY Turkey This country profile assesses Turkey s past, present and indications of future performance towards a low-carbon economy

More information

Promote new diplomacy on energy through leading global efforts against climate change

Promote new diplomacy on energy through leading global efforts against climate change Advisory Panel to the Foreign Minister on Climate Change: Recommendations on Energy Promote new diplomacy on energy through leading global efforts against climate change Through analyzing global trends,

More information

Scenarios and R&D priorities in the 7th Framework Programme

Scenarios and R&D priorities in the 7th Framework Programme Scenarios and R&D priorities in the 7th Framework Programme Angel Perez Sainz European Commission Research DG- Energy Tel: +32.2.296.19.56. Email: Angel.Perez-Sainz@ec.europa.eu Slide n 1 / IEA Expert

More information

BP Energy Outlook 2017 edition

BP Energy Outlook 2017 edition BP Energy Outlook 2017 edition bp.com/energyoutlook #BPstats BP Energy Outlook 2017 edition The Energy Outlook considers a base case, outlining the 'most likely' path for global energy markets over the

More information

EIA s Energy Outlook Through 2035

EIA s Energy Outlook Through 2035 EIA s Energy Outlook Through 235 ReThink Montgomery Speaker Series Energy March 23, 21 Silver Spring, Maryland A. Michael Schaal, Director, Oil and Gas Division Office of Integrated Analysis and Forecasting

More information

Japan U.S. Economic Cooperation on Clean Energy

Japan U.S. Economic Cooperation on Clean Energy Japan U.S. Economic Cooperation on Clean Energy Tatsuya SHINKAWA Chief Representative Representative Office in Washington, DC New Energy and Industrial Technology Development Organization (NEDO) JAPAN

More information

Assessment of Turkey s Nuclear Energy Policy. Mustafa YAVUZDEMIR 2017

Assessment of Turkey s Nuclear Energy Policy. Mustafa YAVUZDEMIR 2017 Assessment of Turkey s Nuclear Energy Policy By Mustafa YAVUZDEMIR 2017 1 Outline 1. Introduction 2. Past and Current Energy Context 3. Challenges to Achieve Sufficient Nuclear Capacity 4. Current Legal

More information

EU Climate Change & Energy Policy and Nuclear Fission Research

EU Climate Change & Energy Policy and Nuclear Fission Research EU Climate Change & Energy Policy and Nuclear Fission Research NUCLEAR 2015, Pitesti, Romania, May 2015 Research and Innovation Christophe Davies Project Officer European Commission DG Research and Innovation

More information

Renewable Energy and other Sustainable Energy Sources. Paul Simons Deputy Executive Director International Energy Agency

Renewable Energy and other Sustainable Energy Sources. Paul Simons Deputy Executive Director International Energy Agency Renewable Energy and other Sustainable Energy Sources Paul Simons Deputy Executive Director International Energy Agency G20 ESWG meeting Munich, 14 December 2016 Renewables and efficiency lead the transition

More information

Accelerating the Global Energy Transition. Dolf Gielen and Luis Janeiro IRENA Innovation and Technology Centre

Accelerating the Global Energy Transition. Dolf Gielen and Luis Janeiro IRENA Innovation and Technology Centre Accelerating the Global Energy Transition Dolf Gielen and Luis Janeiro IRENA Innovation and Technology Centre Bonn University/IRENA lecture series - Renewable Future 12 October, 2017 1 Renewable Future

More information

BP Energy Outlook 2016 edition

BP Energy Outlook 2016 edition BP Energy Outlook 216 edition Spencer Dale, group chief economist Outlook to 235 bp.com/energyoutlook #BPstats Disclaimer This presentation contains forward-looking statements, particularly those regarding

More information

Summary of the California State Agencies PATHWAYS Project: Long-term Greenhouse Gas Reduction Scenarios

Summary of the California State Agencies PATHWAYS Project: Long-term Greenhouse Gas Reduction Scenarios Summary of the California State Agencies PATHWAYS Project: Long-term Greenhouse Gas Reduction Scenarios April 6, 2015 Introduction California statute requires a reduction in greenhouse gas (GHG) emissions

More information

17 th February 2015 BP Energy Outlook bp.com/energyoutlook #BPstats BP p.l.c. 2015

17 th February 2015 BP Energy Outlook bp.com/energyoutlook #BPstats BP p.l.c. 2015 17 th February 215 BP bp.com/energyoutlook #BPstats Economic backdrop GDP Trillion, $211 PPP 24 Other Non-OECD Asia 18 OECD Contribution to GDP growth Trillion $211 PPP, 213-35 9 Population Income per

More information

emissions, capability to take emission reduction measures and national conditions differ from country to country. After the Paris Agreement, it may be

emissions, capability to take emission reduction measures and national conditions differ from country to country. After the Paris Agreement, it may be Climate Change Measures in China after Paris Agreement Li Zhidong * This paper intends to outline China s intended nationally determined contributions (INDC) and discuss China s domestic initiatives and

More information

I. CITIES AND ENERGY USE

I. CITIES AND ENERGY USE I. CITIES AND ENERGY USE A. Background Energy is the lifeblood of modern industrial society. Modern cities rely heavily on fossil fuels for the maintenance of essential services and for powering devices

More information

Asgeir Tomasgard, Kjetil Midthun & Christian Skar

Asgeir Tomasgard, Kjetil Midthun & Christian Skar Asgeir Tomasgard, Kjetil Midthun & Christian Skar Challenges and solutions Challenges for a Zero Emission power system Prediction of massive electrification increased demand Sector has major impact of

More information

The Outlook to 2050 and the Role of Energy Technology

The Outlook to 2050 and the Role of Energy Technology 25 SUMMARY AND POLICY IMPLICATIONS This publication is a response to the Group of Eight (G8) leaders at their Gleneagles Summit in July 2005, and to the International Energy Agency's Energy Ministers who

More information

Plenary session 4: Uptake of Clean Technologies: Disruption and Coexistence of New and Existing Technologies the Way Ahead.

Plenary session 4: Uptake of Clean Technologies: Disruption and Coexistence of New and Existing Technologies the Way Ahead. India Plenary session 4: Uptake of Clean Technologies: Disruption and Coexistence of New and Existing Technologies the Way Ahead Background Paper New Delhi Disclaimer The observations presented herein

More information

Plenary Session 1: Global Shifts: The Future of Energy Security: Finding New Balances. Background Paper

Plenary Session 1: Global Shifts: The Future of Energy Security: Finding New Balances. Background Paper India New Delhi Plenary Session 1: Global Shifts: The Future of Energy Security: Finding New Balances Background Paper Disclaimer The observations presented herein are meant as background for the dialogue

More information